
1

Approaches to Improving Acoustic Communications
on Autonomous Mobile Marine Platforms

Toby Schneider and Henrik Schmidt
Center for Ocean Engineering

Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139
tes@mit.edu and henrik@mit.edu

Abstract—Autonomous underwater vehicles (AUVs) are
quickly advancing in adaptive sensing and feature detec-
tion capabilities. These missions increasingly require timely
transmission of data over the only feasible undersea link:
acoustics. Thus far, the underwater communications and
autonomous vehicles research communities have pursued
their problems more or less independently. This paper re-
views and presents a number of techniques for integrating
the two disciplines by applying the artificial intelligence
available on the AUV to the problem of improving com-
munications over the high-latency, low-throughput acoustic
link.

These techniques are split into two broad categories:
1) Disruptive: maneuvers and autonomous decisions that
require some disruption to the broader vehicle mission, and
2) Non-disruptive: methods that do not affect the motion of
the vehicle. In the non-disruptive category, an application
of arithmetic encoding to substantially reduce the telegram
size of a vehicle’s position report is presented.

Index Terms—autonomous underwater vehicles, acoustic
communications, robotic networks

I. MOTIVATION

Users of mobile marine platforms such as autonomous
underwater vehicles (AUVs) and unmanned surface ve-
hicles (USVs) are one of the major beneficiaries of
improved acoustic communication capabilities, since the
need to move often precludes the use of fiber optic com-
munication tethers. These vehicles are also becoming
increasingly “intelligent”; they are outfitted with substan-
tial computational ability and are capable of fulfilling
complex mission components or entire missions au-
tonomously; for examples, see [1]–[3]. Meanwhile, un-
derwater acousticians and signal processing researchers
have characterized many of the detrimental effects of the
ocean acoustic environment on successful transmission
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of datagrams; the effects are summarized in [4], [5].
However, there has been little crossover between under-
water autonomy and acoustic communications, with the
former community generally treating the physical link as
a “black box” that sends bytes from one point to another.

This paper aims to show that much can be gained
from improved awareness of a physical acoustic link
and its related hardware by the AUV’s decision making
software. Several techniques are reviewed or suggested
for improving communications by making use of the
vehicle’s intelligence; they are split into disruptive (re-
quires movement of the vehicle that may be orthogonal
to the overall mission objectives) and non-disruptive
(no negative effect on the mission objectives). Here,
“improving communications” is defined as increasing
the unit information throughput per unit power ratio.
A summary of the methods discussed here is given in
Table I.

II. DISRUPTIVE TECHNIQUES

Since, by definition, AUVs are mobile, the possibility
exists for motion (or lack thereof) to effect a change
in the physical communications situation. In general,
the movement required would be partially orthogonal
to the movement goals of the overarching mission (e.g.
environmental sampling, hazard detection).

One technique, detailed in [6], is having the AUV
move to improve signal-to-noise ratio over a modeled
path to a receiver whose position is known or modeled.
It is possible to improve the quality of the received
signal by modeling the transmission loss (TL) from the
vehicle to a known receiver (along with the noise (NL)
at the receiver) and then moving the vehicle to a local
minimum in the resulting predicted signal-to-noise ratio
(SNR), where

SNR = SL− TL−NL (1)
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TABLE I: Techniques to improve acoustic communications available to an artificially intelligent AUV

Description Disruptive Improvement Requires Advantages Disadvantages

Move to expected
beneficial position yes

higher SNR
or reduced
multipath

receiver position, propaga-
tion model

potentially large
gains (e.g. SO-
FAR channel)

very disruptive

Stop to transmit or
receive yes less Doppler,

lower noise
source transmit time, self-
noise model

minimally
disruptive

synchronization
with transmitter

Frequency selection no higher SNR
receiver position, propaga-
tion model, broadband or
multi-channel hardware

extra hardware

Transmit power se-
lection no lower power receiver position, propaga-

tion model
easy to imple-
ment

accurate model-
ing difficult

Entropy-based
source encoding no increased infor-

mation per bit data model
complementary
to other
techniques

data modeling
time consuming
or difficult

with source level (SL), TL, NL, and SNR in decibels
[7].

This maneuver has the potential to increase the data
throughput of the acoustic link since the signal strength
directly relates to the (theoretical) channel capacity C
via the Shannon-Hartley theorem

C = B log2(1 + 10SNR/10) (2)

where C is in bits per second and bandwidth B is
in Hertz, assuming white noise [8]. Depending on the
modulation scheme employed, progress towards this
unattainable theoretical limit may not limited by the
signal-to-noise ratio, but rather by another environmental
factor such as multipath echoes (which cause inter-
symbol interference) or Doppler shifts. One drawback
to this technique is that it requires having sufficient
environmental data or statistics to adequately model
the propagation path between source and receiver. Such
information is sometimes not available to the vehicle.

Another technique involves slowing or stopping the
vehicle to mitigate self-noise and/or Doppler effects.
Certain modulation schemes, such as orthogonal fre-
quency division multiplexing (OFDM), are highly sen-
sitive to Doppler shifts. Since vehicle speeds (order of
100 m/s) are not negligible compared to the speed of
sound in sea water (order of 103 m/s), normal vehicle
motion can be disruptive to successful communications.
Whether this technique is useful or not depends on the
autonomy system understanding the requirements of the
acoustic modem; it makes no sense to stop the vehicle
if the modem’s modulation is immune to the relevant
frequency shifts. A second reason to arrest the motion
of the vehicle is just prior to receipt of a telegram to
reduce the vehicle’s self noise. Zimmerman, et al [9]
found that the self-noise of a typical mid-size AUV (the
Bluefin Odyssey IIb) was 20 to 50 dB higher than the

ocean background noise levels in the 10Hz to 10kHz
range; the upper end of this band is commonly used
for AUV communication. Most of this noise is motion
related (propeller and turbulence), suggesting that much
of this noise could be removed by stopping the vehicle
temporarily to receive communications. However, such a
scheme requires knowledge of incoming transmissions,
which can be pre-arranged (e.g. fixed time division mul-
tiple access (TDMA) medium access control (MAC)) or
negotiated (e.g. request-to-send/clear-to-send style MAC
schemes).

Both of these techniques have the obvious disadvan-
tage of taking time and power away from the core mis-
sion for the purpose of communications. However, many
missions (especially detection of mines or submarines)
are inherently useless without timely reports of collected
data. Thus, when using these disruptive techniques some
form of multi-objective optimization needs to be used.
Otherwise, there is a risk of the mission collapsing to the
degenerate case where all of the mission time is spent
communicating useless data.

III. NON-DISRUPTIVE TECHNIQUES

Some methods that do not require potentially unac-
ceptable changes to the mission include selecting modem
parameters based on propagation models and use of
entropy source coding, such arithmetic coding.

A. Transmitter parameter selection

Rather than moving the vehicle as suggested in the
previous section, the vehicle can select an optimal bit-
rate, transmit power or frequency band. Given that the
acoustic absorption per unit distance increases with
frequency, whereas the ambient noise level generally
decreases with frequency, a maximum in the expected
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signal-to-noise ratio exists varies as a function of carrier
frequency as shown in [10]. Thus, a vehicle aware of
the range to its communicating partner can select the
available carrier frequency that is expected to be closest
to this maximum SNR. Similarly, the power can be
adjusted to reach an expected acceptable threshold for
a given modulation scheme and bit rate. Due to the
realities of designing broadband tranducers, very wide
band modems required to make this technique feasible
are not presently available. However, a vehicle equipped
with two tranducers with different bands could select
between the two based on the range to the receiver.

B. Arithmetic coding

Unlike the other approaches given here, this tech-
nique is agnostic of the particulars of the physical link,
assuming error-free channel coding is provided, as is
typically the case. Thus, it is complementary with the
other approaches discussed here. Here, a overall model
of the source data is provided, and shared knowledge
of the vehicle’s mission is used to determine a reduced
model for use by an entropy source coder, such as an
arithmetic coder. This coder encodes the source data into
a near minimal lossless representation. The drawback to
this approach is that it requires knowledge (i.e. a model)
of the physical origin of the data collected, which can
be time consuming or difficult to obtain. Fortunately, in
many cases the model can be generated (and adaptively
updated) by prior statistics.

Arithmetic coding was chosen over various alterna-
tives because

• assuming an accurate model, it produces a nearly
optimal encoded bitset.

• the modeling process is separate from the coder
design. This allows a single implementation of
an arithmetic coder to function on many distinct
sources of data.

The main drawback is that arithmetic coding has a
reasonably high computational cost. This is generally
not a concern for the underwater vehicle domain since
available computing resources typically far outpace the
throughput of the acoustic channel.

1) Choosing and representing source data: Here we
will examine an implementation and its performance
transmitting hypothetical messages pulled from a exper-
imental dataset (shallow water GLINT10 experiment in
the Tyrrhenian Sea) containing in excess of sixty hours
of cumulative dive time. Specific quantities from this
experiment or chosen here for this example are given
in Table II. The desired transmission in this example
is a Cartesian representation of the vehicle’s position

TABLE II: GLINT10 Parameters

Parameter Value

Time between messages (τ ) 10 s
Number of full transmissions (Nf ) 199

Mean size of full transmission 60 bits
Number of delta transmissions (Nd) 24420

Size of delta transmission See Fig. 6
Vehicle speed (s) 1.5 m/s
Water depth (D) 110 m

Experiment datum (latd, lond) 42.45667◦N, 10.875◦E
Transmitted x, y, z precision 1 m

Delta model bounds: [dxmin, dxmax) ±5sτ = [-50, 51) m
Delta model bounds: [dymin, dymax) ±5sτ = [-50, 51) m
Delta model bounds: [dzmin, dzmax) ±D/10 = [-11, 12) m

(x[n], y[n], z[n]) with each discrete step n separated by
a predetermined time τ , where

(x[n], y[n]) = UTMWGS84(lon[n], lat[n])

− UTMWGS84(lond, latd) (3)

and z[n] is the negative of the pressure-derived vehicle
depth. UTMWGS84 is the Universal Transverse Mer-
cator transformation using the WGS’84 ellipsoid [11],
lon[n], lat[n] are the vehicle’s longitude and latitude,
and lond, latd are the latitude and longitude of the
experiment datum, a reference used for convenience
(unrelated to the UTM zone datum).

The position of the vehicle is a commonly desired
quantity during operations, as it lends assurance to the
operators of the vehicle’s correct functioning, as well
as being necessary to geolocate any instrument data
transmitted concurrently. This technique can be extended
for transmitting many types of scalar data whose source
can be modeled, but for brevity the focus will be on
transmitting the vehicle’s position alone.

The data used are given in Fig. 1 and Fig. 2, and
represent one AUV performing a variety of data collec-
tion and adaptive autonomy missions. The details of the
missions are not of interest here, as the goal is to develop
a technique for communicating position data regardless
of the vehicle’s mission.

Position measurements were transmitted as one of two
types of messages:

• Full transmissions: (tf , x(tf ), y(tf ), z(tf )) includ-
ing the time and full position of the vehicle relative
to the experiment datum.

• Delta transmissions: (dx[n], dy[n], dz[n]), where
n = tf − [0, 1, 2, 3...]τ . Sent continously following
a full transmission or prior delta transmissions until
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Fig. 1: z position (negative depth) of the “Unicorn” AUV for the x and y positions given in Fig. 2.
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Fig. 2: Cartesian x and y positions from the “Unicorn”
AUV during the entire GLINT10 trial. Many different
mission types were run, providing a rich dataset of actual
AUV maneuvers. Only positions where the vehicle was
at depth (z > −2) are included, as the vehicle has access
to much higher quality links (e.g. IEEE 802.11 wireless
Ethernet) than acoustic on the surface.

Mission path
Actual path
Sent point
Sent difference

y

x

(dx0,dy0)

datum
(0,0)

(a) Generation of differences (dx and dy) from the
vehicle’s actual position from the extrapolated position
(generated on both sender and receiver using tracked
positions previously transmitted).

Pdx

dx
dx0

(b) Example of the probability model used, represented
the error between the actual and extrapolated positions.

0 1
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0
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-1-2 1 2 ......

dx0

dxmindx:

symbol:

dxmax
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-dxmin
1-dxmin

2-dxmin dxmax-dxminOOR
EOF

(c) Arithmetic coding symbol intervals (each dx is
mapped to a symbol with 1-meter precision).

Fig. 3: Example illustration mapping vehicle position (a)
to a given probabilistic model (b) used to generate the
symbol intervals required for arithmetic coding (c).
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Fig. 4: The three models used for the results given in Fig. 6.

the vehicle was removed from operation for greater
than τ seconds, after which a full transmission is
sent to reinitialize the receiver’s state. The differ-
ences are computed symmetrically on the vehicle
and receiver using a simple tracker: the prior two
transmitted positions were used to determine yaw Θ
where

Θ = tan−1 y[n− 1]− y[n− 2]

x[n− 1]− x[n− 2]
(4)

The vehicle’s last position is extrapolated using this
heading at the fixed speed s, and this is used as a
reference for the difference (or error) to the actual
vehicle position to be transmitted, such that

(dx[n], dy[n]) = (x[n]− (x[n− 1] + τ |~v| cos Θ),

y[n]− (y[n− 1] + τ |~v| sin Θ)) (5)

This operation is visualized in Fig. 3a. For depth,
the last difference is used:

dz[n] = z[n]− (z[n− 1]− z[n− 2]) (6)

n does not need to be transmitted, assuming the
lower layers of the network stack can provide in-
order receipt of messages without duplicate packets.
In this case, the decoding simply increments n on
each message received. As this can be accomplished
with automatic repeat request (ARQ) with a single
alternating bit to discard duplicates, this is a rea-
sonable assumption.

2) Generating a source model: The next step in
this process is identifying a suitable model. The full
transmissions were encoded using a uniform probability

distribution, since the vehicle could be reasonably be
redeployed anywhere in the operation region. Since the
delta transmissions make up the vast majority of trans-
missions from this dataset ( Nd

Nd+Nf
= 99.2%), we will

focus on these messages. The process of mapping the
source delta data from the previous section is sketched
in Fig. 3b.

A priori, it seems logical that the probability distri-
bution governing the delta values (dx, dy, dz) would be
zero mean, since any pattern the vehicle makes will
have an equal number of negative and positive position
differences (for example, see the hexagon in Fig. 3a. The
negative dx on the east side will be offset by the positive
dx on the west side.). The shape of the distribution
is unclear, however, and depends substantially on the
manuevering choices the vehicle makes (tight circles
would lead to high error using the dynamic model given
in Equation 5, straight lines would be low error). Thus,
three distributions were compared (all shown in Fig. 4):

• Uniform:

P [dx] =

{
1

dxmax−dxmin−1 dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(7)

• Normal,

P [dx] =

{
N (0, (sτ)2) dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(8)

The standard deviation was chosen so that the
“worst case” scenario (vehicle makes a 180◦ turn
immediately after the preceeding transmission) has
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about 95% of the probability mass, that is

1.96σ ≈ 2sτ (9)

• Adaptive: This model starts processing the dataset
with the uniform distribution given above, and then
equally incorporates the statistics of all previously
transmitted symbols. Thus, an accurate model of the
vehicle’s prior positions is built up to encode future
positions. At any sample m0, the model is

P [dx] =

{
Ndx+1

m0+dxmax−dxmin−1 dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(10)

where Ndx is number of prior transmissions over
[dx[0], dx[m0 − 1]] that had the value dx, and
m = 0 is the start of the experiment (so that
[dx[0], dx[m0 − 1]] contains all decoded transmis-
sions, both full and delta). The model is updated
after encoding and after decoding so that the send-
ing AUV and the receiver can share the same state.

3) Implementing and using the arithmetic coder:
To ensure this work can be easily fielded on AUVs in
the near future, the arithmetic coder was implemented
in the Dynamic Compact Control Language (DCCL),
part of the Goby2 project [12]. The details of the
arithmetic coder was based on the widely used integer
implementation by Witten, Neal, and Clearly [13]. While
the integer implementation is used in the code, this paper
uses the floating point notation that involves encoding a
range from [0, 1) using normalized probability models.

The mapping from delta values to symbols S (shown
in Fig. 3c) is given by

S[dx] =


dx− dxmin dx ∈ [dxmin, dxmax)

out-of-range dx 6∈ [dxmin, dxmax)

end-of-file dx ∈ ∅
(11)

with two special symbols: end-of-file (EOF) used to
indicate the end of encoding, and out-of-range (OOR)
used to indicate any value outside [dxmin, dxmax). An
EOF symbol is not required if the number of messages
encoded per packet is arranged between sender and
receiver ahead of time.

However, one innovation was required to conform to
the DCCL requirement that decoders consume exactly
the same number of bits as the encoder produces. The
implementation of an arithmetic coder given in [13]
and elsewhere assumes that the decoder can safely read
nonsense bits past the end of the file, until the actual
end-of-file symbol is decoded. This will not work with
DCCL since extra bits used in decoding end up being
taken from those required for the next field. Thus, in

0100111000100111100000

enddz startdy startdx start
(a) Example DCCL bitstream
for a single encoded delta mes-
sage. The “dy start” and “dz
start” markers are given for il-
lustration only; the way DCCL
distinguishes the start of one
field is where the last field’s
decoder left off.

00000000
11111111

00000000
01111111

01001100
01001111

01001110
01001111

ambiguous

ambiguous

ambiguous

unambiguous

...

(b) Example decoding dx from
this example bitstream. Both
the upper and lower bounds are
tracked, consuming a single bit
at a time until the range unam-
biguously identify a symbol.

Fig. 5: Example of the arithmetic decoder for DCCL,
showing tracking of decoded ranges to ensure the num-
ber of bits consumed by the encoder and the decoder are
identical.

the DCCL implementation used here, the decoder tracks
both the upper (current bitset followed by all ones) and
lower (current bitset followed by all zeros) bounds of the
current symbol, adding bits one at a time until the symbol
is unambigously decoded. An example of this process
is given in Fig. 5. Relatedly, the end of the bitstream
must be encoded exactly so that the decoder does not
leave extra bits in the stream that would corrupt the next
field of the message. The authors of [13] always use two
bits to indicate which middle quarter (either [0.25, 0.5)
or [0.5, 0.75)) is wholly contained by the final encoder
range. However, when at least one ends of the encoder
range is at one of the bounds (low = 0 and/or high =
1), fewer bits may be required. The exact number of end
bits (e) is given by

e =



∅ high = 1, low = 0, no follow bits
0 or 1 high = 1, low = 0, follow bits
1 high = 1, 0 < low < 0.5

0 0.5 < high < 1, low = 0

01 low < 0.25, high ≥ 0.5

10 low < 0.5, high ≥ 0.75
(12)

plus any follow bits accrued from prior center expansions
around [0.25, 0.75). This is consistent with the (rounded-
up) information entropy H = −log2(P ) for those cases
which is given by
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Fig. 6: Log-log plot of the number of messages generated with a given size for the three models given in Fig. 6
each operating on the dataset given in Figs. 1 and 2 along with a 32-bit integer control for comparison.

dHbitse =



0 high = 1, low = 0

1 high = 1, 0 < low < 0.5

1 0.5 < high < 1, low = 0

2 low < 0.25, high ≥ 0.5

2 low < 0.5, high ≥ 0.75

(13)

4) Results: Each of the three models given in Fig.
4 was used with the arithmetic coder discussed in the
prior section to encode the dataset given in Figs. 1 and 2.
The resulting size of each message was recorded and the
statistics plotted in Fig. 6, along with the uncompressed
32-bit integer as a reference point. As expected, the
Gaussian model performed better than the uniform distri-
bution since it makes use of the dynamic model from Eq.
5 where low errors are more probable than high errors
(the vehicle in general continues on a similar path of
motion). However, this model overstates the error signifi-
cantly from the adaptive model, as seen by the difference
in standard deviation between the two models in Fig. 4.
Once the adaptive model was initialized with sufficient
data, it easily outperforms the other two models, with a
mean of 8.66 bits per message, an improvement of 91%,
52%, and 40% from the uncompressed (int32), uniform,
and normal models, respectively. Furthermore, this tech-
nique using the adaptive model is an improvement of
86% over the widely used Compact Control Language
[14], which uses 61 bits to encode a vehicle position in
the “MDAT STATE” message.

IV. CONCLUSION

Several techniques were reviewed or presented for
using AUVs’ positional knowledge and/or mobility to
increase the useful bits per Joule sent from the AUVs and
successfully received. These techniques fall broadly into

two categories: disruptive and non-disruptive, which do
and do not affect the motion of the vehicle respectively.

Since the acoustic channel presents many challenges,
it is essential that the underwater robotics community
collaborate fully with the underwater communications
community, especially as the latter begins to standardize.
The sensitivities of a specific acoustic modem system
to various physical channel quantities (e.g. signal-to-
noise ratio, multipath, Doppler) should be quantitatively
available to the underwater roboticist, who can use
this knowledge to make well-informed decisions on
the tradeoffs between various disruptive behaviors. For
example, it makes no sense to waste power transiting to
improve SNR if the available bit-rate is instead limited
by multipath.
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