MOOS 0.2375
|
00001 //$$ fft.cpp Fast fourier transform 00002 00003 // Copyright (C) 1991,2,3,4,8: R B Davies 00004 00005 00006 #define WANT_MATH 00007 // #define WANT_STREAM 00008 00009 #include "include.h" 00010 00011 #include "newmatap.h" 00012 00013 // #include "newmatio.h" 00014 00015 #ifdef use_namespace 00016 namespace NEWMAT { 00017 #endif 00018 00019 #ifdef DO_REPORT 00020 #define REPORT { static ExeCounter ExeCount(__LINE__,19); ++ExeCount; } 00021 #else 00022 #define REPORT {} 00023 #endif 00024 00025 static void cossin(int n, int d, Real& c, Real& s) 00026 // calculate cos(twopi*n/d) and sin(twopi*n/d) 00027 // minimise roundoff error 00028 { 00029 REPORT 00030 long n4 = n * 4; int sector = (int)floor( (Real)n4 / (Real)d + 0.5 ); 00031 n4 -= sector * d; 00032 if (sector < 0) { REPORT sector = 3 - (3 - sector) % 4; } 00033 else { REPORT sector %= 4; } 00034 Real ratio = 1.5707963267948966192 * (Real)n4 / (Real)d; 00035 00036 switch (sector) 00037 { 00038 case 0: REPORT c = cos(ratio); s = sin(ratio); break; 00039 case 1: REPORT c = -sin(ratio); s = cos(ratio); break; 00040 case 2: REPORT c = -cos(ratio); s = -sin(ratio); break; 00041 case 3: REPORT c = sin(ratio); s = -cos(ratio); break; 00042 } 00043 } 00044 00045 static void fftstep(ColumnVector& A, ColumnVector& B, ColumnVector& X, 00046 ColumnVector& Y, int after, int now, int before) 00047 { 00048 REPORT 00049 Tracer trace("FFT(step)"); 00050 // const Real twopi = 6.2831853071795864769; 00051 const int gamma = after * before; const int delta = now * after; 00052 // const Real angle = twopi / delta; Real temp; 00053 // Real r_omega = cos(angle); Real i_omega = -sin(angle); 00054 Real r_arg = 1.0; Real i_arg = 0.0; 00055 Real* x = X.Store(); Real* y = Y.Store(); // pointers to array storage 00056 const int m = A.Nrows() - gamma; 00057 00058 for (int j = 0; j < now; j++) 00059 { 00060 Real* a = A.Store(); Real* b = B.Store(); // pointers to array storage 00061 Real* x1 = x; Real* y1 = y; x += after; y += after; 00062 for (int ia = 0; ia < after; ia++) 00063 { 00064 // generate sins & cosines explicitly rather than iteratively 00065 // for more accuracy; but slower 00066 cossin(-(j*after+ia), delta, r_arg, i_arg); 00067 00068 Real* a1 = a++; Real* b1 = b++; Real* x2 = x1++; Real* y2 = y1++; 00069 if (now==2) 00070 { 00071 REPORT int ib = before; 00072 if (ib) for (;;) 00073 { 00074 REPORT 00075 Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after; 00076 Real r_value = *a2; Real i_value = *b2; 00077 *x2 = r_value * r_arg - i_value * i_arg + *(a2-gamma); 00078 *y2 = r_value * i_arg + i_value * r_arg + *(b2-gamma); 00079 if (!(--ib)) break; 00080 x2 += delta; y2 += delta; 00081 } 00082 } 00083 else 00084 { 00085 REPORT int ib = before; 00086 if (ib) for (;;) 00087 { 00088 REPORT 00089 Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after; 00090 Real r_value = *a2; Real i_value = *b2; 00091 int in = now-1; while (in--) 00092 { 00093 // it should be possible to make this faster 00094 // hand code for now = 2,3,4,5,8 00095 // use symmetry to halve number of operations 00096 a2 -= gamma; b2 -= gamma; Real temp = r_value; 00097 r_value = r_value * r_arg - i_value * i_arg + *a2; 00098 i_value = temp * i_arg + i_value * r_arg + *b2; 00099 } 00100 *x2 = r_value; *y2 = i_value; 00101 if (!(--ib)) break; 00102 x2 += delta; y2 += delta; 00103 } 00104 } 00105 00106 // temp = r_arg; 00107 // r_arg = r_arg * r_omega - i_arg * i_omega; 00108 // i_arg = temp * i_omega + i_arg * r_omega; 00109 00110 } 00111 } 00112 } 00113 00114 00115 void FFTI(const ColumnVector& U, const ColumnVector& V, 00116 ColumnVector& X, ColumnVector& Y) 00117 { 00118 // Inverse transform 00119 Tracer trace("FFTI"); 00120 REPORT 00121 FFT(U,-V,X,Y); 00122 const Real n = X.Nrows(); X /= n; Y /= (-n); 00123 } 00124 00125 void RealFFT(const ColumnVector& U, ColumnVector& X, ColumnVector& Y) 00126 { 00127 // Fourier transform of a real series 00128 Tracer trace("RealFFT"); 00129 REPORT 00130 const int n = U.Nrows(); // length of arrays 00131 const int n2 = n / 2; 00132 if (n != 2 * n2) 00133 Throw(ProgramException("Vector length not multiple of 2", U)); 00134 ColumnVector A(n2), B(n2); 00135 Real* a = A.Store(); Real* b = B.Store(); Real* u = U.Store(); int i = n2; 00136 while (i--) { *a++ = *u++; *b++ = *u++; } 00137 FFT(A,B,A,B); 00138 int n21 = n2 + 1; 00139 X.ReSize(n21); Y.ReSize(n21); 00140 i = n2 - 1; 00141 a = A.Store(); b = B.Store(); // first els of A and B 00142 Real* an = a + i; Real* bn = b + i; // last els of A and B 00143 Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y 00144 Real* xn = x + n2; Real* yn = y + n2; // last els of X and Y 00145 00146 *x++ = *a + *b; *y++ = 0.0; // first complex element 00147 *xn-- = *a++ - *b++; *yn-- = 0.0; // last complex element 00148 00149 int j = -1; i = n2/2; 00150 while (i--) 00151 { 00152 Real c,s; cossin(j--,n,c,s); 00153 Real am = *a - *an; Real ap = *a++ + *an--; 00154 Real bm = *b - *bn; Real bp = *b++ + *bn--; 00155 Real samcbp = s * am + c * bp; Real sbpcam = s * bp - c * am; 00156 *x++ = 0.5 * ( ap + samcbp); *y++ = 0.5 * ( bm + sbpcam); 00157 *xn-- = 0.5 * ( ap - samcbp); *yn-- = 0.5 * (-bm + sbpcam); 00158 } 00159 } 00160 00161 void RealFFTI(const ColumnVector& A, const ColumnVector& B, ColumnVector& U) 00162 { 00163 // inverse of a Fourier transform of a real series 00164 Tracer trace("RealFFTI"); 00165 REPORT 00166 const int n21 = A.Nrows(); // length of arrays 00167 if (n21 != B.Nrows() || n21 == 0) 00168 Throw(ProgramException("Vector lengths unequal or zero", A, B)); 00169 const int n2 = n21 - 1; const int n = 2 * n2; int i = n2 - 1; 00170 00171 ColumnVector X(n2), Y(n2); 00172 Real* a = A.Store(); Real* b = B.Store(); // first els of A and B 00173 Real* an = a + n2; Real* bn = b + n2; // last els of A and B 00174 Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y 00175 Real* xn = x + i; Real* yn = y + i; // last els of X and Y 00176 00177 Real hn = 0.5 / n2; 00178 *x++ = hn * (*a + *an); *y++ = - hn * (*a - *an); 00179 a++; an--; b++; bn--; 00180 int j = -1; i = n2/2; 00181 while (i--) 00182 { 00183 Real c,s; cossin(j--,n,c,s); 00184 Real am = *a - *an; Real ap = *a++ + *an--; 00185 Real bm = *b - *bn; Real bp = *b++ + *bn--; 00186 Real samcbp = s * am - c * bp; Real sbpcam = s * bp + c * am; 00187 *x++ = hn * ( ap + samcbp); *y++ = - hn * ( bm + sbpcam); 00188 *xn-- = hn * ( ap - samcbp); *yn-- = - hn * (-bm + sbpcam); 00189 } 00190 FFT(X,Y,X,Y); // have done inverting elsewhere 00191 U.ReSize(n); i = n2; 00192 x = X.Store(); y = Y.Store(); Real* u = U.Store(); 00193 while (i--) { *u++ = *x++; *u++ = - *y++; } 00194 } 00195 00196 void FFT(const ColumnVector& U, const ColumnVector& V, 00197 ColumnVector& X, ColumnVector& Y) 00198 { 00199 // from Carl de Boor (1980), Siam J Sci Stat Comput, 1 173-8 00200 // but first try Sande and Gentleman 00201 Tracer trace("FFT"); 00202 REPORT 00203 const int n = U.Nrows(); // length of arrays 00204 if (n != V.Nrows() || n == 0) 00205 Throw(ProgramException("Vector lengths unequal or zero", U, V)); 00206 if (n == 1) { REPORT X = U; Y = V; return; } 00207 00208 // see if we can use the newfft routine 00209 if (!FFT_Controller::OnlyOldFFT && FFT_Controller::CanFactor(n)) 00210 { 00211 REPORT 00212 X = U; Y = V; 00213 if ( FFT_Controller::ar_1d_ft(n,X.Store(),Y.Store()) ) return; 00214 } 00215 00216 ColumnVector B = V; 00217 ColumnVector A = U; 00218 X.ReSize(n); Y.ReSize(n); 00219 const int nextmx = 8; 00220 #ifndef ATandT 00221 int prime[8] = { 2,3,5,7,11,13,17,19 }; 00222 #else 00223 int prime[8]; 00224 prime[0]=2; prime[1]=3; prime[2]=5; prime[3]=7; 00225 prime[4]=11; prime[5]=13; prime[6]=17; prime[7]=19; 00226 #endif 00227 int after = 1; int before = n; int next = 0; bool inzee = true; 00228 int now = 0; int b1; // initialised to keep gnu happy 00229 00230 do 00231 { 00232 for (;;) 00233 { 00234 if (next < nextmx) { REPORT now = prime[next]; } 00235 b1 = before / now; if (b1 * now == before) { REPORT break; } 00236 next++; now += 2; 00237 } 00238 before = b1; 00239 00240 if (inzee) { REPORT fftstep(A, B, X, Y, after, now, before); } 00241 else { REPORT fftstep(X, Y, A, B, after, now, before); } 00242 00243 inzee = !inzee; after *= now; 00244 } 00245 while (before != 1); 00246 00247 if (inzee) { REPORT A.Release(); X = A; B.Release(); Y = B; } 00248 } 00249 00250 // Trigonometric transforms 00251 // see Charles Van Loan (1992) "Computational frameworks for the fast 00252 // Fourier transform" published by SIAM; section 4.4. 00253 00254 void DCT_II(const ColumnVector& U, ColumnVector& V) 00255 { 00256 // Discrete cosine transform, type II, of a real series 00257 Tracer trace("DCT_II"); 00258 REPORT 00259 const int n = U.Nrows(); // length of arrays 00260 const int n2 = n / 2; const int n4 = n * 4; 00261 if (n != 2 * n2) 00262 Throw(ProgramException("Vector length not multiple of 2", U)); 00263 ColumnVector A(n); 00264 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00265 int i = n2; 00266 while (i--) { *a++ = *u++; *(--b) = *u++; } 00267 ColumnVector X, Y; 00268 RealFFT(A, X, Y); A.CleanUp(); 00269 V.ReSize(n); 00270 Real* x = X.Store(); Real* y = Y.Store(); 00271 Real* v = V.Store(); Real* w = v + n; 00272 *v = *x; 00273 int k = 0; i = n2; 00274 while (i--) 00275 { 00276 Real c, s; cossin(++k, n4, c, s); 00277 Real xi = *(++x); Real yi = *(++y); 00278 *(++v) = xi * c + yi * s; *(--w) = xi * s - yi * c; 00279 } 00280 } 00281 00282 void DCT_II_inverse(const ColumnVector& V, ColumnVector& U) 00283 { 00284 // Inverse of discrete cosine transform, type II 00285 Tracer trace("DCT_II_inverse"); 00286 REPORT 00287 const int n = V.Nrows(); // length of array 00288 const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1; 00289 if (n != 2 * n2) 00290 Throw(ProgramException("Vector length not multiple of 2", V)); 00291 ColumnVector X(n21), Y(n21); 00292 Real* x = X.Store(); Real* y = Y.Store(); 00293 Real* v = V.Store(); Real* w = v + n; 00294 *x = *v; *y = 0.0; 00295 int i = n2; int k = 0; 00296 while (i--) 00297 { 00298 Real c, s; cossin(++k, n4, c, s); 00299 Real vi = *(++v); Real wi = *(--w); 00300 *(++x) = vi * c + wi * s; *(++y) = vi * s - wi * c; 00301 } 00302 ColumnVector A; RealFFTI(X, Y, A); 00303 X.CleanUp(); Y.CleanUp(); U.ReSize(n); 00304 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00305 i = n2; 00306 while (i--) { *u++ = *a++; *u++ = *(--b); } 00307 } 00308 00309 void DST_II(const ColumnVector& U, ColumnVector& V) 00310 { 00311 // Discrete sine transform, type II, of a real series 00312 Tracer trace("DST_II"); 00313 REPORT 00314 const int n = U.Nrows(); // length of arrays 00315 const int n2 = n / 2; const int n4 = n * 4; 00316 if (n != 2 * n2) 00317 Throw(ProgramException("Vector length not multiple of 2", U)); 00318 ColumnVector A(n); 00319 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00320 int i = n2; 00321 while (i--) { *a++ = *u++; *(--b) = -(*u++); } 00322 ColumnVector X, Y; 00323 RealFFT(A, X, Y); A.CleanUp(); 00324 V.ReSize(n); 00325 Real* x = X.Store(); Real* y = Y.Store(); 00326 Real* v = V.Store(); Real* w = v + n; 00327 *(--w) = *x; 00328 int k = 0; i = n2; 00329 while (i--) 00330 { 00331 Real c, s; cossin(++k, n4, c, s); 00332 Real xi = *(++x); Real yi = *(++y); 00333 *v++ = xi * s - yi * c; *(--w) = xi * c + yi * s; 00334 } 00335 } 00336 00337 void DST_II_inverse(const ColumnVector& V, ColumnVector& U) 00338 { 00339 // Inverse of discrete sine transform, type II 00340 Tracer trace("DST_II_inverse"); 00341 REPORT 00342 const int n = V.Nrows(); // length of array 00343 const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1; 00344 if (n != 2 * n2) 00345 Throw(ProgramException("Vector length not multiple of 2", V)); 00346 ColumnVector X(n21), Y(n21); 00347 Real* x = X.Store(); Real* y = Y.Store(); 00348 Real* v = V.Store(); Real* w = v + n; 00349 *x = *(--w); *y = 0.0; 00350 int i = n2; int k = 0; 00351 while (i--) 00352 { 00353 Real c, s; cossin(++k, n4, c, s); 00354 Real vi = *v++; Real wi = *(--w); 00355 *(++x) = vi * s + wi * c; *(++y) = - vi * c + wi * s; 00356 } 00357 ColumnVector A; RealFFTI(X, Y, A); 00358 X.CleanUp(); Y.CleanUp(); U.ReSize(n); 00359 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00360 i = n2; 00361 while (i--) { *u++ = *a++; *u++ = -(*(--b)); } 00362 } 00363 00364 void DCT_inverse(const ColumnVector& V, ColumnVector& U) 00365 { 00366 // Inverse of discrete cosine transform, type I 00367 Tracer trace("DCT_inverse"); 00368 REPORT 00369 const int n = V.Nrows()-1; // length of transform 00370 const int n2 = n / 2; const int n21 = n2 + 1; 00371 if (n != 2 * n2) 00372 Throw(ProgramException("Vector length not multiple of 2", V)); 00373 ColumnVector X(n21), Y(n21); 00374 Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store(); 00375 Real vi = *v++; *x++ = vi; *y++ = 0.0; 00376 Real sum1 = vi / 2.0; Real sum2 = sum1; vi = *v++; 00377 int i = n2-1; 00378 while (i--) 00379 { 00380 Real vi2 = *v++; sum1 += vi2 + vi; sum2 += vi2 - vi; 00381 *x++ = vi2; vi2 = *v++; *y++ = vi - vi2; vi = vi2; 00382 } 00383 sum1 += vi; sum2 -= vi; 00384 vi = *v; *x = vi; *y = 0.0; vi /= 2.0; sum1 += vi; sum2 += vi; 00385 ColumnVector A; RealFFTI(X, Y, A); 00386 X.CleanUp(); Y.CleanUp(); U.ReSize(n+1); 00387 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n; 00388 i = n2; int k = 0; *u++ = sum1 / n2; *v-- = sum2 / n2; 00389 while (i--) 00390 { 00391 Real s = sin(1.5707963267948966192 * (++k) / n2); 00392 Real ai = *(++a); Real bi = *(--b); 00393 Real bz = (ai - bi) / 4 / s; Real az = (ai + bi) / 2; 00394 *u++ = az - bz; *v-- = az + bz; 00395 } 00396 } 00397 00398 void DCT(const ColumnVector& U, ColumnVector& V) 00399 { 00400 // Discrete cosine transform, type I 00401 Tracer trace("DCT"); 00402 REPORT 00403 DCT_inverse(U, V); 00404 V *= (V.Nrows()-1)/2; 00405 } 00406 00407 void DST_inverse(const ColumnVector& V, ColumnVector& U) 00408 { 00409 // Inverse of discrete sine transform, type I 00410 Tracer trace("DST_inverse"); 00411 REPORT 00412 const int n = V.Nrows()-1; // length of transform 00413 const int n2 = n / 2; const int n21 = n2 + 1; 00414 if (n != 2 * n2) 00415 Throw(ProgramException("Vector length not multiple of 2", V)); 00416 ColumnVector X(n21), Y(n21); 00417 Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store(); 00418 Real vi = *(++v); *x++ = 2 * vi; *y++ = 0.0; 00419 int i = n2-1; 00420 while (i--) { *y++ = *(++v); Real vi2 = *(++v); *x++ = vi2 - vi; vi = vi2; } 00421 *x = -2 * vi; *y = 0.0; 00422 ColumnVector A; RealFFTI(X, Y, A); 00423 X.CleanUp(); Y.CleanUp(); U.ReSize(n+1); 00424 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n; 00425 i = n2; int k = 0; *u++ = 0.0; *v-- = 0.0; 00426 while (i--) 00427 { 00428 Real s = sin(1.5707963267948966192 * (++k) / n2); 00429 Real ai = *(++a); Real bi = *(--b); 00430 Real az = (ai + bi) / 4 / s; Real bz = (ai - bi) / 2; 00431 *u++ = az - bz; *v-- = az + bz; 00432 } 00433 } 00434 00435 void DST(const ColumnVector& U, ColumnVector& V) 00436 { 00437 // Discrete sine transform, type I 00438 Tracer trace("DST"); 00439 REPORT 00440 DST_inverse(U, V); 00441 V *= (V.Nrows()-1)/2; 00442 } 00443 00444 00445 00446 #ifdef use_namespace 00447 } 00448 #endif 00449 00450