
Autonomous & Adaptive Oceanographic Feature Tracking On Board
Autonomous Underwater Vehicles

by

Stephanie Marie Petillo
B.S., Aerospace Engineering, University of Maryland, College Park (2008)

Submitted to the Joint Program in Applied Ocean Science & Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Oceanographic Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

February 2015

©2015 Stephanie M. Petillo.
All rights reserved.

e author hereby grants to MIT and WHOI permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any medium now known

or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joint Program in Oceanography/Applied Ocean Science & Engineering

Massachusetts Institute of Technology
& Woods Hole Oceanographic Institution

November 21, 2014

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Henrik Schmidt

Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology

esis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Henrik Schmidt

Chairman, Joint Committee for Applied Ocean Science & Engineering
Massachusetts Institute of Technology

Woods Hole Oceanographic Institution

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
David E. Hardt

Chairman, Committee for Graduate Students
Massachusetts Institute of Technology



2



Autonomous & Adaptive Oceanographic Feature Tracking On Board Autonomous

Underwater Vehicles

by

Stephanie Marie Petillo

Submitted to the MIT/WHOI Joint Program in Applied Ocean Science & Engineering
on November 21, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Oceanographic Engineering

Abstract

e capabilities of autonomous underwater vehicles (AUVs) and their ability to perform tasks both au-
tonomously and adaptively are rapidly improving, and the desire to quickly and efficiently sample the ocean
environment as Earth’s climate changes and natural disasters occur has increased significantly in the last
decade. As such, this thesis proposes to develop a method for single and multiple AUVs to collaborate au-
tonomously underwater while autonomously adapting their motion to changes in their local environments,
allowing them to sample and track various features of interest with greater efficiency and synopticity than
previously possible with preplanned AUV or ship-based surveys. is concept is demonstrated to work in
field testing on multiple occasions: with a single AUV autonomously and adaptively tracking the depth range
of a thermocline or acousticline, and with two AUVs coordinating their motion to collect a data set in which
internal waves could be detected. is research is then taken to the next level by exploring the problem of
adaptively and autonomously tracking spatiotemporally dynamic underwater fronts and plumes using indi-
vidual and autonomously collaborating AUVs.
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Chapter 1

Introduction

“Telescopes and bathyscaphes and sonar probes of Scottish lakes, Tacoma Narrows bridge collapse explained
with abstract phase-space maps, some x-ray slides, a music score, Minard’s Napoleonic war: the most exciting
new frontier is charting what’s already here.”
http://xkcd.com/731/

Humans have used both sophisticated and simple instruments to help them understand and navigate the

oceans for hundreds (if not thousands) of years. e taffrail log simply measured a ship’s speed through water.

Soundings and sea floor materials were sampled from ships using a slug of lead on a string. e compass told

sailors which direction they were heading, and the sextant helped them determine position. Not to mention
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world maps were made from these measurements to further aid navigation. e past hundred years have seen

many new oceanographic instruments developed as new materials became available and scientific interest

in the ocean has greatly increased. Within the past fifty years, many of the original simple oceanographic

technologies have been revisited and redesigned, and new technologies have emerged with the rapid and

ongoing development of computer technology. Oceanographers and ocean engineers are always looking to

improve ocean sampling technologies and systems, and are especially motivated by the fact that going to sea on

a research vessel is expensive (tens of thousands of dollars per day). e expense limits time for data collection,

often only allowing for one or two opportunities to collect a desired data set. If a data set is collected, but does

not capture the feature or phenomenon the oceanographer requires, that is a costly misdirection of resources.

at the limited data collected may still be of use to oceanographers researching this or some other subject is

only a partial consolation.

Today, a number of groups are working on the problem of intelligent oceanographic sampling methods.

One approach uses oceanographic data models and forecasts based on physics and/or previously collected data

sets from a region to predict the location of an oceanographic feature of interest and attempt to sample an

area accordingly with ship-based, moored, free-floating, or free-swimming instruments. Another approach

is to use the developing technology of sensor-equipped unmanned underwater vehicles and/or unmanned

surface vehicles running real-time intelligent autonomy algorithms to adapt the vehicle’s motion to changes

in the environment, effectively seeking out and tracking an oceanographic feature of interest with very little

or no previous knowledge of the ocean environment. Both of these methods result in adaptive sampling of

the ocean environment. e focus of this thesis is the latter, aiming for more efficient and intelligent ocean

sampling strategies by way of cutting-edge underwater vehicle technology and onboard autonomy systems.

1.1 Concepts/Approach

e goal of this work is to develop a system for the tracking of hydrographic features using autonomous

underwater vehicles (AUVs). is tracking is done

• adaptively to account for the dynamic nature of hydrographic features,

• collaboratively between AUVs (and other marine platforms) to collect more complete data sets for

feature detection, and

• autonomously such that the AUVs determine the spatiotemporal positions or boundaries of the fea-

tures, to efficiently detect and track the features with as little human intervention as possible.
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e motivation for this research stems from the need to sample the ocean in an increasingly low-cost,

efficient, and intelligent manner such that scientists can predictively gather the data sets they need within

a minimum of time aboard a research vessel. e use of AUVs with collaborative and adaptive autonomy

also allows for measurements (environmental and otherwise) to be taken over a 3D area in space while still

measuring time-dynamic properties. is gives a much greater probability of synoptic data coverage in the

selected area of the ocean than using drifters, moored instruments, towed instruments, or AUVs without the

ability to collaborate and adapt to changes in the environment.

e field of marine autonomy on unmanned underwater vehicles is advancing quickly, and the next step

is to have the AUVs adapt their motion to the features of the underwater environment in real time, without

guidance from an operator.

is thesis examines the methodology for performing autonomous and adaptive oceanographic feature

tracking on board (solo and multiple) AUVs, addressing AUV autonomy, multi-AUV communication, and

feature detection and tracking strategies. An emphasis is placed on the autonomous and adaptive coordinated

sampling and tracking of four types of hydrographic features using AUVs: thermoclines, internal waves, and

underwater fronts and plumes. e AUV autonomy system used here is comprised of the Mission Ori-

ented Operating Suite (MOOS) and the Interval Programming (IvP) Helm [1, 2]. e method of real-time

underwater communication is assumed to be via acoustics, though other types of communication are consid-

ered when the AUV is on the sea surface. e importance of synoptic sampling based on the characteristic

spatiotemporal scales of ocean features is discussed, and the types of AUVs best suited for various scales of

feature-tracking experiments are evaluated.

1.2 esis Outline & Contributions

e original research contributions of this thesis comprise part of Chapter 2, all of Chapters 3, 4, 5, & 6, and

the Appendices.

Chapter 2: Background

is chapter provides the technical and oceanographic background for the thesis. It explains the concept of

environmentally adaptive ocean sampling, some of the available AUV technologies, the challenges of working

with AUVs in the ocean environment, and the concept of characteristic spatiotemporal scales of oceanographic

features. is chapter also looks at past and current methods of oceanographic feature tracking from the

literature to further motivate the work in this thesis.
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Chapter 3: ermocline Tracking: A Proof-of-Concept for Autonomous Adaptive Environ-

mental Assessment and Feature Tracking

is chapter introduces the concept of Autonomous and Adaptive Environmental Assessment (AAEA) of

oceanographic features using AUVs. is concept is then applied to thermocline tracking with AUVs as a

proof-of-concept taken from theory to implementation. ermocline tracking results are given for multiple

field experiments.

Chapter 4: Internal Wave Detection Experiment

is chapter describes the Internal Wave Detection Experiment in the Tyrrhenian Sea in 2010. is ex-

periment was designed to showcase the use of autonomous and adaptive thermocline tracking coupled with

multiple autonomously coordinated AUVs to capture the signals of any passing internal waves. e results

characterizing the detected internal waves are also presented.

Chapter 5: Front Tracking

is chapter explores autonomously and adaptively detecting and tracking underwater fronts in detail. ese

features are often significantly complex and dynamic in both horizontal space and time. 2D, 3D, and multi-

AUV front tracking behaviors that have been developed for this work and tested in virtual experiments are

described, and results from the tests in a simulated Multidisciplinary Simulation, Estimation, and Assimilation

Systems (MSEAS) ocean model environment of the Mid-Atlantic Bight region are presented.

Chapter 6: Plume Tracking

is chapter explores concepts and approaches for autonomously and adaptively detecting and tracking vari-

ous types of underwater plumes.

Chapter 7: Conclusion & Future Directions

e final chapter summarizes the contributions of this thesis and briefly explores the direction of future work

on this subject.

Appendix A: MSEAS Integration

Appendix A details the integration of Massachusetts Institute of Technology (MIT) MSEAS ocean mod-

els into the MIT LAMSS (Laboratory for Autonomous Marine Sensing Systems) AUV virtual experiment
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environment and the associated GEOV (Google Earth interface for Ocean Vehicles) topside display. e

MSEAS-LAMSS interface is described, as well as the interface for the MSEAS environmental display (over-

lay) in Google Earth and the topside CTD display.

Appendix B: Constructing a Distributed AUV Network for Underwater Plume-Tracking Op-

erations

Appendix B presents original research conducted as an initial foray into a plume boundary parametrization

and tracking method for AUVs.
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Chapter 2

Background

is chapter provides the technical and oceanographic background and motivation for the research presented

in the body of the thesis. is chapter is divided into five sections: an introduction to adaptive sampling,

a description of some of the challenges of working with AUVs in the ocean environment, an explanation

of some of the available AUV technologies, an explanation of the concept of characteristic spatiotemporal

scales of oceanographic features, and a literature review motivating the need for autonomous and adaptive

approaches to feature tracking using AUVs.

2.1 Autonomous Adaptive Sampling

e adaptive sampling methods that are applied in this thesis result in targeted observations of the ocean

environment where a feature of interest is present. Adaptive sampling for this particular application is a two-

step process that includes initially assessing (surveying and analyzing) the local environment to determine the

presence of an oceanographic feature and subsequently tracking that feature over space and time to maintain

Portions of this chapter are ©2010 IEEE. Reprinted, with permission, from S. Petillo, A. Balasuriya, and H. Schmidt, “Autonomous
Adaptive Environmental Assessment and Feature Tracking via Autonomous Underwater Vehicles,” Proceedings of OCEANS 2010
IEEE - Sydney. [3]

Portions of this chapter are ©2012 Stephanie Petillo et al. Reprinted, with permission, from S. Petillo, H. Schmidt, and A. Balasuriya,
“Constructing a Distributed AUV Network for Underwater Plume-Tracking Operations,” International Journal of Distributed Sensor
Networks: Special Issue on Distributed Mobile Sensor Networks for Hazardous Applications. [4]

Portions of this chapter are ©2010 IFAC. Reprinted, with permission, from S. Petillo and H. Schmidt, “Autonomous and Adaptive
Plume Detection and Tracking with AUVs: Concepts, Methods, and Available Technology,” Proceedings of the 9th IFAC Conference
on Manoeuvring and Control of Marine Craft. [5]
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focused sampling in the region of study. e motivation behind adaptive sampling is to increase the efficiency

of sampling and the synopticity of the collected data. is research focuses on the use of AUVs with onboard

autonomy systems and environmental sensors to adaptively sample the ocean environment at and around

features of interest using the aforementioned two-step process in real time. is results in a feedback loop

involving environmental sensor readings, onboard data processing, and the autonomy system updating the

desired motion of the AUV to adapt to and track the motion of a dynamic ocean feature to collect more data.

is concept is sketched in Fig. 2-1 and applied in the body of this work.
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Figure 2-1: A conceptual sketch of an adaptive sampling feedback loop on board an autonomously-guided
AUV carrying environmental sensors. e feature of interest in this example is a thermocline. Autonomous
and adaptive thermocline tracking with AUVs is described in detail in Chapter 3.

2.2 Advantages & Challenges

2.2.1 AUVs in the real environment

When implementing any autonomy processes, such as feature detection and tracking, on board AUVs, it is

vital to the success of the mission (and life of the vehicle) to account for the physical limitations of the AUV.

A number of these constraints are described below.

• Dive limit
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– All AUVs have a depth rating. ese range from about 200 m for a coastal AUV to about 2000

m for a deep-rated AUV. is ultimately restricts how deep an AUV can dive.

• Surface obstacles

– AUVs on or just below the surface are not easily visible to surface craft such as ships and boats,

making AUVs vulnerable to collisions at shallow depths.

• Daytime operations

– Since it is both difficult and dangerous to operate AUVs and deployment/retrieval equipment in

the dark, we are restricted to operating AUVs during the daylight hours. Also, a typical (actively

propelled) AUV only has a battery life of about 5 to 8 hours, which must be charged or replaced

overnight.

• Ocean acoustics restrict the AUV to accessing only data collected on board

– e ocean environment attenuates high-frequency sound waves over a much shorter distance than

low-frequency sound waves. is restricts any acoustic communications between the AUV and

ship to lower frequencies to increase transmission range at the cost of bandwidth. us, only a

minimal amount of data may be transmitted to and from the AUVs through the water. Sending

higher bandwidths of data a reasonable distance (O(500 m)) through the water (which is trivial

in air using RF (radio frequency) technology) requires significantly more power underwater than

in air, making it infeasible to power such an acoustic source on an AUV.

• Memory and processing time

– Each AUV must store logs of all the missions of a given day (or experiment) on board, consum-

ing a few gigabytes of memory at a time. ese small quantities add up over time, so to avoid

accidentally filling a hard drive it is important not to store more data than necessary for on-board

computations. is means that we cannot store satellite data or large ocean models on board the

vehicle. In addition, since most data processing occurs on board the AUV in near real time, it is

important that no one piece of code, algorithm, or process takes more than fractions of a second

at a time.
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2.2.2 AUV Networks

An AUV network allows for the dynamic interaction of multiple AUVs to better adapt to dynamic features in

the marine environment. at is, a network of AUVs has the ability to distribute its nodes around the entire

feature and move with the feature, whereas a solo AUV may be optimally placed for sampling within a feature

but could not determine the horizontal spatial extent of a feature and track it simultaneously on its own.

Using the estimated characteristic scales of the feature (from satellite imagery, past surveys, or physics-based

calculations) in guiding the AUV autonomy behaviors, a network of AUVs can be distributed in space and

time to detect and track the feature and avoid aliasing the data. is desire for adaptive feature tracking also

underscores the necessity for using mobile (self-propelled) sensing platforms instead of, or in conjunction

with, fixed and drifting sensing platforms (e.g., buoys, Argo floats) such that sampling is performed more

efficiently (minimizing overlapping data) and the researcher can be certain that a complete data set describing

the feature has been captured.

2.2.3 Environmentally Adaptive Autonomy & Autonomous Coordinated Control

e decision-making system behind coordinating a sophisticated network of AUVs for feature tracking is the

underlying autonomy system that must run on board each AUV. An autonomy system, such as that described

in Section 2.3, allows an AUV to adapt to its environment in near real time, without human intervention.

A few of the minimum requirements of using and interacting with a robust autonomy system are inter-AUV

(acoustic) communications, support for adaptive autonomy behaviors (supplied by the user) to be executed

by the AUVs, and an intelligent (autonomous) means of deciding which behaviors have priority during a

given mission. A tiered mission planning structure for this system is proposed in which the large-scale, overall

mission drives the selection of the formation of the AUVs (via multi-AUV coordinated autonomy behaviors)

and allows each AUV to use individual autonomy behaviors to follow the feature within its local vicinity.

Position and minimal environmental data products are exchanged acoustically across the AUV network to

update the feature model (or parametrization) and, subsequently, the local missions of the AUVs. is creates

a feedback loop using the processed and exchanged data as inputs for updating the large-scale mission, then

the local missions, to collect, exchange, and reprocess more data between AUVs. is loop continues for as

long as required by the researcher/user.
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2.2.4 Acoustic Communication

One of the primary challenges using multiple AUVs and other networked nodes simultaneously in the un-

derwater environment is that of communication. Electromagnetic waves at the wavelengths feasible for useful

AUV communication are quickly attenuated in water within a few meters of the surface, leaving acoustics as

the primary method of real-time underwater communication. Until now, there have been few (if any) options

for intelligent multi-AUV (> 2 AUVs) acoustic communication schemes, though the Goby underwater com-

munication and autonomy project (version 2.0) strives to remedy the need for coordinated message queuing

and passing between multiple AUVs [6, 7]. is allows each AUV to communicate with neighboring AUVs

and share data and knowledge with the sensing platforms in its underwater network.

It is important to note, however, that many features are dynamic in the mesoscale or larger, and AUV-

to-AUV and AUV-to-ship/lab acoustic communication (at least in the public domain and on power-limited

AUVs) is only possible up to a range of about 10 km. Our group at MIT has found that our equipment is

usually limited to about 2 km of acoustic communication range in the coastal ocean and lake environments

where most of our experiments have been performed recently. Our Bluefin 21” AUVs and lab setup, which

are each equipped with a WHOI (Woods Hole Oceanographic Institution) Micro-modem and model WH-

BT-2 28 kHz transducer, transmit data in the frequency band of 23–27 kHz, centered around 25 kHz [8].

ere are two realistic solutions to the acoustic communication range restriction we experience. e first and

more complex solution is to implement a multi-hop acoustic communication scheme in which data from one

AUV is passed down through a chain of AUVs to its destination. is is time consuming due to the nature

of sending and listening for transmitted data packets one at a time between communicating AUVs. Given

that AUVs will often be hundreds of meters apart or more and sound speed propagation is about 1500 m/s

in the ocean, data packets take an observable amount of time to transmit through the water (O(1 sec)). is

method would also require extensive research into data routing on dynamic and time-scheduled messaging

networks. e second and more immediately feasible (potentially more reliable) solution would be to restrict

communication of large environmental data sets to RF or satellite methods while an AUV is on the surface

and use a delay-tolerant network rescheduling scheme. Although this method removes much of the real-time

underwater data passing between AUVs (with the exception of basic position updates of nearby AUVs for

avoiding collisions), it would take a large burden off of the acoustic channel and still allow each AUV to be

deployed based on the most current overall picture of the feature while still performing solo autonomous and

adaptive feature tracking in its local vicinity in real time. Periodic surface communication would work best

in the case that the AUVs can surface with great enough frequency (within the characteristic time scale of
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the feature) to be re-directed to a more optimal sampling position, but with low enough frequency that the

feature tracking mission is not significantly disrupted by the AUV taking the time to come to the surface

more often.

For the multi-AUV adaptive feature tracking missions presented in this thesis, there is (intentionally) a

minimal amount of processed environmental data passed between a small number of AUVs, avoiding the

need for multiple acoustic hops over the network or surfacing to transmit data.

2.2.5 Data Fusion

e fusion of data both from multiple sensors on a single AUV and all sensors across all networked AUVs is

crucial to the success of coherently adapting a fleet of AUVs to track an ocean feature and collect a synoptic

data set. When fusing data from a single vehicle, the largest concerns are keeping all data accurately time-

and position-stamped. Across multiple AUVs, the data must also be quality-checked for corruption during

transmission after passing it from one vehicle to the next. It is proposed that on board each AUV the computer

must mesh the data sets from all AUVs into a single data set, sorted over the times and positions at which

each data point was taken, for each variable (i.e., temperature, salinity, etc.). Upon processing of these data

on board (as on-board processing is the only way to adapt to a dynamic environment in real time), for each

variable, probability weighting functions over time and space must be applied to each data point based on the

characteristic spatiotemporal scales of that variable. A basic Gaussian-shaped weighting function would ideally

be used for this task, but the simpler linear weighting used in this work is also sufficient. is will associate, say,

all temperature readings taken in the last few minutes and within a radius of a kilometer horizontally (assuming

the AUV can resolve its position with even better accuracy), but will ignore any temperature readings that fall

outside of these ranges as independent from those inside. is essentially creates an overlap of data within a

radius of one standard deviation about the sample point, as sketched in Fig. 2-2, that can be used to maintain

synoptic sampling in a data set. is data fusion method could be implemented using an SQLite [9] (or

similar) database on each AUV to compound and sort all of the environmental data from all AUVs, which

may then be processed in a mathematics program such as MATLAB [10] or Octave [11], or by a simple

C++ [12] parser with algorithms utilizing C++ vector math libraries. is is similar to creating an evidence

grid of the AUVs’ environmental data [13]. e resulting ocean environment reconstructed through data

fusion with weighting can guide the mission planning for a fleet of AUVs tasked to track a feature. e

AUVs can survey an area with high enough resolution to find the feature, approximate the feature’s shape

with higher weighting near the actual sample points, and revise their coordinated survey strategy based on
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this new estimate of the feature’s position.

x

y

Figure 2-2: Blue circles around AUV sample points represent the range of significant data association possible
(the radius of standard deviation of the Gaussian distribution). For any two AUV samples with overlapping
range circles, an arrow is drawn to represent the fusion of data between those positions, which may be used to
construct a larger-scale ocean data model when chains of fused data are combined to form a web of unaliased
(see Section 2.4.1) connections.

2.3 AUV technologies

2.3.1 Autonomy Middleware

ere are a number of autonomy architectures suitable for use on board AUVs. Of these, the Mission Oriented

Operating Suite (MOOS) [2], the Robot Operating System (ROS) [14], and the Lightweight Communica-

tions and Marshalling (LCM) library [15] are the most well known and widely used in the marine autonomy

community. ere are benefits and drawbacks to all of these systems that are beyond the scope of this thesis.

is thesis will only focus on autonomy implementations using MOOS, as that is how the AUVs used in this

work have been configured for both virtual and field experiments.

MOOS & IvP Helm

e autonomy system used on board the AUVs for all field and simulated work described in this thesis is

MOOS. When conducting field experiments with AUVs (usually only 1 or 2) in the water, MOOS is the

underlying autonomy system on board the AUVs and on the topside mission-command computer. MOOS

provides a publish-subscribe architecture that essentially deals with information sharing between autonomy

processes and behaviors on board each AUV, as well as through the water between the AUVs and the topside
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computer [1]. To add some intelligence to the system, the IvP (Interval Programming) Helm multi-objective

optimization engine is used in conjunction with MOOS to implement the use of autonomy behaviors (e.g.,

vertical yo-yos, trail-an-AUV, horizontal racetracks, safety behaviors) on the AUVs [1,2]. Each behavior run

by the IvP Helm generates a single objective function competing for the AUV’s desired speed, heading, and

depth. e design of MOOS-IvP autonomy also allows AUV operators to write plug-and-play code (processes

and behaviors), significantly easing implementation.

2.3.2 Acoustic Communications

Acoustic communications (acomms) are the primary form of communications between the ship and the

AUVs. e ship receives status and data updates from the vehicle every couple of minutes through acomms

while the vehicle is under water. is allows for near real-time monitoring of the AUV throughout a mission.

Messaging via acomms is handled through the Goby (version 2.0) autonomy software on all platforms,

where the Goby software schedules the transmissions of each node (AUVs, communication buoys, topside

operator, etc.) in the network [6,7]. Goby encodes data on one node, initializes the data transmission through

the acoustic channel, and then decodes the data when they are received on another node.

ese two essential pieces to our AUV network (Sections 2.3.1 and 2.3.2) allow our AUVs to adapt their

motion based on sensor readings, without a human in the loop (but while being monitored in real time by an

AUV operator). is allows for ocean feature detection and tracking by AUVs to occur both autonomously

and adaptively in real time and across multiple AUVs.

2.3.3 Sensors & Instrumentation

Oceanographic Sensors

ere are a large number of sensors that can be mounted on AUVs of various types. Some sensors are specially

designed to mount on specific AUVs, some are off-the-shelf for use with AUVs, and some must be retrofitted.

Oftentimes, the mounting of a sensor will require modifications to the AUV body and/or electronics. Sensors

also usually need to be interfaced to the software on the AUV in order for the data to be collected, though

some have stand-alone data loggers. e work presented in this thesis requires that an AUV collect and

process the sensor data on board in real time for the AUV to autonomously and adaptively detect and track

oceanographic features.

Table 2.1 lists a variety of sensors that have been mounted on AUVs in the past and the environmental

characteristics that they measure.
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Table 2.1: Features, their measurable tracers, and associated instrumentation

Features/Obesrvations Measurable Tracers Instruments

ermocline, halocline, pycno-
cline, sound speed

Temperature, conductivity, pres-
sure

CTD (Conductivity-
Temperature-Depth) [16]

O2 concentration Partial pressure of O2 in water
(via temperature & conuctivity) Dissolved Oxygen sensor [17]

Phytoplankton biomass & Cl
concentration Chlorophyll-a fluorescence Fluorometer [18]

Light attenuation
Photosynthetically Active Radi-
ation (PAR) of 400–700 nm
wavelength

PAR sensor [19]

Currents Doppler (frequency) shift of
sound waves

ADCP (Acoustic Doppler Cur-
rent Profiler) [20]

Fronts Temperature, conductivity, pres-
sure, Doppler shift CTD, ADCP

Hydrothermal Vent Plume or
Source Temperature anomaly CTD

Hydrothermal Vent Plume or
Source Particle content Optical sensors: transmissome-

ter, nephelometer

Hydrothermal Vent Plume or
Source Chemical tracers

Optical sensors: SUAVE (Sys-
tem Used to Assess Vented Emis-
sions), ZAPS (Zero Angle Pho-
ton Spectrophotometer), eH (re-
dox potential)

Hydrothermal Vent Source Water velocity Acoustic sensors: ADCP, sides-
can sonar, multibeam sonar

Hydrothermal Vents Source Bathymetry Multibeam mapping sonar, cam-
era (still or video)

Of these, conductivity-temperature (CT) and conductivity-temperature-depth (CTD) sensors are two of

the most commonly used sensors for oceanographic sampling using AUVs. e work presented in this thesis

relies heavily on CT measurements (coupled with a pressure sensor for depth measurements) to guide the

motion of the AUVs when feature tracking, though the CT or CTD is by no means the only sensor that

feature tracking techniques could employ.

Navigation & Communication Instrumentation

ere are also a large number of other instruments that may be used on AUVs to perform the basic and nec-

essary functions of navigation and communication. ese include (but are not limited to) compasses, GPS

29



units, RF communication hardware (Wi-Fi, Freewave, etc.), hydrophones and acoustic transducers for acous-

tic communication and navigation, inertial measurement units (IMUs), inertial navigation units (INUs),

Doppler velocity logs (DVLs), depth (pressure) sensors, and Iridium phone hardware for satellite-based com-

munication.

e AUVs used for most of the work in this thesis have had some of their basic instrumentation updated

over the past few years, but through most of the field experiments for this work (2009–2010), it remained

largely unchanged. e instrumentation and sensor configuration for both the MIT Bluefin 21” Unicorn

AUV and the NURC OEX Harpo AUV used in field experiments in 2009 and 2010 are described in Chapter

4, Section 4.5.1.

2.3.4 AUV Types

In this section the abilities and traits of a variety of AUVs are classified. Although this is not a thorough

classification of all AUVs, since there are many different commercial and made-in-house AUVs in the ocean

community today, a number of AUVs are generalized into categories to allow them to be compared.

e most basic attributes to look at when comparing AUVs are speed, deployment duration (battery life),

propulsion (active or passive), range of motion control, depth rating, navigation method, communication,

hotel power load on board, autonomy system, hull shape, ease of retrofitting sensors, and what sensors it

carries ‘off the shelf ’. See Table 2.2.

Some examples of the AUVs that fall into the three categories in Table 2.2 are listed below.

Gliders:

• Slocum gliders (thermal and electric) from Teledyne Webb Research [21]

• Spray gliders developed under ONR support by Scripps and Woods Hole Oceanographic Institution

(WHOI) scientists [22]

• Exocetus Coastal Glider from Exocetus Development, LLC (formerly ANT Littoral gliders developed

under ONR by ANT, LLC) [23]

• Seagliders from the Applied Physics Laboratory - University of Washington, iRobot, and Kongsberg

Maritime [24–27]

Actively propelled, torpedo shaped AUVs:

• Bluefin 9”, 12”, and 21” from Bluefin Robotics [28]
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Table 2.2: Attributes of various types of AUVs

Attribute Glider Actively propelled,
torpedo shaped

Actively propelled, not
torpedo shaped

Speed 0.0–0.5 m/s 0.0–3.0 m/s 0.0–3.0 m/s
Duration weeks to months hours to days hours to days or weeks
Propulsion passive active active
Vertical motion constant yoyo unrestrained (but most

do not hover)
unrestrained (some
hover)

Horizontal motion unrestrained unrestrained unrestrained
Depth rating most <2 km, one up to

6 km
up to 6 km up to 6 km

Navigation dead reckoning (DR),
compass, GPS

IMU (inertial
measurement unit),
acoustics, DR, compass,
GPS

IMU, acoustics, DR,
compass, GPS

Communication
method

at surface (Iridium, RF) at surface (Iridium, RF),
underwater (acoustic)

at surface (Iridium, RF),
and/or underwater
(acoustic)

Hotel load <10 Watts <100 Watts <100 Watts
Autonomy possible, not fully

implemented
implemented frequently implemented frequently

Shape torpedo with wings torpedo non-torpedo, may be
multi-hull

Typical sensors CTD (or CT), pressure,
bottom ranger, compass

CTD (or CT), pressure,
sidescan sonar, acoustic
transducer (for
communication),
compass

varies widely; pressure,
acoustic transducer (for
communication),
compass

• Ocean Explorer (OEX) from Florida Atlantic University, operated by the Centre for Maritime Research

and Experimentation (formerly NATO Undersea Research Centre), Italy [29]

• REMUS from WHOI and Hydroid-Kongsberg Maritime [30, 31]

• Iver from Ocean Server [32]

• Folaga from Graal Tech (more like a hybrid glider-but-actively-actuated, torpedo-shaped AUV) [33]

Actively propelled, not torpedo shaped AUVs:

• Sentry and Autonomous Benthic Explorer (ABE) from Woods Hole Oceanographic Institution (WHOI)

[34, 35]

• Puma, Jaguar, and SeaBED-class from WHOI [36]
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• Odyssey IV Class from Massachusetts Institute of Technology’s Sea Grant AUV Laboratory [37]

For the work in this thesis, the MIT Bluefin 21” Unicorn AUV, the NURC OEX Harpo AUV, and the

NUWC Iver 2 Hammerhead AUV were employed. e AUV requirements were the following:

• Active propulsion

• On-board autonomy (MOOS and IvP Helm)

• CT and pressure, or CTD, sensor(s)

• Acoustic communications using the WHOI MicroModem and WH-BT-2 28 kHz acoustic transducers

• GPS positioning when on the surface

• DVL positioning underwater, or at least Dead Reckoning (DR) algorithms

Specific hardware found on these platforms are described in Chapter 4, Section 4.5.1, and Chapter 3, Section

3.7.

2.4 Spatiotemporal Scales of Ocean Features

For this work, it is not only important to know the spatial and temporal scales on which AUVs operate,

but also to know the scales at which any oceanographic features of interest occur. With these two pieces

of knowledge, AUV types can be selected that are properly equipped to detect and track an ocean feature

based on corresponding spatial and temporal coverage. is improves the chances of collecting a maximally

synoptic data set.

Oceanographic features are often classified into one of three spatial scale domains based on the horizontal

length scales over which they occur (since the vertical length scale is often small in comparison): small-scale

(O(<10 km)), mesoscale (O(10–100 km)), and large-scale (O(>100 km)). A collection of oceanographic

features and their associated time and length scales are plotted in Fig. 2-3. is research mostly explores

feature sampling on the mesoscale and sub-mesoscale and how AUVs can adapt their motion to a feature’s

dynamic behavior based solely on the AUVs’ on-board sensor readings. To determine the horizontal length

scale of a large-scale feature, it is useful to estimate it as the Rossby radius of deformation, R =

√
g′H

f
, where

g′ is reduced gravity across a density interface, H is the mean water depth, and f is the Coriolis parameter

(twice the earth’s angular velocity about its vertical axis) [38]. at is, the horizontal distance over which a
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parcel of fluid distinct in density from the surrounding fluid adjusts its spatial extent to a steady state based

on the rotation of the earth, after the parcel is introduced into the system. e spatiotemporal scales may also

be estimated from observations and historical data from the region of interest, which may be a more accurate

method for certain fast-moving and small-scale flows that are insignificantly affected by the rotation of the

earth, where R is not applicable.
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Figure 2-3: is figure depicts the characteristic horizontal length scales and time scales of various oceano-
graphic features. Image credit: [38].

When sampling the ocean to collect data on a specific dynamic ocean feature, sampling theory from signal

processing suggests that the feature should be sampled at least twice over the feature’s characteristic time and

spatial scales in order to be able to fully reconstruct the feature and its dynamics from the data. us, the

temporal sampling frequency is fstime ≥ 2/t0, where t0 is the characteristic time scale. Similarly, the spatial

sampling frequency is fsspace ≥ 2/l0, where l0 is a characteristic length scale. is is essentially sampling at

the Nyquist frequency of a feature’s variations.
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2.4.1 Synoptic Sampling vs. Spatiotemporal Aliasing

One of the most common challenges of working with AUVs to track ocean features is that of spatiotemporal

aliasing. at is, when the samples taken are too far apart in space and/or time to be able to resolve the

boundaries or position of a dynamic feature at a given point in space and time. is is effectively a trade-off

between data coverage and data resolution. ere are two extremes here, for example:

1. A single AUV can survey a small area (∼O(1 km), low spatial coverage) with very high spatial sampling

resolution (>O(1 sample/m)) to resolve small-scale features in the water, such as pockets of turbulence.

However, this survey would not have great enough coverage to determine the bounds of a 10 km wide

algal bloom encompassing the sampling area.

2. A single AUV can survey an area once over a long time period (≥ O(10 hr), high temporal coverage)

to sample a feature. However, it may take so long (> 10 hours) to perform a spatially-comprehensive

survey, as witnessed by Jakuba et al. in [39], that the feature has advected away from its initial surveyed

position during that period (poor temporal resolution) and the survey must be redone with less coverage

to resolve the motion of the feature.

Somewhere in the middle of the above ‘coverage vs. resolution’ scenarios resides a delicate balance in

which the characteristic scales of a dynamic feature coincide inversely with (one half ) the rate at which the

feature is sampled. is is essentially a sampling of the feature at its spatial and temporal Nyquist frequencies

to maximize both coverage and resolution of the feature within the data set. us, it is necessary to know

the approximate characteristic spatial and temporal scales of the feature of interest for more intelligent path-

planning purposes (see Fig. 2-4), most likely involving multiple AUVs for tracking mesoscale features that are

dominantly dynamic in two or more dimensions of space, or any feature highly dynamic in time (such that

an AUV moving ≤ 2 m/s could not keep up).

e necessity for designing autonomous multi-AUV networks and implementing more intelligent and

efficient feature sampling is highly motivated by this aliasing problem. Since at-sea deployments tend to be

expensive and time-restricted, the ability to harness AUVs and environmentally-adaptive autonomy infras-

tructure (assuming there is access to such resources) leaves little point to deploying instruments or AUVs to

map and track oceanographic features using preplanned surveys if there is no way to guarantee some amount

of data synopticity in the preplanned surveys without significantly reducing survey coverage. ese resources

(AUVs with autonomy middleware) were available for the work presented in this thesis, thus the concept of

using the characteristic scales of features to sample and track the features in the following chapters has been
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Figure 2-4: is figure depicts the characteristic length scale (in km) of an O(10 km) feature (e.g., a plume) in
the horizontal plane. A similar figure can be drawn for the temporal dimension based on the characteristic time
scale of a feature (with units of time). If we assume a feature has an approximate Gaussian distribution over its
characteristic length scale, as shown here, we must plan AUV missions such that the collective sampling of our
AUVs overlaps with the primary length scale of the feature to optimize over coverage and resolution (‘feature-
/scale-driven’ mission planning). is will improve the range of resolvable length scales in the resulting data set
over that of ‘blind’ mission planning, especially when the AUVs’ distribution is ‘driven’ by the characteristic
spatiotemporal scales of the feature. Adapted from [40].

applied. e success (synoptic and efficient feature sampling) of the resulting AUV autonomy behaviors hinge

on selecting the proper approximate characteristic spatiotemporal scales of the feature and configuring these

in the autonomy behavior prior to deployment, which is an important part of the approach presented here.

2.4.2 AUV Types and Numbers Suited to Different Features’ Scales

Knowledge of the characteristic scales and dynamics of a feature of interest is also important when deciding

which type of AUV is best suited to sample or track the feature.

To pair an AUV with a type of feature that it is best suited to detect or track, consider the two pri-

mary classifications of AUVs: gliders and actively propelled AUVs. For long-duration deployments (days to

months), the duration of gliders makes them the best type of AUV for the application. Multiple gliders dis-

tributed in a coordinated manner are also marginally sufficient to track mesoscale and sub-mesoscale features

advected by ocean currents, since the passive propulsion and resulting slow speed of gliders through the water

are directly affected by the currents as well, pushing the gliders in the same direction as the feature is advected
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(see [41,42]). For very deep missions that are time-dependent (achievable in or requiring short mission time,

as in hours or days), involve features that are highly time-variant, or require swimming against the local cur-

rents, actively propelled AUVs are the better choice despite their shorter deployment duration. In these cases,

actively propelled AUVs may be used solo, or in a coordinated fleet if a meso- or large-scale feature must be

mapped as the feature advects with the changing currents. Actively propelled AUVs would also be useful in

quickly surveying the extent of a sub-mesoscale feature in the horizontal plane, providing more of a snapshot

of the feature. Fig. 2-5 provides a sketch of the spatiotemporal scales covered by varying numbers of gliders

versus actively propelled AUVs, overlaid and underlaid with the characteristic scales of various oceanographic

features.
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Figure 2-5: is adaptation of Fig. 2-3 shows approximate characteristic horizontal length scales and time
scales (and features) that may be covered by various types and numbers of mobile underwater vehicles and
moored instrumentation. In addition, the purple oval overlays show approximate scales of various types of
underwater plumes, as an example of features that different platforms are best suited to detect and track.
Adapted from [38].

e work in this thesis focuses on features sampled and tracked on the sub-mesoscale and mesoscale by
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one or two actively-propelled AUVs. is includes fronts, internal waves, and vertical temperature structure

in coastal settings, which are ideal for sampling and tracking over time durations of days and distances of tens

of kilometers or less with these vehicles. With the methods presented in the following chapters, this can be

achieved without sacrificing data synopticity and while improving sampling and tracking efficiency by using

environmentally-adaptive autonomy behaviors on board the AUVs to sample and track these features.

2.5 Literature

Before discussing the AUV feature tracking methodology that is the core of this thesis, it is important to

understand the need for such environmentally-adaptive AUV autonomy in the context of the current available

technologies for feature sampling and tracking. He et al. [43, 44] and Carder et al. [45] summarize the need

for AUV sampling technologies and methodologies best in stating that the usual moored and shipboard

sampling and satellite remote sensing techniques do not have enough flexibility to sufficiently (synoptically)

sample highly dynamic ocean features or features that have important signatures in the middle of the water

column (below the reach of towed platforms or ROVs) or along the seafloor. ese older methods are also

not as cost-effective in comparison to using AUVs with preplanned surveys or even more intelligent sampling

methods.

Some examples in which autonomous and adaptive feature tracking with AUVs would be an improvement

over current preplanned AUV methods include: tracking a mid-water-column oil plume from a spill such as

the Deepwater Horizon incident in 2010 [46], distinguishing features such as ocean convection from internal

waves with a more efficient sampling pattern [47], and collecting specific data sets to be assimilated back into

ocean models for improved environmental modeling and forecasting [40].

ere has been a good deal of research into path planning for ocean sampling with AUVs as well, which

usually requires significant prior knowledge of the environment either through an ocean model or very recent

satellite imagery. e works by Yilmaz et al. [48], Hover [49], and Das et al. [42,50] provide a few examples.

ese methods tend to be processing-intensive and (lacking adaptive capabilities) the resulting planned paths

may not sample the entire desired feature when the AUV is deployed in the actual ocean. Some of these

path planning methods, however, do succeed in being adaptive in their sampling technique, but are more

complex and resource-intensive than the in situ adaptive methods that are developed and evaluated in this

thesis. e reason for the minimal-complexity approaches to feature tracking that are described in the body

of this work is that reduced complexity in software (e.g., autonomy behaviors) often results in lower CPU

load and increased robustness to the intricacies of the data being collected, processed, and reacted upon when
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the AUV is deployed in the actual ocean. is increased simplicity also makes it easier to address and correct

any unforeseen problems or quirks that arise when autonomous techniques that were developed and tested in

ocean model environments are deployed in the highly dynamic actual ocean for the first time.

Other groups that have put autonomous and adaptive feature tracking methods with AUVs to use will

be addressed as appropriate in the following chapters. As this research is new in the field of deployable AUV

autonomy for adaptive ocean sampling, it will become apparent reading this thesis that there is much room

for future expansion of the methods presented here.
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Chapter 3

ermocline Tracking: A Proof-of-Concept

for Autonomous Adaptive Environmental

Assessment and Feature Tracking

3.1 Introduction

Underwater environments are highly dynamic and varied in space and time, posing significant challenges

to the detection and tracking of hydrographic features. Often, oceanographers want to collect data for a

given feature, and to do so they need to have knowledge of when and where it may occur. However, the

data collected may be sparse or fail to capture the feature if it is highly dynamic. is is where Autonomous

Underwater Vehicles (AUVs) are becoming more and more valuable. AUVs are frequently used to sample the

ocean across a much larger depth range than possible with satellites and much more coverage than instrument

casts from a ship, providing four-dimensional coverage (3D space plus time) in an underwater data set. With

the aid of the rapid development of underwater acoustic communications, along with sophisticated AUV

instrumentation, autonomy and control software, it is now feasible for an AUV to autonomously adapt its

Portions of this chapter are ©2010 IEEE. Reprinted, with permission, from S. Petillo, A. Balasuriya, and H. Schmidt, “Autonomous
Adaptive Environmental Assessment and Feature Tracking via Autonomous Underwater Vehicles,” Proceedings of OCEANS 2010
IEEE - Sydney. [3]

Portions of this chapter are ©2015 Springer. Reprinted, with permission, from H. Schmidt, M. R. Benjamin, S. Petillo, T. Schneider,
and R. Lum, Ch. 10: “Nested Autonomy for Distributed Ocean Sensing,” Springer Handbook of Ocean Engineering, in press. [51]
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motions to more intelligently and efficiently sample the environment through which it swims.

is autonomous and adaptive sampling with AUVs is achieved through a combination of Autonomous

Adaptive Environmental Assessment (AAEA) and feature tracking methods and behaviors. AAEA is a process

by which an AUV autonomously assesses the hydrographic environment it is swimming through in real time.

is assessment is essentially the detection of hydrographic features of interest and leads naturally to the

subsequent active/adaptive tracking of a selected feature. e detection-tracking feedback loop setup with

AAEA currently aims to use solely an AUV’s self-collected hydrographic data (e.g., temperature, conductivity,

and/or pressure readings), along with a basic quantitative definition of an underwater feature of interest, to

detect and track the feature. Feature tracking must be both autonomous in the sense that the AUV operator

is not involved in guiding the vehicle outside of commanding it to “track feature X,” and adaptive in the sense

that, as a dynamic feature evolves over space and time, the AUV will recognize any changes and alter course

accordingly to retain data coverage of the feature.

3.2 Background & Importance

Two main fields of research are directly benefited by the implementation of AAEA on AUVs: engineering

technology and oceanographic science. Currently, in the field of engineering, engineers who implement

software on and deploy AUVs may not have the knowledge base of an oceanographer to determine where to

fly the AUV to capture a desired hydrographic feature. Alternatively, oceanographers only have an educated

guess (often based on models, theory, and past observations) as to where and when a feature is present in the

water. e use of AAEA in conjunction with an autonomous control system on board an AUV gives the AUV

a method of calculating the boundaries of the feature of interest and using that information to alter its course

and more fully capture the feature’s characteristics in its data.

3.2.1 Science/Oceanography

At-sea data collection is typically a very expensive and planning-intensive exercise for oceanographers, often

limiting their ship time to a week or so every few years. ey must conduct rigorous experiments during

these times and hope that their predictions of when and where the features of interest may occur are suffi-

ciently accurate. More accessible data sources frequently used by oceanographers include satellites, ship casts,

floating profilers, buoys, and moored arrays. is restricts them to studying mostly what can be observed

from these uncontrollable sources. e advantage to AUVs programmed with AAEA for feature tracking is

that oceanographers using these vehicles have a higher likelihood of collecting a relevant data set with the
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information they need for furthering research, making their precious time at sea even more productive.

3.2.2 Technology/Engineering

Looking at the ocean from the perspective of an ocean engineer running, designing, or writing software for

AUVs, there are visible limitations that the ocean imposes on the vehicles and operations. e vehicles can

be run in a variety of locations and can be sent on complex missions, yet many engineers do not have a

solid enough oceanographic background and may not understand how all of the puzzle pieces of the oceano-

graphic environment interact to create a bigger picture. In this way, many engineers are unable to deploy

AUVs on missions to sufficiently capture data sets characteristic of many environmental features (e.g., eddies,

thermoclines, fronts, etc.).

Combining the knowledge of scientists with the tools of engineers is a significant benefit to the spread of

knowledge and technology throughout both fields.

3.3 Goals & Motivation

Temperature

D
e
p
th

Thermocline}

Figure 3-1: A conceptual sketch of thermocline tracking using an AUV, which collects and processes all
necessary temperature data on board.

e first developments using AAEA for feature tracking have been applied to autonomously tracking the

marine thermocline. e thermocline tracking procedure has been built up from concept (sketched in Fig. 3-

1) to implementation, and finally tested in field experiments. is chapter outlines this procedure, following

the guidelines for AAEA and feature tracking laid out in Section 3.5.

e thermocline was chosen as a simple, well-defined example of an oceanographic feature that is present

in most large bodies of water (e.g., large lakes, seas, oceans). Hence, thermocline tracking is used as a proof-

of-concept for AAEA and feature tracking. Another reason to begin with thermocline tracking is that most

AUVs are equipped with a CT (conductivity-temperature) or CTD (conductivity-temperature-depth) sensor,

which collects the temperature (and depth) data necessary to detect the thermocline.
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3.4 Literature

At the time that this work was done and published (2008–2010) [3], a number of sources had mentioned the

benefits of using AUVs for feature tracking and made some non-autonomous attempts [43–45], but there

were very few pieces of literature that described attempts at any type of autonomous feature tracking with

AUVs. One of the earliest adaptive feature sampling experiments using AUVs was described by Wang et al.

for sampling the ocean acoustic environment in the northern Tyrrhenian Sea [40]. Subsequently, a variety

of approaches to AAEA and feature tracking—particularly thermocline tracking (and later front and plume

tracking, among others)—have been published.

Coincident with the publication of this work, Cruz and Matos presented a method of, and algorithms

for, using an AUV for autonomous and adaptive thermocline tracking that is very similar to the method and

algorithms presented here [52,53]. e primary differences are: 1) in the selection of thermocline upper and

lower threshold values—though this work and theirs both base these values off of the vertical temperature

gradient values evaluated across temperatures binned at discrete depths—and 2) the use of temperature aver-

aging in this work over multiple vertical profiles, coupled with a timer that resets the temperature averages,

versus their use of the temperature profile data from only the previous profile to determine the thermocline

for the current profile. Both of these approaches are valid and reasonable, but they have not been evaluated

against each other to determine if one or the other performs ‘better’ or more robustly.

Shortly thereafter, Zhang et al. published work on thermocline tracking based on tracking the peak vertical

temperature gradient [54–57]. Similar to the work by Cruz and Matos using defined temperature gradient

thresholds for the current profile that are a fraction of the peak gradient from the previous profile, Zhang

et al. defined the thermocline peak area as a fixed depth range around the peak gradient depth and use the

peak gradient depth of only the previous profile to define the depth range covered by the current profile.

is method keeps the horizontal sampling of the thermocline constant, but is fragile to sudden increases or

decreases in peak thermocline depth, which may occur in highly dynamic coastal and shelfbreak environments.

Although the thermocline tracking approach employed in this work did not originally have the ability to

strictly follow the peak thermocline gradient, that capability was added shortly after the publication of the

bulk of this work in 2010 and is presented here. It uses a temperature averaging method coupled with the

Zhang et al. fixed depth range method around the thermocline peak mentioned above.

Details of the AAEA process and this thermocline tracking method and algorithms are described in the

remainder of this chapter.
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3.5 AAEA & Feature Tracking: A Novel Approach

In collecting data with AUVs, consider an AUV moving through the water in space and time and we want to

know: where (or when) is feature X. Up until recently, AUVs have not had the ability to react to environmental

variations in real time. Many AUVs are used for environmental monitoring, but the data is not processed on

board the vehicle. Most data processing occurs post-mission on powerful, speedy computers in a lab, whereas

processing on board AUVs must take a much more conservative, controlled approach. e motivation behind

AAEA is to be able send the AUV on a mission to “track feature X”, and the vehicle will make all proceeding

decisions. To accomplish this, the AUV must use AAEA to process environmental data (from CTDs, ADCPs,

fluorometers, etc.) on board the vehicle. is processing will determine where feature X occurs, allowing the

AUV to autonomously react to its surroundings and track the feature.

Due to the restrictions of working with AUVs, which will be mentioned later, we are limited to determin-

ing the boundaries of feature X based on just the environmental information the AUV collects and processes

on board. is must be done completely autonomously (with no human actively in the loop), allowing the

AUV to make decisions of its own based on the environment it is swimming through.

Before the AUV begins AAEA, however, what feature to detect and track must determined, along with

what measurable environmental state variables describe that feature.

3.5.1 Oceanographic Features

Almost every feature in the ocean environment is of interest to some scientist somewhere. Just a small subset

of these features is given in Table 3.1. Many of these features are delineated by gradients of measurable

environmental variables, e.g., temperature gradients define the vertical location of the thermocline.

3.5.2 Defining a Feature Based on Data

Before a feature in the ocean can be detected (by running a feature-detecting algorithm on a set of data),

the feature must be defined. Hence, a robust quantitative definition must be developed for each feature and

implemented in the form of an algorithm. is algorithm must also account for the temporal and spatial

scales characteristic of an ocean feature, since many of these features are highly dynamic. Determining the

physical spatial and temporal boundaries of a feature requires either research into the underlying processes

that form the feature (not discussed in this thesis), or qualitative observations of the feature in plotted data,

along with some general knowledge of the properties of the ocean environment.
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Table 3.1: Features, their measurable tracers, and associated instrumentation

Features/Obesrvations Measurable Tracers Instruments

ermocline, halocline, pycno-
cline, sound speed

Temperature, conductivity, pres-
sure CTD [16]

O2 concentration Partial pressure of O2 in water
(via temperature & conuctivity) Dissolved Oxygen sensor [17]

Phytoplankton biomass & Cl
concentration Chlorophyll-a fluorescence Fluorometer [18]

Light attenuation
Photosynthetically Active Radi-
ation (PAR) of 400–700 nm
wavelength

PAR sensor [19]

Currents Doppler (frequency) shift of
sound waves ADCP [20]

Fronts Temperature, conductivity, pres-
sure, Doppler shift CTD, ADCP

3.5.3 AAEA Process

Once a feature-detecting algorithm has been created, it must be converted into a piece of code that can

interface with the autonomy software of the AUV. is was addressed briefly in Section 2.3.1. e AUV will

then have the ability to perform AAEA by processing its self-collected data using the algorithm code. is

action determines the spatial and/or temporal boundaries of the feature in question.

3.5.4 Tracking

Knowing the boundaries of a feature, an interface is made with the on-board autonomy control to reposition

the AUV. is repositioning, or path adjustment, is used to track a feature, i.e., collect a more complete data

set describing the feature. Feature tracking is done by the AUV actively (yet autonomously) keeping itself

within or around the feature’s physical boundaries.

3.6 Tracking the Marine ermocline

3.6.1 ermocline Definition

By definition, the thermocline is “the region in a thermally stratified body of water which separates warmer

surface water from cold deep water and in which temperature decreases rapidly with depth” [59]. Such a

feature is shown in Fig. 3-2. From this (qualitative) definition, we can quantitatively define the thermocline
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Figure 3-2: A typical mid-latitude oceanic Temperature vs. Depth profile. e thermocline region (that of
most rapid decrease in temperature over depth) in this profile is apparent between about 300–1000 m depth.
e strength of this thermal stratification is often highly variable, depending on location and over time. Image
courtesy of Windows to the Universe [58].

as the depth range over which the vertical derivative of temperature, ∂T/∂z, exceeds some threshold value,

as depicted in Fig. 3-3.

3.6.2 Algorithm: ermocline Bounds and Maximum

Constructing an algorithm from this definition is as follows. Assume an ideal temperature profile similar to

that in Fig. 3-2 as an approximation to a profile obtained from CTD data (Fig. 3-3). Define variables T for

temperature in ◦C, z for depth in meters (positive up from the free surface), and H for water depth in meters.

1. Calculate the slope of the temperature curve at each point in depth, z′.

∂T

∂z

∣∣∣∣
z′

(3.1)

2. Average the vertical derivatives over the span of the water column. is yields the following threshold
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Figure 3-3: Temperature data through the water column (left) collected during GLINT ’09 by the CTD
aboard the NURC OEX AUV. On-board data processing was done to calculate the average temperature
gradients at 1 m depth levels (circles, right) and through the entire water column (solid vertical line, right).
e dashed lines indicate the upper and lower bounds of the detected thermocline region, calculated by
pEnvtGrad (described in Section 3.6.3).

value. (
∂T

∂z

)
tot_avg

=
1

H

∫ −H

z′=0

∂T

∂z

∣∣∣∣
z′

dz′ (3.2)

3. Determine the upper and lower depth limits of the thermocline region.

If :

∣∣∣∣ ∂T∂z
∣∣∣∣
z′

∣∣∣∣ ≥
∣∣∣∣∣
(
∂T

∂z

)
tot_avg

∣∣∣∣∣ (3.3)

Then : z′ within thermocline (zin_thermocline) (3.4)

upper_thermocline_depth ≡ −max(zin_thermocline) (3.5)

lower_thermocline_depth ≡ −min(zin_thermocline), (3.6)

where depth is the distance, positive down, from the free surface.

4. Determine the depth of the maximum temperature change per unit depth.

maxgrad_thermocline_depth ≡ −zin_thermocline @
∣∣∣∣∂T∂z

∣∣∣∣
max

(3.7)

An analogous determination can be done for the region of maximum sound speed variation over depth,

which we will call the ‘acousticline’, or the halocline or pycnocline.
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3.6.3 Algorithm Implementation on AUVs: pEnvtGrad

e algorithm described above is implemented on an AUV as a piece of code called pEnvtGrad, which stands

for ‘process: Environmental Gradient.’ is code calculates the vertical temperature and sound speed gradi-

ents and quantitatively defines and detects both the thermocline and acousticline. [Note: It is up to the AUV

operator to determine which of these features to track. Here we will continue with tracking the thermocline,

since sound speed variations are dominated by temperature variations in coastal and surface ocean waters.]

is process then interfaces with the MOOS-IvP autonomy to guide the AUV in a vertical yo-yo pattern

(see Fig. 3-1) between the upper and lower thermocline depth limits, continuously adapting the limits to the

variations in thermocline range over space and time. A more detailed description of the steps taken within

pEnvtGrad are given below.

1. Initial yo-yo:

At the start of the mission the AUV dives from the surface to as deep as is allowable to get as complete

a data set as possible over the water column.

2. Create depth “bins”:

e water temperature data is split up into vertical depth levels, or “bins.” is defines the discrete

depth levels to work with.

3. Average T in each bin:

e temperature values within each depth bin are averaged to eliminate sub-scale variations in temper-

ature. It is memory-consuming and not useful to determine thermocline bounds on the sub-1-meter

scale when the bounds of the thermocline itself are not absolutely defined. A brief scales analysis of

depth bin size and thermocline depth range is given in Table 3.2.

4. Vertical derivative, ∆T/∆z, over adjacent bins:

e discrete vertical derivative over each pair of adjacent bins is computed.

∂T

∂z

∣∣∣∣
z′
≈ ∆T

∆z

∣∣∣∣
bin_i, bin_(i+1)

=
Ti+1 − Ti

zi+1 − zi
(3.8)

5. reshold:
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Average ∆T/∆z over the sampled water column.

(
∆T

∆z

)
tot_avg

=
1

n− 1

n−1∑
i=1

∆T

∆z

∣∣∣∣
bin_i, bin_(i+1)

, (3.9)

where n is the total number of depth bins in the water column.

6. Determine the thermocline depth range, where |∆T/∆z| is greater than the threshold value:

If :

∣∣∣∣∆T

∆z

∣∣∣∣
z′

∣∣∣∣ ≥
∣∣∣∣∣
(
∆T

∆z

)
tot_avg

∣∣∣∣∣ (3.10)

Then : z′ within thermocline (zin_thermocline), (3.11)

where z′ is the depth bordering between bin_i and bin_(i+ 1). us,

upper_thermocline_depth ≡ −max(zin_thermocline) (3.12)

lower_thermocline_depth ≡ −min(zin_thermocline). (3.13)

7. Determine the depth where |∆T/∆z| is maximized:

maxgrad_thermocline_depth ≡ −zin_thermocline @
∣∣∣∣∆T

∆z

∣∣∣∣
max

(3.14)

8. Track the thermocline:

Adjust yo-yo depth limits continuously (and autonomously) by keeping a running average of the tem-

perature data collected for each bin. In this way, the thermocline tracking process is adaptive to its

dynamic environment.

9. Periodic reset:

After a fixed amount of time, tR, reset the gradient determination process by ‘forgetting’ all previ-

ous data, and start over from the initial yo-yo. Ideally tR is not longer than half the length of the

characteristic time scale, t0, over which there is a significant change in the feature. at is,

tR ≤ t0
2
. (3.15)
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Table 3.2: Scaling of depth bins with water depth

Water Depth ermocline Range Depth Bin Range

Shallow water/coastal
system O(100 m) O(10 m) ∼1 m

Open ocean O(1000 m) O(100 m) ∼10 m a

a Here it is natural to scale all values up by one order of magnitude from shallow water to the
open ocean, however the open ocean may also have a second, transient near-surface thermocline
(O(10 m) range) that would require a depth bin range of ∼1 m to adequately capture.

Essentially, this is a reset at the Nyquist frequency of the feature’s variations. In tracking a coastal

thermocline over the course of a day, there may be significant changes in thermocline depth as the

surface warms from the sun and begins to mix due to winds in the morning, and then cools again in

the evening. In such cases, we may see variations in thermocline depth over the course of a couple

hours (tR ≈ 0.5–1.0 hr), whereas calmer, cloudier days may see variations on the scale of 3–6 hours

(tR ≈ 1.5–3.0 hr) or longer, depending on location and season.

3.6.4 Virtual Experiments & Testing

e final steps of the implementation process involve testing pEnvtGrad in virtual experiments before an

AUV can be deployed on a thermocline tracking mission. Using a MOOS-IvP interface to a dynamic ocean

model (in the MSEAS NetCDF format [60, 61]), we can simulate an AUV flying through a dynamic ocean

and autonomously tracking the thermocline as if it were actually in the water. e results of this testing

are plotted in Fig. 3-4. e MOOS-IvP simulation (virtual experiment) interface is nearly identical to the

runtime interface (used during an actual mission), making the transition from simulation to runtime virtually

seamless.

3.7 Field Experiments & Results

With the implementation and testing completed, field experiments to track the thermocline (and acousticline)

could be conducted. Adaptive thermocline and acousticline tracking were demonstrated during the GLINT

’09, Champlain ’09, and GLINT ’10 field trials, which are described below. e GLINT ’10 experiment in

particular used adaptive thermocline tracking missions in the broader context of collecting a synoptic multi-

AUV data set displaying evidence of internal waves, which is discussed in more detail in Chapter 4. Here it is
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Figure 3-4: ese plotted mission data are from a virtual experiment run using pEnvtGrad to track the surface
thermocline in the Middle Atlantic Bight region. is region was modeled by the MIT MSEAS group [60]
in early 2008 from data collected in that region during the Shallow Water ’06 experiment in late August,
2006 [62]. ese plots show (top) the AUV depth over time and (bottom) the temperature-depth profile.
Coloring corresponds to the temperature indicated by the bottom plot. In the upper plot, the initial (deep)
yo-yo is seen, followed by a few shallow yo-yos between the depths of 12 and 52 m, indicative of tracking the
thermocline when compared to the thermocline depth range of the lower plot (about 10–50 m).

useful to first become familiar with the ‘topside’ setup used by MIT on board the ship to deploy and monitor

the AUVs underwater.

3.7.1 MIT Topside Setup

On board a research vessel, the lab is set up with laptops from which the AUVs are commanded. e ship has

a GPS link for positioning, which is decoded on the topside laptop, allowing a determination of where the

ship is relative to the AUV. e AUV itself has acomms with the ship (and topside computer) via ship- and

AUV-mounted acoustic modems, so status messages, commands, and minimal amounts of data can be sent

between the two platforms. e command and control station setup on the topside computer includes Goby

Liaison (a web-browser-based GUI that functions as a rapidly reconfigurable mission commander) that allows

the AUV to be commanded to, e.g., track the thermocline for 1 km heading 45◦, and it will deploy itself on
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Figure 3-5: e Google Earth interface for Ocean Vehicles (GEOV) [63] real-time topside situation display in
Google Earth [64] showing two AUVs swimming in sync (trailed by purple and green lines) past an acoustic
communications buoy (yellow circle) and a field of objects on the sea floor (pink arrows).

that mission. e topside situation display includes a display of the incoming CTD data in near real time

(similar to that shown in Fig. 3-4), as well as the Google Earth interface for Ocean Vehicles (GEOV) [63].

GEOV, as shown in Fig. 3-5, is a very useful real-time display of the positions of the research vessel, AUV(s),

and their recent paths, in Google Earth [64]. It is an integral piece in the planning and monitoring of AUV

missions.

3.7.2 GLINT ’09—Acousticline Tracking

e GLINT ’09 experiment took place in the Tyrrhenian Sea near Porto Santo Stefano, Italy. Adaptive feature

tracking missions were run 13–14 July, 2009, with the coordinated efforts of MIT and the NATO Undersea

Research Centre (NURC, based in La Spezia, Italy). e NURC OEX AUV (shown in Fig. 3-6) running the

MOOS-IvP autonomy system was deployed from the R/V Alliance for adaptive feature tracking missions.

51



Figure 3-6: e NURC OEX AUV used during GLINT ’09. is AUV communicates with the ship via
acomms (underwater). It also carries a GPS for positioning.

During this cruise, pEnvtGrad underwent development and testing in virtual experiments before its first

sea trial. e mission during these days was to track the acousticline. e AUV was deployed into a north-

south racetrack pattern of 1000 m × 200 m and performed an adaptive-depth yo-yo pattern based on the

acousticline depth determined by pEnvtGrad.

3.7.3 GLINT ’09 Results

A

D

C E

B

D
e
p
th

Time

Figure 3-7: Depth history of the OEX AUV during an adaptive acousticline tracking mission. (A) is the
default shallow turning and transiting depth (7 m). (B) is the initial yoyo (7–70 m) performed by the AUV
to ensure sampling of the entire water column down to the vehicle’s maximum dive depth. (C) is the adapted
yo-yo tracking the acousticline between 9 and 28 m depth. (D) is a 30 min tracking period after which the
AUV re-initializes the yo-yo through the full water column to account for acousticline depth variation over
space and time. (E) is the 400 m period (length) of a single yo-yo.

Fig. 3-7 shows the actual depth of the OEX AUV over the course of approximately 2 hours. e initial

yo-yo is visible as the deep dive from 7 to 70 m and back, and then the OEX began tracking the acousticline
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between 9 and 28 m depth (smaller amplitude undulations). e depth bins were chosen to be 1 m deep

(due to a water depth of about 105 m) and the periodic reset was set to 30 minutes.
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Figure 3-8: e leftmost plot of each pair gives the sound speed-depth (left) and temperature-depth (right)
profile, respectively, over the entire mission (multiple dives). e rightmost plot of each pair shows the vertical
sound speed (left) and temperature (right) gradients averaged over 1-meter depth bins. e solid vertical blue
lines (on the gradient plots) represent the threshold values (average gradient over all sampled depths). A
gradient greater in magnitude than the threshold magnitude is determined to be within the depth range of
the acousticline or thermocline, respectively. e acousticline and thermocline regions are bounded by the
dashed lines shown.

Post-processing of the sound speed and temperature data from the entire 2+ hour mission (see Fig. 3-8)

shows the similarities in the shape of the sound speed and temperature profiles in this region. is is due

to the fact that sounds speed is dominated by temperature in shallow waters such as these and in the upper

layer of the ocean, and by pressure deep in the ocean. e formula used here to calculate sound speed is the

MacKenzie Sound Speed Equation (1981) [65]. e calculated average acousticline depth range was 3–28

m with a threshold total average gradient ((∆c/∆z)tot_avg, where c is the sound speed through the water in

m/s) of 0.427 (m/s)/m, while the calculated average thermocline depth range was 3–23 m with a threshold

total average gradient ((∆T/∆z)tot_avg) of 0.162 ◦C/m.

e primary difference between the 9–28 m acousticline range tracked by the AUV and the 3–28 m range

calculated in post-processing is that the post-processing range also included some near-surface sound speed

data collected during deployment and surfacing for getting GPS position locks. On board, the acousticline

determination is limited to the data collected within the initial yo-yo range (7–70 m in this case), slightly

increasing the threshold value and setting a deeper upper acousticline boundary (at 9 m) than that calculated

in post-processing.
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3.7.4 Champlain ’09—ermocline Tracking

Figure 3-9: e NUWC Hammerhead Iver AUV used during Champlain ’09. is AUV carries a complete
environmental package in its nose and communicates with the ship via RF (on the surface) and acomms
(underwater). It also carries a GPS and Doppler Velocity Logger (DVL) for positioning.

e Champlain ’09 experiment took place in Lake Champlain, VT, USA (a freshwater lake). Adaptive

feature tracking missions were run 3–5 October, 2009, with the coordinated efforts of MIT and the Naval

Undersea Warfare Center (NUWC, based in Newport, RI, USA). e NUWC Iver AUV (shown in Fig.

3-9) running the MOOS-IvP autonomy system was deployed from a small motor boat for adaptive feature

tracking missions.

During this experiment, pEnvtGrad underwent further testing and its second sea trial. e mission during

these days was to track the thermocline of the lake. e AUV was deployed into a northwest-southeast

straight line pattern 1 km long and performed an adaptive-depth yo-yo pattern based on the thermocline

depth determined by pEnvtGrad.

3.7.5 Champlain ’09 Results

Fig. 3-10 (left, colored data points) shows the actual depth of the Iver AUV over the course of approximately 2

hours, about 1.5 hours of which it is deployed on the thermocline tracking mission. e initial yo-yo is visible

as the first dive from 3 to 30 m, and then the Iver begins tracking the thermocline between about 14 and 29

m depth (smaller amplitude undulations). e depth bins were chosen to be 1 m deep (due to a water depth

on the order of 100 m) and the periodic reset was set to 30 minutes. is plot also displays the thermocline

depth bounds (left, green lines) calculated by pEnvtGrad, which, when plotted with the data of the AUV’s

actual depth over time (left, colored data points) shows that the AUV is able to actively and autonomously

track the thermocline, adjusting to a change in thermocline depth of even a meter over a couple dives.

Post-processing of the temperature data from the entire mission (see Fig. 3-11) results in an average
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Figure 3-10: ese data were taken from the real-time topside CTD display showing temperature variations
over depth and time. e colors of the data on the left plot correspond to the temperature color coded by
the right plot. e squared-off green lines across the plot on the left give the exact values of the thermocline
boundaries as determined by pEnvtGrad throughout the mission. e dashed red lines approximate (by
inspection) the average thermocline bounds as determined by pEnvtGrad.
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Figure 3-11: e plot on the left gives the temperature-depth profile over the entire mission (multiple dives).
e plot on the right shows the vertical temperature gradients averaged over 1-meter depth bins. e solid
vertical blue line (right) represents the threshold value (average gradient over all sampled depths). A gradient
greater in magnitude than this average value’s magnitude is determined to be within the depth range of the
thermocline, the region bounded by the dashed lines.

thermocline depth range of about 16–29 m with a threshold total average gradient ((∆T/∆z)tot_avg) of

0.168 ◦C/m. is average thermocline range is very close to that determined by inspection of the AUV’s

actions and calculations in Fig. 3-10 (left).

Relating back to the generally qualitative definition of a thermocline and its algorithm developed earlier

in this chapter, it is essential to keep in mind that all of the calculated thermocline (and acousticline) bounds

are relative to the threshold value, which is relative to the depth of the water column that can be sampled by

an AUV. In some cases such as this, the AUV could not risk diving much deeper than 35 m (due to a very

muddy lake bottom) and only captured part of the thermocline. However, this also shows that pEnvtGrad as

a thermocline detecting algorithm is robust enough to still detect the majority of the thermocline range even

without full water column coverage.
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3.7.6 GLINT ’10—ermocline Tracking for Internal Wave Detection
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Figure 3-12: e region of the Tyrrhenian Sea bounded by the western coast of Italy and the islands of the
Tuscan Archipelago. e Tuscan Archipelago basin is outlined by the dashed line. e GLINT ’10 AUV
operation region is delineated by the box. e numbering shows the five inlets of the basin.

e GLINT ’10 Internal Wave Detection Experiment took place on 13 August, 2010, as a collaborative

effort between groups from MIT and NURC. e area of study was the northern region of the Tyrrhenian Sea

bounded by the Tuscan Archipelago and the west coast of Italy. e AUVs were operated in the southeastern

area of this Tuscan Archipelago basin, which is delineated by the yellow ‘GLINT ’10 Op. Box’ in Fig. 3-12.

is experiment aimed to use adaptive autonomous sampling and multiple AUVs to detect the presence of

internal waves (or lack thereof ) in this region of the Tyrrhenian Sea.

Internal waves are supported along density interfaces, such as the pycnocline, so we decided to use the

AUVs to monitor the temperature in this environment. at is because the thermocline corresponds in depth

with the pycnocline in a coastal (∼ 100 m depth) isohaline environment such as the Tuscan Archipelago basin.

In order to collect fully synoptic data sets most likely to exhibit the presence of any passing internal waves in

this dynamic environment within the few hours of AUV deployment time available, a novel multi-AUV, 3D

approach was needed for the AUV sampling strategy. With two 21” diameter AUVs available, we were able

to use autonomous following and adaptive thermocline sampling techniques on board the vehicles while they

communicated and autonomously collaborated with each other during the internal wave detection missions

to get the most synoptic data sets possible.

Both AUVs ran the MOOS and IvP Helm autonomy software and were able to communicate real-time

data and status updates between each other and the ship-board operators using acoustic communication

systems. ese features allowed the AUVs to autonomously coordinate their motions in the horizontal plane

with a track-and-trail behavior, as seen in the topside display in Fig. 3-13. In the vertical axis, each AUV was
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Figure 3-13: Mission 2 loiter pattern around the gateway buoy, as seen from above, at an angle to the horizon-
tal. Harpo performs a horizontal loiter pattern at constant depth (12 m) just below the thermocline. Unicorn
trails directly behindHarpowhile performing an adaptive yo-yo pattern through the thermocline depth range.
Vertical bars along the loiter indicate the AUVs’ depths (yellow is Unicorn’s track, white is Harpo’s track), and
their current positions are shown by the arrows. Best viewed in color.

given a different task. e Unicorn AUV preformed the adaptive thermocline tracking behavior, adapting its

depth to the temperature changes in the environment while trailing behind the Harpo AUV. e Harpo AUV

was following a pentagonal loiter pattern in the horizontal plane and maintained a constant depth at 12 m,

just below the thermocline depth (the depth at which |∆T/∆z| is greatest—about 11 m), since the sudden

change in temperature at the thermocline was inhibiting acoustic communication when Harpo originally

adapted its depth to match the thermocline depth. In addition to the two AUVs, a vertical thermistor chain

was deployed during the Internal Wave Detection Experiment to capture any lower-frequency temperature

oscillations and serve as a ground truth for the AUV data.

3.7.7 GLINT ’10 Results

e results from this experiment strongly suggest that the propagation of internal waves is present in the

Tuscan Archipelago basin. us, when the thermocline is well defined in the Tuscan Archipelago basin

(primarily during the summer), it is likely that internal waves are detectable along the thermocline throughout

the rest of the basin beyond the AUV operation region. is is a rather important oceanographic finding for

those who perform acoustic and other oceanographic experiments in this region, as there is no literature to-

date suggesting the presence or absence of internal waves in the Tuscan Archipelago basin. For more detailed
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results and analysis from the Internal Wave Detection Experiment, see Chapter 4 and [66].

3.8 Conclusion

By implementing AAEA on board AUVs with acomms ability and MOOS-IvP autonomy, a means of au-

tonomously detecting and actively tracking oceanographic features in situ, in near real time, on board an

AUV has been developed. e thermocline tracking example is a successful proof-of-concept for autonomous

detection and tracking of hydrographic gradients using AAEA. is is especially important because most hy-

drographic features are characterized or delineated by gradients or concentrations of environmental tracer(s).

In this chapter the step-by-step process of developing AAEA and feature tracking from concepts through

testing in field experiments has been described. e thermocline and acousticline detection algorithm imple-

mented in the pEnvtGrad code was tested successfully in conjunction with MOOS an IvP Helm autonomy

on AUVs during the GLINT ’09, Champlain ’09, and GLINT ’10 field experiments. is demonstrates

that pEnvtGrad is robust enough to handle thermocline/acousticline tracking in both freshwater and saline

environments and is seamlessly adaptable to use on very different AUVs running the same (MOOS and IvP

Helm) autonomy system.

With the use of adaptive sampling, autonomy, and acoustic communication on the AUVs, the human

can be taken out of the loop in the sampling process while improving the data collected. is approach sig-

nificantly reduces the ship time required for collecting a specific data set by sampling only the areas of interest

to the scientists’ research instead of doing large pre-planned surveys in hopes of collecting the desired data

somewhere within the survey area. Since many oceanographic studies still use manual shipside deployment of

instruments at discrete locations to collect data, the integration into the oceanographic community of AUVs

with the ability to perform environmentally adaptive sampling using AAEA and feature tracking will be an

important step for the future of oceanographic research.

e three experiments described in Section 3.7 demonstrate the significant impact of using AAEA and

feature tracking on AUVs to improve the efficiency and synopticity of oceanographic data collection. e

novel feature tracking methods presented here include environmentally adaptive, fully autonomous tracking

of the thermocline and acousticline depths as well as using multiple autonomously collaborating AUVs to

increase 3D data coverage and synopticity. e latter of these methods is explored more fully in Chapter 4.

e natural continuation of this work is to further expand this process across multiple AUVs swimming

in an area and interacting (via acomms) to paint a clearer picture of the ocean environment on small and

large scales. Essentially, this will result in better data coverage over time and space. Tracking more complex
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oceanographic features over two or more dimensions (rather than just one, i.e., depth), such as eddies, oceano-

graphic fronts, and bathymetry contours, is a useful development that requires multi-AUV data exchange and

feature determination techniques to be adapted to capture the motion of highly dynamic (and larger-scale)

features autonomously. Once multiple AUVs identify the bounds of a single feature, the challenge is then

to coordinate their paths such that they will (collectively) track the feature, continuously and autonomously

adapting to the feature’s motions. is is addressed in Chapters 5 and 6, where results are presented from

front tracking autonomy behaviors that have been developed and tested for this research, and concepts are

presented for an extension to plume tracking, respectively.
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Chapter 4

Internal Wave Detection Experiment

4.1 Introduction

Advances in the fields of autonomy software and environmental sampling techniques for autonomous un-

derwater vehicles (AUVs) have recently allowed for the merging of oceanographic data collection with the

testing of emerging marine technology. e Massachusetts Institute of Technology (MIT) Laboratory for

Autonomous Marine Sensing Systems (LAMSS) group conducted an Internal Wave Detection Experiment in

August 2010 with these advances in mind. e method of AAEA was applied with the use of the thermocline

tracking algorithms described in Chapter 3 and a knowledge of the general characteristics of internal waves and

where they propagate in the water column. e goal was to have multiple AUVs collaborate autonomously

through on-board autonomy software and real-time underwater acoustic communication to monitor for the

presence of internal waves by adapting to changes in the environment (specifically the temperature variations

near the thermocline/pycnocline depth, where internal waves are most likely to propagate).

4.2 Goals

e GLINT ’10 Internal Wave Detection Experiment aimed to use multiple AUVs to detect and characterize

the presence of internal waves (or lack thereof ) in the region of the Tyrrhenian Sea bounded by the western

coast of Italy and the islands of the Tuscan Archipelago (see Fig. 3-12).

Portions of this chapter are ©2014 IEEE. Reprinted, with permission, from S. Petillo and H. Schmidt, “Exploiting Adaptive and
Collaborative AUV Autonomy for Detection and Characterization of Internal Waves,” IEEE Journal of Oceanic Engineering. [66]
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e primary constraints were the necessity to have multiple AUVs collaborate their positions autonomously

to execute the experiment and to make use of the ability to adapt AUV position to temperature changes in the

environment, harnessing the AAEA method developed in Chapter 3. In these coastal Mediterranean waters

(∼ 110 m depth) with relatively constant salinity over depth, the water temperature dominates the density

calculation in the equation of state for seawater [67]. is allows us to detect the presence of internal waves

directly from the CT sensor’s temperature measurements instead of needing to calculate density for each point

in space. If successful, this experiment would be the first to use fully autonomously-collaborating AUVs that

autonomously adapt their motion to changes in the environment, thus efficiently capturing a synoptic data

set that may contain internal wave signatures.

ere was a significant effort put forth to successfully demonstrate the use of AUVs of different types,

from different research groups, communicating and collaborating autonomously through MOOS and IvP

Helm autonomy software and acoustically communicating using a predefined polling scheme that is set using

the pAcommsHandler underwater networking application—a MOOS interface (further described in Section

4.5.3) to the Goby-Acomms libraries.

is chapter will cover the motivation for the Internal Wave Detection Experiment on August 13, 2010,

during the GLINT ’10 field trials in the Tyrrhenian Sea west of Italy, and compare its goals with similar

experiments from other literature. is is followed by details of the experimental setup and implementation

from GLINT ’10, including a discussion of the required instrumentation, communication, and autonomy

systems. e resulting data sets from the AUV missions are then analyzed and compared with wave and

buoyancy theory [68, 69] to determine the possible sources for dominant internal wave frequencies in the

data. Finally, directions of future work are discussed and conclusions are drawn.

4.3 Motivation

Bodies of water in nature tend to be stably stratified with fluid density increasing with depth. is density

variation is dependent upon water temperature, salinity, and pressure through the equation of state for sea-

water [67]. When an abrupt change in water density occurs over a short depth range, often referred to as a

pycnocline, the boundary between the two layers of different-density seawater may support internal waves.

at is, the strongly stable stratification of the density layers at the pycnocline will react with a restoring force

when perturbed by water from above being forced downward or water from below being forced upward, cre-

ating an internal wave that will propagate away from its source along an isopycnal within the pycnocline [68].

Perturbations from internal waves can occur from a variety of sources, such as currents flowing rapidly past
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a narrow mouth to a basin, or waves produced by flow over underwater mountains or canyons near a shelf-

break. Internal waves frequently occur in regions where a strong thermocline is present and salinity can be

considered constant (the pycnocline depth will then be coincident with that of the thermocline in shallow

water).

Internal waves have a strong effect on acoustic propagation in any body of water, since sound waves travel

as pressure waves that can be refracted in different directions as the acoustic impedance of the water changes.

Acoustic propagation is used in oceanography for a variety of tomographic experiments and for underwater

communication and data transfer when collecting data with autonomous underwater vehicles (AUVs). If

the acoustic channel is disturbed by an undetected internal wave, errors in tomographic measurements and

unpredicted loss of communication or data transfer to and from AUVs can result.

More specific to the field of oceanography, internal waves of large anplitude and long wavelength relative

to water depth can transport a significant amount of energy from one location to another, and those that grow

large enough to break along an isopycnal result in mixing between density layers and potential transport of

biomass. Internal waves that propagate long distances shed light on the strength of currents and topography

interacting both far from coastlines and right off the continental shelf.

In defense applications, detecting the presence of internal waves in an area may reveal the location of a

submerged submarine, which generates internal waves through its motion underwater. Internal waves also

interact with the acoustic propagation environment during target (mine) detection and ASW (anti-submarine

warfare) operations, causing unpredicted bending in the path of propagating sound waves and thereby (pos-

sibly) revealing or concealing potential targets by insonifying an unpredicted area.

4.4 Literature

Until recently, most field studies of internal waves have been carried out using synthetic aperture radar (SAR)

[70–72], acoustic tomography and altimetry [73], current meters on moorings [74], CTD (conductivity-

temperature-depth) and XBT (expendable bathythermograph) casts [74], and satellite observations (pho-

tographs in varying light spectra) [75]. e goal of our experiment, however, was to use AUVs to determine

if internal waves were present in our deployment region (more specifics are found in Sections 4.2 and 4.5).

e specific AUVs for this experiment are actively propelled and able to sense and adapt to their local environ-

ment using on-board CT (conductivity-temperature) and pressure sensors, along with a computer running

autonomy software that can process the data and adaptively redirect the vehicle without an operator in the

loop. e choice to use AUVs rather than satellite data, moorings, or CTD casts from a ship for this ex-
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periment gave us the flexibility to capture the exact data set we needed using the AUVs’ abilities to conduct

autonomous and adaptive environmental sampling in real time, such as thermocline tracking (the thermocline

and pycnocline depths are coincident in our AUVs’ shallow-water operations region). Autonomous coordi-

nation is also possible between multiple AUVs, allowing (in this case) one AUV to travel at the pycnocline

depth to collect a data set that is likely to contain internal waves while the other AUV travels well below the

pycnocline along the same horizontal track as the first AUV to collect a ‘ground truth’ data set where internal

waves are unlikely to occur.

Using AUVs for internal wave detection is a relatively novel approach. However, the approach presented

here is not the first to employ AUVs for this task. Work was done by Zhang et al. in 2001 [76] on spectral

classification of internal waves based on vertical flow velocity data from an AUV-mounted ADV (acoustic

Doppler velocimeter) during the 1998 Labrador Sea Convection Experiment. In that experiment, the AUV

was driven in a predetermined horizontal square pattern at two depths in the upper mixed layer to collect data,

which was processed and compared with spectra from an ocean model of the Labrador Sea region containing

internal waves. Although no internal waves were found in the vertical velocity spectra, results suggest that

significant convection was present in the experimental region. Work has also been done by Cazenave in his

2008 Master’s thesis [77] on internal wave detection using the CTD sensor on an AUV, similarly examining

the temperature spectra. Cazenave’s experiment took place throughout 2007 in Monterey Bay, CA, through

which energetic internal waves are known to pass daily (they have been imaged by satellite). He uses a single

AUV that follows a predefined track line between two waypoints in horizontal space while yo-yoing in depth

around a set temperature range that is expected to traverse the thermocline in depth. Perturbations in the

isotherms and spectral analysis were then used to quantify the internal waves.

e approach in this work is similar to Cazenave’s (and different from that of Zhang et al.) in that

it uses CT and pressure data, since CTD (or CT and pressure) sensors are standard on most AUVs. e

primary difference from the experiments of Cazenave and Zhang et al. lies in the adaptive and autonomous

approach to sampling the environment, and by using multiple AUVs in collaboration to capture synoptic

data sets. Also, instead of looking for characteristic vertical velocity modes of internal waves predicted by

ocean models (as this will vary from one body of water to the next and requires learning and running an

ocean model specific to each location) as done in [76], a direct signal processing approach is taken which

is similar to that in [77] to detect the primary frequencies and wavelengths of any potential internal waves

propagating along the thermocline interface. In the experiment described below, what Cazenave’s thesis work

identified as future work to make internal wave sampling with AUVs more autonomous, collaborative, and
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environmentally adaptive was essentially implemented.

On August 13, 2010, we conducted the Internal Wave Detection Experiment (a single-day experiment

in the larger GLINT ’10 experiment) in the northern coastal basin of the Tyrrhenian Sea bordered by the

Tuscan Archipelago and the western coast of Italy (see Fig. 3-12). Based on historical satellite data and

basic bathymetric data from this region in the summer, we expected to see a water depth of less than 200

m in the operation region shown in Fig. 3-12 (it was actually about 110 m deep at that location) and sea

surface temperatures of about 24 ◦C with temperatures around 20 ◦C at 20 m depth and around 14 ◦C near

the sea floor, suggesting summertime stratification that had the potential to sustain internal waves [78–80].

According to Turner [68], internal waves propagating along the oceanic thermocline typically have periods

of a few minutes, whereas deep ocean internal waves may have periods of up to many hours. us, it is

expected to see internal waves with periods of a few minutes along the thermocline in the Tyrrhenian Sea.

is location was chosen due to the availability of ship and AUV resources already deployed for the longer

GLINT ’10 AUV autonomy experiments. In addition, when researching the possibility of internal waves

in the Tuscan Archipelago basin, all but one scientist interviewed at the NATO Undersea Research Centre

(NURC) in La Spezia, Italy, claimed that observations of any internal waves in the basin were unlikely, but

none could provide any evidence for this. Also, no published literature was found on the subject of the

presence of internal waves in the Tuscan Archipelago basin, so it was decided to conduct the Internal Wave

Detection Experiment there.

4.5 A Novel Approach to Implementing Internal Wave Detection

During the Internal Wave Detection Experiment, the use of multiple AUVs communicating (fully through

acoustic communication while submerged) and interacting with each other and the environment autonomously

in real time to collect a synoptic environmental data set was demonstrated. e resulting environmental data

set would be otherwise incomplete using only one AUV. e two AUVs that were used each belonged to a

different research group and were of different manufacture. us, we were also able to demonstrate that not

only could multiple AUVs of different types work together using a common on-board autonomy structure,

but that both research groups (the Massachusetts Institute of Technology’s Laboratory for Autonomous Ma-

rine Sensing Systems from Cambridge, MA, USA, and the researchers and AUV team from NURC) could

collaborate their efforts to advance the quality and quantity of data collected.

Acoustic communication is used nearly exclusively during our AUV operations for AUV-to-AUV and

AUV-to-ship/lab (via gateway buoy or Towfish modem) scientific and navigational data exchange in virtu-
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ally real time (delays on the order of seconds to minutes). e software behind this is the Goby Under-

water Autonomy Project through the pAcommsHandler interface for the Mission Oriented Operating Suite

(MOOS) [6,7] autonomy system. A common suite of autonomy software is used on board each AUV and the

topside (operator) computers to tie together all of the pieces to allow the AUVs to collaborate autonomously

with each other and adapt to the environment. Both the MIT and NURC groups use the MOOS and the IvP

Helm, which work in conjunction to make the AUVs carry out a variety of autonomy behaviors. ese behav-

iors autonomously and adaptively reason over AUV heading, speed, and depth, depending on the behaviors

that the operators set as active on each AUV [1,2].

4.5.1 Hardware Platforms

To deploy the AUV missions (detailed below) for the Internal Wave Detection Experiment, two actively

propelled AUVs and an acoustic communications ‘gateway’ buoy were required. In addition, 10 thermistors

were attached to the wet line on the buoy to create a thermistor chain. e AUV command and control

center, or ‘topside,’ was located in the lab on the NRV Alliance, positioned within a 5 km range from the

deployed AUVs and buoy for the experiment’s duration.

e Bluefin 21” AUV named Unicorn is operated by our Laboratory for Autonomous Marine Sensing

Systems at the Massachusetts Institute of Technology (MIT). It has a 21” hull diameter and was ∼3 m in

length in the GLINT ’10 experiment configuration shown in Fig. 4-1. Unicorn’s speed range for best motion

control is 1.0–1.8 m/s, though it is often commanded to travel at 1.5 m/s (although this varies if Unicorn

is running according to autonomous adaptation behaviors) and has poor vertical stability below 1.3 m/s.

Navigation instrumentation for Unicorn consists of a Leica DMC-SX Magnetic Compass and a Crossbow

AHRS (attitude heading reference sensor) resulting in a navigational error of about 1%− 5% of the distance

traveled between acquiring GPS position fixes. is navigational error assumes Unicorn has constant DVL

(Doppler velocity log) bottom-lock, has completed a compass hard iron/soft iron calibration, has completed

a compass star maneuver (for compass calibration in the water), and the Bluefin software on board has done

some calibrations and mathematics to improve the navigational accuracy to this point. As such, Unicorn

must surface for a GPS position fix every 30 minutes, during which time it accumulates about 50–100 m of

navigational error. Other instrumentation onUnicorn during GLINT ’10 consisted of a CT sensor, a pressure

sensor, and an acoustic modem with transducer.

e Ocean Explorer (OEX) AUV named Harpo is operated by a group at the NATO Undersea Research

Centre (NURC) based in La Spezia, Italy. It has a 21” hull diameter and was 4.3 m in length in the GLINT
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Figure 4-1: e Bluefin 21” Unicorn AUV operated by the MIT Laboratory for Autonomous Marine Sensing
Systems.

’10 experiment configuration shown in Fig. 4-2. Harpo’s maximum speed is quoted at about 1.2 m/s, though

it is often run slower to conserve battery power. For navigation, Harpo runs an IMU (inertial measurement

unit) in conjunction with an acoustic DVL with bottom-lock that has little position drift (under 100 m) over

the course of the day (often about 7 hours of runtime) after completing an in-water navigation alignment each

morning [81]. is means that Harpo does not need to surface for GPS position fixes during experiments.

Other instrumentation on Harpo during GLINT ’10 consisted of a CTD sensor, and two acoustic modems

with transducers.

Figure 4-2: e NURC OEX-Harpo AUV used during GLINT ’10. is AUV communicates with the ship
and the MIT Unicorn AUV via acoustic communication (underwater). It also carries a GPS for positioning.

Both AUVs were equipped with a WHOI WH-BT-2 28 kHz acoustic transducer [8] and on board pay-
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load computers running Linux operating systems with MOOS and IvP Helm autonomy software and the

pAcommsHandler acoustic communication polling handler, similar to that used on the topside computers.

e MIT topside maintained radio frequency (RF) communication with the gateway buoy through a

Freewave antenna mounted outside the upper deck of the NRV Alliance and acoustic communication with

the AUVs via the acoustic modem transducer and hydrophone array hanging from the gateway buoy. e

NURC topside maintained acoustic communication with Harpo via a Towfish acoustic modem transducer

hanging in the water over the side of the ship. Both groups’ topside computers included a Google Earth

Ocean Viewer (GEOV) situational display of all AUVs, buoys, ships, and instruments in the water as in Fig.

3-13 [63], as well as the AUV command and control software (MOOS and IvP Helm) and pAcommsHandler

acoustic message encoding/decoding and queuing/sending code.

e gateway buoy was a Micro-modem VSW Modem Buoy built by the Woods Hole Oceanographic

Institution (WHOI) Acoustic Communications Group [8]. It was equipped with a GPS unit and Freewave

RF antenna on the surface expression and a hanging wet cable of approximately 30 m length equipped with

a 4-hydrophone array (for high-rate communication) and an acoustic modem transducer at the bottom. e

buoy itself was stationed at the center of the AUV loiter patterns during each mission.

e 10 thermistors were placed along the buoy’s wet cable at approximately 3 m spacing and sampled the

temperature every 30 seconds as a ground-truth for the presence of internal waves in the region.

4.5.2 AUV Missions

is experiment initially consisted of three AUV missions, however only the first two were completed due to

time constraints and operational difficulties. From an early morning ship CTD cast and some pre- and mid-

experiment yo-yos through the water column using Unicorn, the peak temperature change of the thermocline

was noted at 10 ±1 m depth throughout most of the day. It should also be noted that performing horizontal

loiter patterns on a radius of O(500 m) may be considered a point measurement relative to the scale of the large

basin bounded by the Tuscan Archipelago, though on a local scale the pentagonal shape of the loiters (each

of the 5 legs providing wave information from a different direction) has potential to enable us to determine

the direction of travel of internal waves. A screen shot of the situational display from Mission 2 is shown in

Fig. 3-13 to help visualize the mission layouts, and details of each mission are presented in Tables 4.1, 4.2,

and 4.3. Descriptions of the adaptive autonomy behaviors used follow in Section 4.5.3.
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Table 4.1: Mission 1

Description 60 m depth loiter & 10 m depth trail loiter

OEX-Harpo
Horizontal pattern pentagonal loiter, 550 m radius, clockwise travel
Depth 60 m, constant depth behavior
Speed 1.3 m/s

BF21-Unicorn

Horizontal pattern trail Harpo at 150 m range, 180◦ relative trail angle (directly be-
hind Harpo)

Depth at thermocline ∼10 m, adaptive constant depth behavior
(changed to 12 m, constant depth behavior during experiment)

Speed 1.3 m/s (adaptive to trail Harpo)

Table 4.2: Mission 2

Description
10 m depth loiter & adaptive yo-yo trail loiter (depth-adaptive to
thermocline)

OEX-Harpo
Horizontal pattern pentagonal loiter, 550 m radius, clockwise travel

Depth at thermocline ∼10 m, adaptive constant depth behavior
(changed to 12 m, constant depth behavior during experiment)

Speed 1.3 m/s

BF21-Unicorn

Horizontal pattern trail Harpo at 150 m range, 180◦ relative trail angle (directly be-
hind Harpo)

Depth
adaptive yo-yo (toggle depth) behavior within thermocline depth
range (calculated by pEnvtGrad [3]), beginning with 7–70 m dive
range

Speed 1.3 m/s (adaptive to trail Harpo)

4.5.3 MOOS Processes and IvP Helm Autonomy Behaviors

As previously mentioned, MOOS is the underlying autonomy software on board the AUVs and on the topside

operators’ computers. MOOS is essentially a publish-subscribe architecture that passes messages between

autonomy processes and behaviors on board each AUV, as well as through the water between the AUVs

and the topside computer [1]. e brains behind the autonomy lie in the IvP Helm code that is integrated

into MOOS to implement the use of autonomy behaviors (e.g., vertical yo-yos, trail-an-AUV, horizontal

racetracks, safety behaviors) on the AUVs. ese behaviors optimize over an AUV’s heading, speed, and depth
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Table 4.3: Mission 3

Description
concentric loiters at 10 m depth & depth-adaptive to thermocline
(adaptive yo-yo), outer AUV trails (not completed)

OEX-Harpo
Horizontal pattern pentagonal loiter, 450 m radius, clockwise travel
Depth at thermocline ∼10 m, adaptive constant depth behavior
Speed 1.0 m/s

BF21-Unicorn

Horizontal pattern trail Harpo at 150 m range, 315◦ relative trail angle (off Harpo’s
stern and to port, resulting in 550 m radius outer loiter)

Depth
adaptive yo-yo (toggle depth) behavior within thermocline depth
range (calculated by pEnvtGrad), beginning with 7–70 m dive
range

Speed 1.5 m/s (adaptive to trail Harpo)

to control its motion through the water, depending on what behavior is being followed [1, 2]. e MOOS

processes and behaviors most relevant to the Internal Wave Detection Experiment are described below.

Environmental Gradient Determination Process: pEnvtGrad

One process that is run using MOOS is the environmental gradient determination process, pEnvtGrad, used

to perform thermocline tracking and similar environmentally adaptive behaviors. is process—described in

detail in Chapter 3 and [3]—monitors and sorts an AUV’s CTD data, using the data to calculate vertical gradi-

ents of temperature (|∂T/∂z|) through the water column, the depth range (upper and lower bounds) covered

by the thermocline, and the depth at which the thermocline gradient is strongest (maximum |∂T/∂z|). ese

calculated values are then published to the MOOS database on the AUV to be used to guide environmentally-

focused adaptive behaviors, such as the adaptive yo-yo (toggle depth) behavior and the adaptive constant depth

behavior described below. pEnvtGrad is run concurrently with either of these depth-adaptive behaviors. e

calculated values are also used by other MOOS processes and behaviors that need to know environmental

information, and the thermocline boundary and peak gradient values are sent acoustically to other AUVs

as informational data and to the topside for monitoring by the AUV operators. pEnvtGrad also calculates

analogous values for profiles of sound speed and density, which are derived from temperature, salinity, and

pressure measurements. A conceptual sketch of the adaptive thermocline tracking process using pEnvtGrad

is shown in Fig. 3-1. e AUV performs an initial yo-yo dive from the surface to as deep as is allowable while

collecting temperature (and/or salinity and pressure) data. e water column is divided into many depth bins,
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over which temperature measurements are averaged, then the vertical gradients of temperature (∂T/∂z) are

calculated between depth bins. e magnitude of the average of the vertical temperature gradients is set as the

threshold value, and any depth bin in which |∂T/∂z| exceeds the threshold value is flagged as being within

the thermocline. us, an upper and lower depth bound for the thermocline region can be defined, as well

as the peak thermocline depth as the depth bin with the maximum |∂T/∂z|. More detail on the algorithms

used by pEnvtGrad and related field trials can be found in Chapter 3 and [3].

In the GLINT ’10 Internal Wave Detection Experiment, pEnvtGrad was employed byUnicorn in Mission

2 to obtain a three-dimensional data set of the temperature variations in the operational region, which will

ultimately be used to analyze internal wave amplitudes.

Adaptive Yo-Yo (Toggle Depth) Behavior

e adaptive yo-yo (toggle depth) IvP Helm behavior, BHV_ToggleDepth, controls the desired depth of

an AUV. It sets the desired upper and lower depth boundaries of a vertical yo-yo (or sawtooth) pattern for

the AUV based on the upper and lower depth boundaries of the thermocline, as determined by pEnvtGrad

(during the Internal Wave Detection Experiment). at is, as the thermocline boundary depths change over

the course of a thermocline tracking mission (as in Mission 2), BHV_ToggleDepth adapts the boundaries of

the AUV’s yo-yo to match those of the thermocline in real time by toggling the commanded depth between

these two bounds to ensure that the desired depths are achieved. BHV_ToggleDepth can be active while

performing any horizontal deployment pattern (e.g., racetrack, loiter, zigzag, track-and-trail).

Adaptive Constant Depth Behavior

e adaptive constant depth IvP Helm behavior uses BHV_ConstantDepth to set a single desired depth

for an AUV to swim at based on the peak thermocline depth (the depth of maximum temperature change

per unit depth) calculated by pEnvtGrad. As the peak thermocline depth shifts up or down in the water

column, the desired AUV depth commanded by BHV_ConstantDepth is automatically updated to match

it, autonomously adapting to the changes in the environment in real time. Unfortunately, swimming an

AUV at the peak thermocline depth results in very poor acoustic communications to and from that AUV, so

we opted to command the AUVs to a constant depth a couple of meters below the peak of the thermocline

with the non-adaptive mode of BHV_ConstantDepth such that we could continue to monitor the AUVs

regularly throughout the missions and so that the AUVs could communicate with each other to perform the

track-and-trail behavior.
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Track-and-Trail Mode

e track-and-trail mode puts the trailing AUV into ‘TRAIL’ mode, shadowing a leading AUV (or any leading

platform for which the trailing AUV receives position updates via acoustic messages) in the horizontal plane.

e relative bearing and trailing distance from the trailing AUV to the leading AUV must be set by the

operator, and the depth modes (e.g., constant depth, adaptive constant depth, adaptive yo-yo toggle depth)

of the two AUVs are set independently of each other and independently of being in TRAIL mode. e

leading AUV is not in TRAIL mode (unless it is trailing yet another platform) and leads the mission in the

horizontal plane.

pAcommsHandler

e Goby Underwater Autonomy Project’s MOOS interface, pAcommsHandler, controls the queuing and

sending of data through the underwater acoustic channel on all acoustically-communicating platforms in

this work and is crucial to all of the AUV missions. It encodes the data (science data, navigation data,

status data, etc.) on one node (AUV, topside, or gateway buoy), slots the encoded message into the polling

queue, initializes the acoustic transmission, and decodes the data as it is received on another node running

pAcommsHandler [6, 7]. is all occurs while missions are underway on the AUVs, resulting in virtually

real-time data transmission. is real-time communication is necessary when there are multiple AUVs in the

water that need to know information about one another to collaborate their motions and avoid collisions.

Finally, it is also important to the topside operators, who want real-time data updates to monitor the progress

and autonomy behaviors of the AUVs and to monitor the changes in their environment and scientific data

over the course of an AUV mission.

4.6 Data & Results

is section compiles not only results of the data processing to determine the internal wave frequencies and

whence they originated, but also some of the unexpected effects that the field deployment had on the planned

missions and resulting data. ese effects are largely due to physical constraints of the AUVs and instruments

and imposed effects of a dynamic ocean environment on conducting AUV missions. A brief description of

the oceanographic conditions on the day of the experiment is presented first.
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4.6.1 Oceanographic Conditions

Fig. 4-3 shows the morning and afternoon sound speed, temperature, salinity, and density profiles from a CTD

cast from the NRV Alliance on August 13, 2010, in the GLINT ’10 operation area. e water depth at the

CTD sample locations (and much of the operation area) was just over 110 m. Here a warm isothermal mixed

layer can be seen near the surface of approximately 10 m depth and 24 ◦C resulting in a strong thermocline

at about 10 m depth. e temperature then drops suddenly with depth to about 19 ◦C, then tapers off to

about 14 ◦C by 60 m depth, below which the water remains isothermal. e steep thermocline near 10 m

depth suggests that internal waves would be most prominently observable at that depth, if they existed. It

should be noted that the high frequency variations in salinity over depth are likely due to the sensitivity of the

conductivity sensor on the CTD to the rapid changes in temperature between 9 and 60 m. Sound speed was

calculated using the Mackenzie sound speed equation [65]. Density was calculated from the Unesco 1983

equation of state for sea water [67].

4.6.2 Mission Execution

At the beginning of the Internal Wave Detection missions, the shallow-depth AUV was commanded to swim

at the depth of the maximum gradient of the thermocline (∼ 10 m depth). is resulted in extremely poor

acoustic communication observed between the shallow AUV (Unicorn, for the first mission) and the topside

(via the gateway buoy) due to the fluctuating refraction direction of propagating sound waves in the steepest

region of the thermocline (depth of maximum |∂T/∂z|). With Unicorn traveling at 10 m depth, 3/14 (21%)

of the acoustic messages sent by Unicorn to the topside were received on the topside, while 19/38 (50%) of

them were received on the topside with Unicorn traveling at 12 m depth (acoustic communication perfor-

mance values based on rate 0 FH-FSK (frequency-hopped frequency shift keying) messages sent fromUnicorn

to the gateway buoy, data courtesy of Toby Schneider, MIT). Subsequent missions had the depth of the shal-

low (constant depth) AUV changed to swim at 12 m—just below the peak gradient of the thermocline—from

the start of the mission to avoid losing contact with that AUV.

e next challenge faced during deployment was a difference in speed ranges achievable by Unicorn and

Harpo. is was significant because, in order for Unicorn to trail behind Harpo without overtaking Harpo,

Unicorn had to slow to its minimum speed of 1.3 m/s while Harpo had to travel at 1.3 m/s, just above Harpo’s

maximum quoted speed. When Unicorn slowed below 1.3 m/s to remain at a safe distance behind Harpo, its

depth control degraded and it was observed to fluctuate involuntarily, or ‘porpoise,’ in depth by up to ±0.8

m in a periodic manner, adding a detectable temperature fluctuation to its data set. Upon processing, the
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Figure 4-3: Morning and afternoon sound speed, temperature, salinity, and density profiles from a CTD cast
from the NRV Alliance on August 13, 2010.

power spectral density peaks at the dominant frequencies of Unicorn’s porpoising (PSDDepth_Unicorn) were

subtracted from the temperature spectrum (PSDTemp_Unicorn) to minimize their influence on the results.

e resulting ‘pure’ temperature spectrum (PSDTemp_pure) is calculated as follows:

PSDTemp_pure = PSDTemp_Unicorn − PSDDepth_Unicorn. (4.1)

In the future, the porpoising could be avoided by adjusting the controller gains on Unicorn for smoother

operation at slower speeds (there was no access to this option or time to implement and test it for these

missions). Alternatively, a new loiter behavior could be written to incorporate a horizontal zigzag pattern on

each loiter leg to slow down Unicorn’s forward progress, but this option was not available at the time and
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the idea was to collect data along the 5 fixed headings of the pentagonal loiter to eventually back out the

direction of travel of any internal waves (beyond the scope of this thesis work). During Mission 2, Unicorn’s

minimum speed was not a problem because it was slowed in horizontal speed by the yo-yo depth excursions

it was performing.

During the second mission in which Unicorn was adapting its yo-yo depth range to focus around the

thermocline, hysteresis was observed in the temperature data (see Fig. 4-4). As Unicorn ascended through

the 12-meter depth mark, the temperature was consistently observed to be lower than the AUV’s subsequent

descent through the 12-meter depth mark. In Unicorn, the CT sensor is mounted on top, mid-way between

the nose and tail of the AUV, and the pressure sensor (giving depth readings) is mounted in the bottom of the

aft section of the AUV. us, if there were any appreciable lag between sensor readings of temperature and

pressure at 12 m, the temperature reading at 12 m would be expected to be higher on the ascent (CT sensor

at the mid-section is higher in the water column than the aft pressure sensor) and lower on the descent, which

is the opposite of what had been observed. e Sea-Bird Electronics, Inc., model SBE 37-SI CT sensor on

Unicorn has an acquisition time of 1.0–2.6 seconds/sample [82], which is comparable to the ∼1.5 s it takes

the pressure sensor to catch up in depth to where the previous temperature measurement was taken, which

may account for some of the discrepancy, and thus, the hysteresis. e resolution of the temperature sensor on

Unicorn is specified as 0.0001 ◦C [82], while the Paroscientific, Inc., Digiquartz depth sensor resolution is at

0.1 mm or better with and accuracy of 0.02% or less and hysteresis ≤ ±10 cm [83]. us, this temperature

fluctuation is not due to the resolution of the temperature or depth sensor. is leaves the only probable

explanation of the temperature fluctuation as hysteresis between the CT and pressure sensors due to the slow

acquisition time of the temperature sensor and the hysteresis in the pressure sensor. One way to adjust for

this in post-processing is to find the average temperature difference between each instance of shoaling and

diving through the 12-meter depth mark, and add (subtract) half the difference to (from) the temperature

measurement on the ascent (descent). e best way to prevent the majority of this hysteresis is to use a

pumped CTD (or CT plus depth) sensor instead of a flow-through CT sensor plus depth sensor. In this case,

the CT and depth sensors were the instruments available on the AUVs, and the mounting locations are fixed.

e thermistor chain was deployed throughout both successful AUV missions, however it was only sam-

pling at a 30-second interval compared to the approximately 10 Hz and 4 Hz sampling frequencies ofUnicorn

and Harpo, respectively. is means that the thermistor data spectra are resolved for a much lower frequency

range than the spectra from the AUVs’ data (see Figs. 4-7, 4-9, and 4-11), allowing us to detect any possible

lower-frequency internal waves.
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Figure 4-4: Hysteresis is seen in Unicorn’s temperature data (CTD_TEMPERATURE) while preforming yo-
yos through the water column. NAV_Z values are the negative of Unicorns measured depth values. e stars
signify temperature and depth measurements taken when Unicorn is at 12±0.1 m depth. It has been verified
that the ±0.1 m depth range allowed is not the cause of the hysteresis.

Finally, atmospheric weather conditions can also affect underwater measurements through surface inter-

actions of wind and waves. From approximately 0900–0930 UTC, or 1100–1130 local time (∼30–60 min

into Mission 1), a storm system passed over the ship and AUV operation area. Storms frequently sustain

higher winds than clear-weather conditions, and introduce an influx of fresh water to the otherwise salty sea

surface. Depending on the severity of the storm, its effects on the underwater environment may lag the storm

and persist from hours to weeks after the storm has passed. In this case, the storm only covered a local area

of about 200 km2 with squalls of very heavy rain, and it did not appear to cause an appreciable change in the

temperature at the thermocline immediately following the storm’s passing. Over the course of the the entire

day (end of Mission 1 and through Mission 2, about 4.5 hours), however, there was an overall decrease in

temperature of ∼0.5 ◦C by the end of Mission 2. It is unlikely that this temperature decrease is due to the

storm, since a deluge of 10 cm of water at 14 ◦C advected into the surface mixed layer (10 m deep, 24 ◦C)

over the storm’s area would only decrease the mixed-layer temperature by about 0.1 ◦C or less. us, it is

more likely that this drop in mixed-layer temperature is due to surface cooling as the post-storm sunshine

waned going into the mid-afternoon (local time).
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4.7 Analysis

Since the goal of the Internal Wave Detection Experiment was to detect the presence of internal waves in the

basin of the Tyrrhenian Sea bounded by the Tuscan Archipelago (or more specifically bounded by the small

GLINT ’10 operational area), the data analysis was approached from a signal processing standpoint once a

baseline for temperature fluctuations was established. In order to preserve any transient frequency peaks in

the temperature spectra that may be representative of soliton internal waves, no data windowing was done to

generate the Power Spectral Density (PSD) plots in this section.

Mission 1

Mission 1 lasted from 0833–0853 UTC with Unicorn at 10 m, and from 0913–1007 UTC with Unicorn at

12 m. Between these times, Unicorn was at 13 m for 20 min. However, at this time the 20 min data set is set

aside in favor of focusing on the time spans in which Unicorn was closest to the thermocline depth. Harpo

was at 60 m from 0818–1120 UTC.

From Mission 1, Harpo’s temperature data at 60 m depth (significantly below the thermocline region)

exhibited a baseline of small fluctuations in temperature (±0.3 ◦C) as seen in Fig. 4-5. ere is insufficient

data, given the temporal sparsity of temperature profiles passing through 60 m depth and the small temper-

ature change per unit depth at 60 m, to determine whether variations in these temperature data are due to

internal waves or not.

In contrast, Unicorn’s temperature data at 10 m and 12 m during Mission 1 revealed a number of peak-

energy frequencies above the noise floor in its PSD plots (Fig. 4-6). Due to the porpoising motion of Unicorn

during Mission 1, the PSD of Unicorn’s depth was subtracted from the PSDs of temperature to get the ‘pure’

temperature spectra at 10 and 12 m using Equation 4.1. e frequencies and PSDs of the pure temperature

spectrum’s local maxima at 10 m and 12 m depth are plotted as stars in Fig. 4-6. is is a satisfactory

approach, since the lack of windowing captures frequencies of internal wave packets or solitons that traverse

the operational region on a time scale significantly shorter than our overall mission length. To show the

time variation of the spectra, we have also analyzed the temperature measurements at 10 m and 12 m using

the spectrogram shown in Fig. 4-7. e broadband blips in energy at 30-minute intervals are a result of

Unicorn surfacing at those times to acquire a GPS position fix. ere appears to be a very weak but persistent

narrow-band peak around 4.0 Hz in the 12 m spectrogram, which is well above the possible internal wave

frequencies and probably due to sensor noise. Other potentially interesting peaks appear below 0.3 Hz at

about 650–1150 s in the 10 m spectrogram and at about 700–800, 1250, 1700–1800, 2000–2500, 2550–
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Figure 4-5: Temperature and depth times series of data from Harpo at 60 m depth during Mission 1. is is
used as a baseline measurement of the temperature fluctuations in the relatively density-homogeneous layer
well below the thermocline.

2650, and 2950–3000 s in the 12 m spectrogram, some of which may belong to internal soliton waves. None

of Unicorn’s low-frequency (<0.05 Hz) energy peaks in the spectrogram are well distinguished from one time

point to the next, thus it has been chosen to leave out a low-frequency zoomed-in version of this plot.

Mission 2

Mission 2 lasted from 1139–1250 UTC with Harpo at 12 m, though Unicorn tracked the thermocline adap-

tively from 1009–1327 UTC.

With a below-thermocline baseline data set established at 60 m during Mission 1, Harpo was re-tasked to

swim at 12 m depth for Mission 2 to track just below the peak thermocline gradient asUnicorn did in Mission

1. Unicorn was re-tasked to perform adaptive thermocline tracking while autonomously trailing Harpo. Due

to temporal separation of Missions 1 and 2, Harpo captured the passing of internal waves in its temperature

data at 12 m which exhibited somewhat different peak frequencies than captured by Unicorn in Mission 1.

A plot of Harpo’s pure temperature spectrum at 12 m is shown in Fig. 4-8 with the peak PSD frequencies

plotted as red stars. To show the time variation of the spectra, we analyzed the temperature measurements at

12 m in the form of the spectrogram shown in Fig. 4-9. Harpo did not need to surface for GPS position fixes,

so there are no broadband peaks at 30-minute intervals like the ones seen for Unicorn in Fig. 4-7. ere again

appears to be a very weak but persistent narrow-band peak, only this time it is around 1.7 Hz (beyond the axes
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Figure 4-6: Power Spectral Density plot from Unicorn’s temperature data (depth variations removed) while
traveling at 10 m (top plot) and 12 m (bottom plot) depth. Red stars correspond to local peak frequencies in
the data spectra.

of this plot, to highlight distinct lower-frequency peaks). Again, this peak is probably due to sensor noise.

Other potentially interesting peaks appear below 0.015 Hz at about 500, 1300, 1800, 1900, 2200–2400,

2600, 3100, 4500, 5100, 5600, 6300, and 7400 s, some of which may belong to internal soliton waves.

ermistor Chain

A set of ten thermistors was deployed attached to the wet cable of the gateway buoy, positioned at the center

of the AUV loiter pattern. e thermistors were at depths of 5, 8, 11, 14, 17, 21, 24, 27, and 30 m, with the

tenth thermistor placed 0.5 m above the modem transducer. Since the precise depth of the tenth thermistor

was not recorded, and the data set is similar to that of the 30 m thermistor only flatter (more isothermal) and

about 2 ◦C cooler, it has been chosen to ignore this thermistor in our analysis. e thermistor chain began

recording at 0600 UTC with a sampling frequency of 1/30 Hz, and continued to record the temperature

through its recovery at about 1415 UTC. e temperature data for the upper 9 thermistors are shown in

Fig. 4-10, ordered from shallowest (top) to deepest (bottom), plotted over time. Fluctuations in temperature

are most prominently observed in the data from the thermistor at 11 m depth (closest thermistor to the

thermocline depth), which may be indicative of internal waves propagating along the thermocline.

e spectrogram of the 11 m thermistor’s temperature was plotted over varying time spans corresponding
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Figure 4-7: Spectrogram of Unicorn’s temperature data (depth variations removed) while swimming at 10 m
(top plot) and 12 m (bottom plot) depth. Hamming window length: 256 samples. Color axis units: dB.

to when Unicorn was swimming at 10 and 12 m depth and when Harpo was swimming at 12 m depth (Fig.

4-11). ese were visually compared to the spectrograms of the AUV-collected temperature data, and there is

general qualitative agreement in times indicating low-frequency peaks, despite differing temporal resolutions.

is range of temporal resolutions is due to the difference in sampling frequencies between the AUVs (about

4 Hz for Harpo and 10 Hz for Unicorn) and the thermistors (1/30 Hz).

e PSD plots of the temperature data for the 11 m thermistor are shown in Fig. 4-12, with the peak

PSD frequencies plotted as red stars. Here dominant internal wave frequencies are seen between 10−3 and

10−2 Hz (periods of 17–1.7 min, respectively) in all of the spectra that are similar to peaks in the AUVs’

temperature spectra, while the full-length thermistor spectrum (top plot) also shows low-frequency peaks

in the 10−4–10−3 Hz range (periods of 170–17 min, respectively). e time-windowed thermistor spectra

corresponding to times when the AUVs were at 10 and 12 m all have dominant frequencies of approximately
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Figure 4-8: Power Spectral Density plot from Harpo’s temperature data (depth variations removed) while
traveling at 12 m depth. Red stars correspond to local peak frequencies in the data spectrum.

2×10−3, 3×10−3, and 6×10−3 Hz (periods of about 8, 6, and 3 min, respectively), strongly indicative of

internal waves.

Buoyancy Frequency Analysis

It was chosen to first look at buoyancy frequency analysis with the dispersion relation (Equation 4.2) to

solve for internal wave wavelength. Buoyancy frequency analysis states that the density difference over the

thermocline interface supports its own ‘buoyancy’ frequency at which the interface is most likely to sustain

internal waves [68]. Equation 4.2 approximates the baroclinic or internal mode of the vertical profile of

the Tuscan Archipelago basin as a finite layer overlying an infinitely deep layer, with a density discontinuity

(thermocline/pycnocline) at the interface between the two layers, giving

ω2 =
g k (ρ− ρ0)sinh(k h)

ρ cosh(k h) + ρ0 sinh(k h)
, (4.2)

where ω is the angular frequency in radians/s, g is 9.81 m/s2 (gravitational acceleration), ρ0 is the density

above the pycnocline, ρ = ρ0 + ρ′ is the density below the pycnocline, ρ′ is the density change across the

pycnocline in the direction of increasing depth, k is the wavenumber in radians/m, and h is the pycnocline

depth in m (∼11 m, experimentally determined). is form of the dispersion relation also assumes that there

is a free surface, which gives rise to a barotropic or surface mode that is beyond the scope of this chapter.

See [69] for more details on this form of the dispersion relation.

Given the temperature and density profiles taken the day of the experiment (Fig. 4-3), the thermocline

and pycnocline depths were approximated as being equal and these terms are used interchangeably in this

section. Starting from Equation 4.3 below (the vertical component of the linearized Boussinesq equations for
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Figure 4-9: Spectrogram of Harpo’s temperature data (depth variations removed) while swimming at 12 m
depth. Hamming window length: 256 samples. Color axis units: dB.

an inviscid liquid), we can define the Brunt-Väisälä frequency, or buoyancy frequency, N as in Equation 4.4,

∂2η

∂t2
=

g

ρ

∂ρ0
∂z

η (4.3)

N =

(
−g

ρ

∂ρ0
∂z

)1/2

(4.4)

where η is the amplitude of the internal wave, ρ = ρ0 + ρ′ is the density of the fluid layer below the

thermocline, and N (= ω) is an angular frequency of simple harmonic motion. Further details on the

physics behind this buoyancy analysis can be found in [68, 69].

Using the Unesco 1983 equation of state for sea water [67], density was calculated based on the tem-

perature, salinity, and pressure data collected across a 12 m depth over the course of the field experiment.
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Figure 4-10: Time series of temperature from the upper 9 out of 10 thermistors on the thermistor chain (the
deepest thermistor is not shown since its precise depth was unknown). Increased temperature fluctuations are
evident at the 11 m deep thermistor, closest to the 10 m thermocline depth.

From the density and depth data, the partial derivative in Equation 4.4 is estimated as a finite difference

over the pycnocline depth for both the morning and afternoon density profiles and solve for the bounding

values of Nmorning = 0.05747 rad/s (linear frequency of fmorning = 0.009146 Hz, period of Tmorning =

109.34 sec) and Nafternoon = 0.05176 rad/s (linear frequency of fafternoon = 0.008238 Hz, period of

Tafternoon = 121.38 sec). Since the CTD cast data that these values are calculated from occurred just before

and after the Internal Wave Detection Experiment on August 13, 2010, the calculated buoyancy frequency

values can be taken as the upper and lower bounds for that day. e morning and afternoon linear buoyancy

frequencies are plotted on the PSD plots in Figs. 4-6, 4-8, and 4-12. According to Kundu and Cohen [69],

internal gravity waves are only sustainable below the buoyancy frequency along the interface (pycnocline).

us, we will disregard all peak frequencies detected above fmorning = 0.009146 Hz. It is evident that there

are a number of small peaks near and just below the buoyancy frequency in the AUV and thermistor PSD
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Figure 4-11: Spectrograms of the temperature data from the thermistor at 11 m. From top to bottom:
spectrogram of the full time span while the thermistor chain was in the water (Missions 1 and 2), the time
span while Unicorn was at 10 m (Mission 1), the time span while Unicorn was at 12 m (Mission 1), and the
time span while Harpo was at 12 m (Mission 2). No windowing. Color axis units: dB.

plots, strongly suggesting that buoyancy-supported internal waves propagated through the operation region

during the experiment.

e dispersion relation, Equation 4.2, can now be used (with ω = N , hmorning = 11.79 m, and

hafternoon = 10.39 m) to solve for k. Solutions for wavelength (λ) and wave phase speed (cp = λf ) follow

naturally from Equations 4.5 and 4.6 shown below.

λ =
2π

k
(4.5)
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Figure 4-12: PSDs of the temperature data from the thermistor at 11 m. From top to bottom: spectrogram
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k =
ω

cp
(4.6)

Using a graphical solution method due to the nonlinear nature of the dispersion relation, the values for

k, λ, and cp of internal waves were estimated as summarized in Table 4.4, where cp is the maximum phase

speed. In shallow water, the dispersion relation may often be simplified further by assuming that any waves

supported on the interface between two fluids of different density will have wavelengths much longer than the

average water depth, H = 150–200 m (i.e., λ ≫ H). However, the shallow-water (long-wave) approximation

cannot be assumed here, since λ is less than the water depth by an order of magnitude (and on the order of

the pycnocline depth), based on the unsimplified dispersion relation in Equation 4.2.

With the maximum phase speed, cp, of the buoyancy-driven internal waves calculated to be 0.09315 m/s,

85



Table 4.4: Expected internal wave values calculated using the buoyancy frequency

Time
(UTC)

N (rad/s) f (Hz) T (s) h (m) k (rad/m) cp (m/s) λ (m)

05:26:33 0.05747 0.009146 109.34 11.79 0.6169 0.09315 10.18
13:55:15 0.05176 0.008238 121.38 10.39 0.6161 0.08402 10.20

the temperature sensors on both Unicorn and Harpo (and the thermistor chain) had ample time (∼3 hrs per

wave) to gather enough data to resolve the internal wave motion through the 1.1 km diameter of the loiter.

In the case of Mission 1, Unicorn was at 10 m for 20 min and at 12 m for 54 min, and for Mission 2, Harpo

was at 12 m for 71 min.

Given the very good agreement between the theoretical and data-derived peak wave frequencies (from

both the AUVs’ and the thermistor’s data), along with the slow ∼9 cm/s phase speed and ∼10 m wavelength

of predicted internal waves near the thermocline depth (10–12 m), it is reasonable to conclude that internal

waves were positively detected near and below the theoretical buoyancy frequency along the thermocline in

the AUV operation region on August 13, 2010, with most frequency components in the 10−3–10−2 Hz

range.

Helmholtz-like ‘Basin Resonance’ Analysis

Another possible source of internal waves at the depth of the thermocline may be the Tuscan Archipelago

basin acting as a Helmholtz resonator due to flow through the inlets to the basin that lead out to the larger

Northern Tyrrhenian Basin (see Fig. 3-12). e canonical example of Helmholtz resonance is the acoustic

tone produced by blowing air across the neck of a bottle. e difference in our case is that the restoring force

is hydrostatic pressure rather than compressed air, thus it was chosen to call this ‘Basin resonance’. As water

depth fluctuates with water flowing into and out of the basin, it is possible that a low-frequency wave mode

is excited along the thermocline as well. e openings, or inlets, where the forcing of water (and highest flow

velocities) into and out of the basin may occur are the numbered segments in Fig. 3-12. e basin inlets

are modeled as resonating masses, and the basin body is approximated to be at rest. Equations 4.7 and 4.8

describe this motion as follows:

minletẍ+∆PAinlet = 0, (4.7)
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∆P =
ρgAinletx

Asurf
, (4.8)

where x is the vertical displacement of a fixed-temperature water parcel from the thermocline depth, minlet

is the mass of an inlet, Ainlet is the cross-sectional area of an inlet, ∆P is the pressure change due to the basin

changing depth, Asurf is the surface area of the basin, g = 9.81 m/s2 is the gravitational acceleration, and

ρ is the average water density. is is analogous to a simple harmonic oscillator described by the differential

equation

mẍ+ kx = 0, (4.9)

where k = keff is the effective spring constant of the basin given by

keff =
ρgA2

inlet

Asurf
. (4.10)

e natural (resonant) frequency of a harmonic oscillator is ω2
0 = k/m. us the basin is expected to

resonate at

ω0 =

(
gAinlet

AsurfLinlet

)1/2

, (4.11)

where Linlet is the length of an inlet. To detect the contributions of different combinations of the five inlets,

the ratios, Ainlet/Linlet, of the inlet cross-sectional area to inlet length are averaged over the selected inlets

as in Equation 4.12, where the subscript j ∈ {1, 2, 3, 4, 5} (some combination of any of the 5 inlets), giving

ω0 =

(
g

Asurf

(
Ainletj

Linletj

)
avg

)1/2

. (4.12)

If the basin is estimated to cover an area of Asurf = 3880 km2 (estimated using Google Earth [64] in

conjunction with a number of Internet-based area calculator tools for KML files) and the the inlet dimensions

are as given in Table 4.5, the resulting Basin frequencies are calculated by fBasin = ω0/2π.

Fig. 4-13 summarizes the Basin resonance frequencies compared to the low-frequency peaks in the AUVs’

and thermistor’s temperature data near the thermocline. Looking at the internal wave frequencies derived from

the Unicorn and Harpo data, no evidence of Basin resonance can be seen in the waves along the thermocline.

is is not surprising, given that the AUV missions ranged from 20 to 71 minutes in duration, which were
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Table 4.5: Inlet dimensions corresponding to inlets in Fig. 3-12, estimated using Google Earth [64]

Inlet Width (m) Depth (m) Area, A (m2) Length, L (m)

1 7933 10 79330 4309
2 12635 40 505400 2710
3 28944 120 3473280 4700
4 42670 450 19201500 6000
5 13700 80 1096000 9350

barely long enough to span most of the possible Basin resonance periods due to certain inlets. When compared

to the frequencies in the 11 m thermistor data (covering over 8 hours), however, there are a number of low-

frequency peaks in the vicinity of the Basin resonances. us, it is very likely that some evidence of Basin

resonance is being observed in the thermistor’s temperature spectrum at 11 m depth.

It is important to note that the calculated Basin frequencies in Fig. 4-13 may shift depending on the

estimate of the basin surface area. us, the thermistor markers tend to align with different, but neighboring,

Basin frequencies if the surface area is estimated differently. With an estimated Asurf = 3880 km2, an

alignment is observed with the resonant frequency imparted by inlets 2, 3, and 4 combined (see Fig. 4-13).

is alignment is not surprising, given that inlets 2, 3, and 4 are the widest inlets and are the inlets most

exposed to flows through deep channels outside the Tuscan Archipelago basin. is implies that inlets 2, 3,

and 4 would be the most likely combined driving force for Basin resonance, and this is substantiated by the

data.

4.8 Receiver Operating Characteristic Curves

Receiver operating characteristic (ROC) curves may be applied to the thermocline tracking data from the In-

ternal Wave Detection Experiment as a measure of thermocline tracking performance. ese curves compare

the probability that the AUV performing thermocline tracking will correctly detect and track the thermocline

location (probability of detection, PD) to the probability that it will falsely detect and track the thermocline

(probability of false alarm, PFA), for a variety of threshold values. e ROC curve for thermocline tracking is

generated based on the probability density functions (PDFs) of the magnitudes of the temperature gradients

(|∂T/∂z|) in vertical space at the thermocline while thermocline tracking (signal plus noise) and away from

the thermocline (noise), at a depth of 60 m. From these PDFs, the PD and PFA can be determined as the area

under the curves for the within-thermocline and away-from-thermocline AUVs, respectively, to the right of
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Figure 4-13: Basin resonance frequencies, compared to peak frequencies from the AUVs’ and thermistor’s
temperature spectra near the thermocline. e lines represent the Basin resonant frequencies of the Tuscan
Archipelago basin based on the estimated basin surface area of Asurf = 3880 km2. Each line accounts for
a different subset of inlets to the basin in order to determine which inlets play a dominant role in the Basin
resonance. e shaped markers highlight the temperature spectra peak frequencies in the Basin resonance
range detected in the Unicorn, Harpo, and thermistor thermocline data. Note that Unicorn detected no
frequencies near the Basin resonance. Also note that the calculated Basin frequencies may shift depending on
the estimate of the basin surface area. us, the thermistor markers tend to align with different neighboring
Basin frequencies if the surface area is estimated differently.

a threshold temperature gradient value. e threshold value is selected based on the temperature change over

each yo-yo leg and on the yo-yo amplitude. Fig. 4-14 plots the resulting ROC curve for thermocline track-

ing. is suggests that the thermocline tracking method used here can have a decent probability of detection

(80%) with a reasonably small probability of false alarm (23%).

4.9 Conclusion

is chapter is centered around the Internal Wave Detection Experiment using AUVs in the Tuscan Archipelago

basin that took place on August 13, 2010. Experiment design, hardware and code for implementation, re-

sulting field trials, and post-deployment data results and analysis are discussed. is experiment took a novel

approach to internal wave detection by tasking two autonomously collaborating AUVs to autonomously adapt

their motion in relation to each other and to their dynamic environment, resulting in greater efficiency of

sampling given a restrictive mission duration and in collection of fully synoptic data sets capturing internal

waves.

e Internal Wave Detection Experiment involved two AUVs running the MOOS autonomy system

89



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curves of Binned |dT/dz| from Thermocline Tracking, bins = 0.1m depth

P
F A

P
D

 

 

P
D

: Unicorn Adaptive Thermocline Tracking Yoyo

P
F A

: Harpo at 60m (away from thermocline)

P
D

: Unicorn Adaptive Thermocline Tracking Yoyo

P
F A

: Harpo at 12m (at thermocline)

P
D

: Unicorn Adaptive Thermocline Tracking Yoyo

P
F A

: Unicorn at 12m (at thermocline)

Baseline

Figure 4-14: ROC curves of the performance of the adaptive thermocline tracking method from Chapter 3
used during the Internal Wave Detection Experiment. e magenta curve compares the |∂T/∂z| thermocline
tracking signal to swimming at a constant depth of 60 m, which is well below the depths where a thermocline
signal is present. is provides a clear performance evaluation of thermocline tracking by comparing the
thermocline tracking signal plus noise to the thermal noise down at 60 m depth. e blue and green curves
compare thermocline tracking to swimming at 12 m depth, just below the thermocline. As expected, it is
harder to positively detect the thermocline due to an increase in false alarms where there is greater background
noise through fluctuations in temperature. e red curve is a baseline for comparison, where the probability
of detection, PD, is equal to the probability of false alarm, PFA. Curves following the left and top edges of
the plot exhibit ‘better’ performance.

guided by the IvP Helm. ese AUVs used acoustic communication during the experiment to send and receive

real-time data and status updates, which they used to autonomously coordinate their motions in the horizontal

plane through a track-and-trail behavior. In the vertical axis, the Unicorn AUV autonomously adapted to

changes in the environment while the Harpo AUV (which would have also adapted if the thermocline depth

allowed for more reliable acoustic communication) swam just below the thermocline. A thermistor chain was

also deployed for the duration of the experiment.

In examining the resulting AUV and thermistor data sets from this experiment, there is strong evidence

of internal wave propagation along the thermocline near the buoyancy frequency of the thermocline inter-

face (Nmax = 0.05747 rad/s). Internal waves with nearly identical and lower frequencies were seen in the
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Unicorn, Harpo, and thermistor data collected near the thermocline depth. e 12 m AUV and 11 m ther-

mistor results suggest the presence of buoyancy-supported internal waves along the thermocline (about 11 m

depth) in the AUV operation region throughout the day on August 13, 2010. is conclusion may also be

extrapolated to say that internal waves are likely detectable along the thermocline throughout the rest of the

Tuscan Archipelago basin during the summer, when the thermocline is fairly well defined. Given the lack of

previous literature regarding internal waves in the Tuscan Archipelago basin, this finding is rather significant

to the scientific groups that conduct acoustic (and other) experiments in this region.

Internal waves due to Basin resonance (a concept similar to Helmholtz resonance) in the basin were

also examined. e results suggest that both single inlets and combinations of inlets (see Fig. 3-12 and 4-

13) excite internal wave frequencies within the basin that are detectable by a thermistor chain (and AUVs)

deployed for long (multi-hour) missions. However, it is likely that inlets 2, 3, and 4 combined contribute a

stronger resonance to the internal waves in the basin due to deep topography and currents just outside these

basin inlets. is point is reinforced by the close alignment of one thermistor-detected frequency with the

Basin resonance frequency from inlets 2, 3, and 4 combined. is supports the theory of the presence of

low-frequency internal waves due to Basin resonance in the Tuscan Archipelago basin.

An ROC (Receiver Operating Characteristic) curve performance analysis of the thermocline tracking

method employed in the Internal Wave Detection Experiment suggests that this thermocline tracking method

can have a decent probability of thermocline detection and tracking (80%) with a reasonably small probability

of false alarm (23%). Although this is not ideal, it is very reasonable given the dynamic environmental

conditions.

Overall, this experiment was novel in the internal waves data set it captured in the Tuscan Archipelago

Basin and its use of multiple AUVs collaborating autonomously with each other and autonomously collect-

ing environmentally-adaptive data sets for more synoptic spatio-temporal data coverage. Not only does this

increase the efficiency of data collection (environmentally-adaptive autonomy behaviors allow collection of

the exact data set needed without a human in the loop), but also the ability to collect the specific data set of

interest to the researcher by using AUVs running autonomy. e use of intelligent acoustic communication

networking also allows the AUV operators and scientists to monitor (from the topside on a ship or shore) the

data collected in near real time. ese abilities are invaluable when ship time for data collection is expensive,

and provides encouragement that improvements in AUV autonomy, adaptive environmental sampling tech-

niques, and acoustic communications will enable a further reduction in necessary ship time for scientists and

engineers to collect the specific data sets required in the future.
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4.10 Looking Ahead

4.10.1 Further Data Analysis & Future Experiments

Future work relating to this data set could include attempting to tease out the general direction of internal

wave propagation from the AUVs’ temperature data when divided into the five separate headings (one for

each leg of the pentagonal loiter). If the peak frequencies of the temperature spectra increase or decrease

slightly as the heading changes, the highest observed frequencies will correspond to the AUV heading nearly

opposite of the direction of internal wave propagation, and the lowest observed frequencies will correspond

to the AUV heading nearly perpendicular to the direction of internal wave propagation. If the phase speed

of the internal waves (propagating as a soliton or a larger group of waves) is on the order of the speed of the

AUVs or less, as seen in this experiment, the AUVs most likely intersected the internal waves enough times

at each of the 5 headings to be able to solve this problem. However, this may prove an unsolvable challenge

in the case of swiftly (>10 m/s) propagating internal wave solitons, since solitons would only appear for brief

times in the AUV data.

In addition, internal wave amplitude may be estimated by examination of the depth variation of isotherms,

particularly those concentrated near the thermocline depth in shallow water. As an internal wave passes a given

point in the horizontal plane, the isotherms near the thermocline will rise or drop in depth by some distance

indicative of the amplitude of the internal wave. To collect a proper data set for such a measurement, an AUV

must collect temperature data in the depth range around the thermocline as the internal waves pass by. is

is done (using the autonomy setup) by employing the adaptive thermocline tracking behavior as Unicorn did

in Mission 2 of the Internal Wave Detection Experiment. is, however, is beyond the scope of the work

presented in this thesis.

It would also be ideal to have another opportunity to execute all three missions of the Internal Wave De-

tection Experiment, again with at least two AUVs. It would be beneficial to collect environmental data sets for

all three missions similar to those already collected, but over longer missions such that multiple hours or days

worth of environmental data could be examined for persistent and/or longer period internal waves (including

any tidal effects). Also, the goal of Mission 3 was to have the AUVs coordinated in motion (particularly coor-

dinated in heading) through autonomous collaboration but spatially distributed in the horizontal plane such

that internal wave speed could be directly estimated from the time it takes a wave crest to pass between the

two AUVs on the same heading. Further analysis of data from Missions 1 and 2 in this experiment may reveal

similar results for the sections of each loiter leg in which both Unicorn and Harpo have the same heading.
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Finally, it would be important to quantify the hysteresis between the temperature and pressure sensors on

Unicornwhile yo-yoing. At the very least, a corrective adjustment should be made in the future to the resulting

data sets. is will include accounting for the position difference between the CT sensor in the center section

of Unicorn and the pressure sensor in its aft section (about 1.5 m away) and matching Unicorn’s temperature

values as it passed through the 12 m depth (during Mission 2) to those of Harpo at 12 m (also accounting for

the fact that Unicorn was about 150 m behind Harpo).

4.10.2 Broader Applications

is chapter has proven that multi-AUV collaboration and adaptive autonomy techniques may be employed

to quickly and efficiently detect features such as internal waves within a relatively small operation region.

e next step in the process of developing autonomous and adaptive environmental sampling techniques for

AUVs would be the process of designing and writing IvP Helm autonomy behaviors that queue off of changes

in the environment to guide AUVs (solo or multiple) in actively tracking mesoscale and larger features over

3D space and time. To this end, we have developed 2D (horizontal plane) and 3D front tracking behaviors

that allow an AUV to track along the boundary of a oceanographic front. ese AUV behaviors, which are

discussed in detail in Chapter 5, have been tested in virtual experiments using a 4D MSEAS dynamic ocean

model environment and, in some cases, coupled with a follow-the-leader behavior designed for coordinated

front tracking using multiple AUVs for improved sampling coverage.
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Chapter 5

Front Tracking

5.1 Introduction

Oceanic fronts, similar to atmospheric fronts, occur at the interface of two fluid (water) masses of varying

characteristics (e.g., temperature, salinity, density, and/or currents). ese fronts often also occur in regions of

rapidly changing bathymetry, such as coastal shelfbreaks, where water from the deep ocean comes in contact

with coastal waters. At these frontal interfaces there may be increases in biological activity, interesting flow

patterns, convergence zones where pollutants gather, or other water property variations [43,44]. In particular,

the meeting of two water masses at a front is an important region to study, as the difference in density between

the two water masses result in vertical velocities that cause nutrients to be cycled up from deep in the ocean.

is nutrient upwelling plays a critical role in supporting biological productivity near the ocean’s surface.

Where there are such quantifiable physical, chemical, or biological changes in the ocean environment, it is

possible—with the proper instrumentation—to track, or map, the front boundary.

In the case of a front boundary defined primarily by a locally high temperature or salinity gradient, it

is possible to use a conductivity-temperature-depth (CTD) sensor to sample the front. CTD sensors can

be compact enough to mount on board AUVs and other small oceanographic platforms. Past methods for

sampling along and across ocean fronts have included shipboard sampling transects, moored arrays of instru-

ments, and remote sensing via satellites. Only recently have various robotic marine platforms been employed

for this purpose. Each of these methods has benefits and drawbacks in terms of sampling resolution and

efficiency, synopticity across a range of spatiotemporal scales, and resources necessary to perform sampling

surveys. As described by He et al. [43], the field is moving toward employing new AUV fleets for more synop-

tic and persistent monitoring of certain U.S. coastal regions, such as at the Pioneer Array south of Cape Cod,
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MA, but the infrastructure has yet to be completed. In addition, environmentally adaptive autonomous sam-

pling methods for the AUVs to be deployed at the Poineer Array and similar coastal nodes are not currently

being considered for this application due to the increased computational and technological complexity over

preplanned transects. As a result, environmentally adaptive autonomous sampling methods are still in the

development and testing phases for the smaller AUV groups such as ours that are working on the problem.

e approach and method employed for this work is described in this chapter.

5.2 Goals

In this chapter, a couple of novel methods for environmentally adaptive autonomous sampling and track-

ing along an ocean front are proposed and implemented using AUVs by employing the AAEA method de-

scribed in Chapter 3. e vehicles used for this work run the MOOS and IvP Helm autonomy software on

board, including numerous autonomy behaviors that control the AUVs’ safety, maneuvering, and sampling

paths. A spatiotemporally dynamic MIT MSEAS (Multidisciplinary Simulation, Estimation, and Assimila-

tion Systems) model of the Mid-Atlantic Bight (MAB) region off the east coast of the U.S. is used as a testing

environment for virtual experiments, allowing the evaluation of these new AUV front tracking methods.

e results from numerous AUV front tracking virtual experiments (2D) at constant depth are presented,

including performance metrics comparing the adaptive front tracking to preplanned survey methods. A

couple of behaviors for coordinating multiple AUVs performing 2D front tracking (to retain synopticity and

increase spatial coverage) are explored, as well as a behavior for solo AUVs to perform 3D front tracking

(to sample the front in the depth dimension, as well as the horizontal plane), and initial results from virtual

experiments are presented.

e specific goals here are to apply AAEA and Feature Tracking to adaptively sample along and across an ocean

front using only the data collected on board AUVs, gathering a synoptic data set of the position of the front over time

while improving sampling efficiency and density over current preplanned AUV sampling surveys.

5.3 Literature

e need for AUV front sampling methods is specifically motivated by He et al. [43, 44], where they note

that shelfbreak environments in particular, such as the MAB, are difficult to study with the currently used

older methods due to their highly dynamic spatiotemporal characteristics. Older methods of front detection,

observations, and sampling have included satellite remote sensing looking at characteristics such as sea surface
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temperature [84–86] and shipboard sampling [87–89]. More recently, the use of AUVs has begun to emerge as

a leading technology for front sampling. Gottlieb et al. have developed a Momentum-Based Front Detection

algorithm for use on AUVs [90], while Reed & Hover are working on a system for a network of AUVs to track

a front by distributing multiple AUVs at fixed points along a front line and having them follow short across-

front transects back and forth as the front line fluctuates, modeling it as a coupled linear time-invariant (LTI)

system [91]. Cannell & Stilwell present AUV methods for static front and plume mapping using a fixed-

path parametric mapping technique and a non-parametric boundary tracking technique that first classifies

the entire feature’s boundary with a probability distribution and then plans the AUV’s path to zigzag along

the predetermined boundary [92]. Finally, Zhang et al. have used AUVs to autonomously and adaptively

detect and track a coastal upwelling front in Monterey Bay, CA, by defining the frontal boundary based on

the horizontal gradient of the vertical temperature distance between deep and shallow depths [93, 94]. e

primary difference between the approach of Zhang et al. and that described in this chapter is that the AUV’s

tracking of the coastal upwelling front was directly across-front at a single location along the front (including

depth profiles), with no along-front component.

5.4 Novel Concepts & Approach

e approach to front tracking developed here is a novel combination of the real-time adaptive autonomy

approach presented by Zhang et al. [93, 94] and the along-front zigzag method presented by Cannell &

Stilwell [92], resulting in two primary autonomous and adaptive front tracking methods: 2D front boundary

tracking with a zigzag pattern and 3D front interface tracking with a horizontal helix pattern. Techniques

and autonomy behaviors for multi-AUV front tracking are also addressed, where the method developed in

this work encourages travel in the along-front direction as well as across-front mapping.

Following the aforementioned goals, the front tracking methods proposed here emphasize reduced al-

gorithm and implementation complexity to improve robustness for deployment in field experiments in the

foreseeable future. In this case, temperature changes are used as the frontal indicator due to the measurement

stability and physical size of temperature sensors available for small sub-sea platforms. Temperature, unlike

density, can be measured directly, and many small salinity (conductivity) sensors are sensitive to temperature

changes, thus making temperature the more robust characteristic to measure.

e front tracking behaviors described in this chapter focus on tracing the front boundary with one or

more AUVs in either 2D (constant depth) or 3D space. e underlying behavior for this employs an initial

survey of the area followed by a zigzagging motion (in the horizontal plane) back and forth across an isotherm,
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where the isotherm is detected and selected by the AUV as the temperature of the front boundary. As the AUV

is constantly collecting temperature and position data, it constantly updates the frontal isotherm temperature

and the estimate of the local front position. With these continual updates, the AUV is able to adapt its motion

to track the front locally, synoptically sampling along the front and maintaining coverage across the front,

even as the front moves in space and time.

e single-AUV 2D (zigzag) front tracking can be directly extrapolated into 3D as a horizontal helix

behavior, where the long axis of the helix is at a constant depth and aligned in the horizontal plane with the

local front line estimate (see Fig. 5-1), as in the 2D case.

3D Front Tracking: Helix
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Figure 5-1: A conceptual sketch of the horizontal helix pattern used for 3D front tracking. e helix’s center
axis is at a fixed depth, aligned with the locally estimated front boundary line (dashed straight line) in the
horizontal plane.

To increase spatial coverage in the (horizontal) along-front direction, multiple AUVs may be employed

in a follow-the-leader fashion. In this chapter, this multi-AUV method is only coupled with the single-AUV

2D zigzag method (Fig. 5-2) in virtual experiments, but it could also be coupled with the single-AUV 3D

helix method mentioned above.

To extrapolate to a multi-AUV mission in 3D, either the 2D zigzag or 3D helix can be performed simul-

taneously (but separately) by all AUVs, where each AUV is assigned a different (central) depth to track at and

all AUVs are roughly aligned in a vertical line. 3D multi-AUV missions are beyond the scope of this thesis,

but conceptual sketches are shown in Figs. 5-3 and 5-4.

Other front tracking approaches described in related literature range from theoretical simulations with

AUVs to determine variation of a front’s position assuming a known environment to distributing underwater

gliders within the frontal boundary of a plume, as previously discussed in Section 5.3. e simplicity of our
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Figure 5-2: A conceptual illustration of 2D multi-AUV front tracking, exhibiting ‘global’ adaptive follow-the-
leader motion of AUVs along the front and ‘local’ 2D adaptive zigzag motion of AUVs across the front. e
green circles represent the front’s spatiotemporal scales as a distance between AUVs. When these AUV range
circles overlap along a front line, the sampling may be considered synoptic. Used with permission from [5].

approach—the zigzag motion and the tracking of an isotherm rather than a temperature gradient (which may

dissipate or change from one stretch of the front to another)—keeps the complexity of this autonomous and

adaptive front tracking method to a minimum, which is important for reducing the possible failure modes

when deploying this technology in real, dynamic ocean environments. It is also assumed that, due to com-

putational and power limitations on real AUVs and the very limited data transfer available via acoustic com-

munications, the AUVs will have no outside knowledge (e.g., no satellite data and no ocean models uploaded

or generated on board) of the environment other than what they collect with their on-board sensors in real

time. us, the sampling patterns the AUVs decide upon autonomously must yield enough environmental

information for them to make informed decisions about where to go next to properly sample the front.

e primary drawbacks to this front tracking method reside in the cases where the AUV ‘loses’ the primary

frontal isotherm, either 1) by the front advecting away from the AUV faster than the AUV can move or 2) by

the AUV becoming stuck along a local pocket of isotherm that is greater than O(1 km) in horizontal extent
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Figure 5-3: A conceptual sketch of a depth-distributed (3D) multi-AUV mission using the 2D AUV zigzag
pattern for front tracking. Each color path represents the path of a different AUV, where the AUVs are aligned
roughly vertically along the front at a range of depths. e black vertical curve represents a typical stratified
temperature profile.

(having the same temperature as the front) but isn’t along the primary front. e former of these cases is

unavoidable—resulting from the propulsion limitations of the AUV being used—and, thus, is a problem for

most front tracking methods. e latter is difficult to avoid whether tracking a front boundary based on an

isotherm or an across-front gradient value, since local pockets of the temperature and temperature gradient

values may occur on scales ranging up to the mesoscale, making them hard to distinguish from the primary

front line when all that is available are point measurements of temperature values that are assumed to be

connected into a line if they share the same isothermal or gradient value with the front. In order to reduce

time the AUV spends ‘lost’ and account for the significant spatiotemporal variation of temperature along the

front, a timeout is included in the front tracking behaviors that restarts the front tracking process, determining

a new frontal isotherm to track near the AUV’s location. If an AUV is stuck in a local mesoscale temperature

pocket, however, it may still re-find and remain in that pocket after a timeout. is is simply a shortcoming

of front tracking methods such as this, where the AUVs determine and track the front location based on a

locally sub-mesoscale sampling pattern.

Further details of the implementation and algorithms for the front tracking methods described in this

section are provided in Sections 5.5 and 5.6.
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Figure 5-4: A conceptual sketch of a depth-distributed (3D) multi-AUV mission using the 3D horizontal
helix pattern for front tracking. Each color path represents the path of a different AUV, where the AUVs are
aligned roughly vertically along the front at a range of depths. e black vertical curve represents a typical
stratified temperature profile.

5.5 2D &Multi-AUV Front Tracking

5.5.1 Overview

e basic, 2D (constant depth) front tracking method developed here has three phases: detection, classifi-

cation, and tracking. is is sketched out in Fig. 5-5. roughout the front tracking exercise, the AUV is

constantly monitoring the water temperature and updating the maximum and minimum temperature values

it has encountered. In this case, the front is defined as the isotherm with the temperature half way between

the max and min temperatures. A more elegant (but more complex and less robust) approach would be to

keep track of spatial temperature gradients and use the maximum temperature gradients to define the front

boundary.

Detection

e AUV performs a survey of the local region to detect the front. is is either a preplanned loiter pattern

around a selected center point in space, or a spiral out from the center point. As the AUV travels along its loiter

or spiral path, it is actively keeping track of the maximum and minimum temperatures it has encountered.

e frontal isotherm is defined as the temperature that is half way between the maximum and minimum

recorded temperatures (and, at first, is frequently updating as the AUV follows the first loop around the loiter

or spiral). A ‘crossing’ is recorded, along with its time and location, each time the AUV moves from warmer

to colder (or colder to warmer) water across the frontal isotherm. e detection survey continues until three
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Figure 5-5: e 2D (constant depth) front tracking method, which is comprised of three phases: detection,
classification, and tracking.

front crossings are detected. When completed, the AUV continues with the classification phase.

Classification

e AUV classifies the front locally as a line, based on the front crossing locations. e classification developed

here is a weighted linear least squares approximation of the local front line, requiring at least three crossing

points to be within a specific spatiotemporal range of the current time and AUV position to produce the

linear approximation. e spatiotemporal ranges selected are based on characteristic spatiotemporal scales of

the front being tracked, and thus must be set by the AUV operator prior to the start of the mission. If the

number of crossing points in range drops below three, the AUV will return to a loiter or spiral pattern around

the last known crossing point until three crossing are collected in range. Once the local front line has been

classified, the AUV begins the tracking phase.

Tracking

e tracking phase sets the heading of the AUV to intersect the front line estimate at a 45◦ angle. When the

AUV crosses the actual front line (isotherm), it then travels a specified distance before turning to intersect

the front again. e AUV adds the new crossing point to the vector of in-range crossings and updates the

front line estimate to produce a new heading to intersect the front again (also at a 45◦ angle). is results in

a zigzag path along the front that follows the front as it shifts over space and time.
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5.5.2 BHV_FrontTrackNoBdry (2D)

To implement 2D front tracking, the autonomy behavior BHV_FrontTrackNoBdry was developed. is

behavior guides a single AUV through the detection, classification, and tracking phases outlined in Section

5.5.1, resulting in a zigzag pattern tracing the front line, punctuated by loiter and/or spiral patterns when the

front is lost or the behavior is reinitialized.

In the detection phase, the AUV determines the isotherm temperature that gets defined and calculated

as the front line’s temperature (Tfront) being the mean of the maximum (Tmax) and minimum (Tmin)

temperatures it has encountered. at is,

Tfront =
Tmax + Tmin

2
. (5.1)

is is a somewhat arbitrary selection of the frontal temperature, but it will always yield a value that was

recently observed in the environment the AUV has explored. Alternatively, the spatial gradient of temperature

across the front could be used as the tracer value for the front, but this value can only be calculated as the

AUV moves perpendicularly across the front at constant depth, or if the AUV has external knowledge of the

local front line heading. e AUV cannot predict if it will actually cross the front orthogonally to the front

line or at a certain angle of incidence, since it has limited knowledge of the heading of the local front line

and the front is dynamic in both space and time. In addition, the temperature gradient in the across-front

direction is often not uniform along the front [41] [42]. us, it is reasonable to select an isotherm as the

local front line, which will often run roughly parallel to the actual high-gradient line along the front.

Another way to detect the front position from an initial survey combines the two aforementioned meth-

ods. e AUV could perform a circle as the initial survey, calculating the temperature gradient in the az-

imuthal direction around the circle. e average of the temperatures at the two locations along the cir-

cle where the temperature gradient peaks can be used as the isotherm temperature that the AUV selects to

track along. is azimuthal temperature gradient front detection method has not been applied in the virtual

front tracking experiments described in this chapter, however it will be integrated into future iterations of

BHV_FrontTrackNoBdry.

In the classification phase, a weighted linear least squares calculation is used to calculate the local front

line from all front crossings ‘in range’ of the assigned characteristic spatiotemporal scales of the front. For

example, a coastal shelfbreak front at a given depth may change significantly over a time scale of 10 hr and a

horizontal range scale of 10 km. Using a linear decay from the AUV’s current position and time (weighting
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factor of 1) to the range and time elapsed over one characteristic spatiotamporal scale or more (weighting

factor of 0), the crossing points can be weighted such that the newest and closest crossing points have the

greatest influence on the estimated local front line. is weighting allows the front line estimate to update

and track the front as it changes.

As the front line estimate is updated, so is the heading of the AUV required to intersect the estimated

front line at a 45◦ angle. is results in the desired autonomous and adaptive front tracking behavior that is

being sought as the AUV zigzags across the dynamic front, following its curves.

Some safeties built into this front tracking include 1) a spiral behavior that directs the AUV into an

outward spiral to find the front line if it strays too far off course while tracking and 2) a re-initialization of the

temperature range and detection phase when the AUV’s time spent front tracking has exceeded the assigned

characteristic temporal scale of temperature variation in the region.

It is also important to note that it is sometimes desirable for the AUV to track exactly along the front

(e.g., when studying small-scale turbulence along the front), but often it is desirable for the AUV to cross

back and forth across the front to increase coverage, since a frontal boundary is often very complex and

not a well-defined or ideal smooth curve over the horizontal plane. us, using methods such as applying

a proportional-integral-derivative (PID) controller to tune out the zigzagging motion of the AUV is not a

useful solution for many front tracking cases, whereas a zigzagging motion of fixed or dynamically variable

amplitude coupled with a front line estimate, as described here, may be adjusted for the desired across-front

coverage.

ough BHV_FrontTrackNoBdry runs independently on each AUV tasked with autonomous and adap-

tive front tracking, it can be run with other behaviors such as BHV_FolloweLeader (Section 5.5.3) or

BHV_RubberBand (see [95]) to coordinate the global motion of multiple AUVs. Using multiple AUVs

can provide synoptic sampling coverage over a larger spatial scale than a single AUV when the AUVs are

distributed within the front’s characteristic range of each other, as sketched in Fig. 5-2.

5.5.3 BHV_FolloweLeader (Multi-AUV)

BHV_FolloweLeader was designed for use with two or more AUVs, though it has only been tested with

two. One AUV is assigned as the leader, and the other(s) is(are) designated a follower. As shown in Fig.

5-6, the follower-to-leader absolute bearing (angle clockwise from north), bF2L, is calculated, and a heading

bias (clockwise from north), HBiasfollower, equal to the bearing angle is superimposed on the follower’s

final heading objective function. Similarly, the leader-to-follower absolute bearing, bL2F , is calculated, and a
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heading bias, HBiasleader, equal to the bearing angle plus 180◦ is superimposed on the leader’s final heading

objective function. e heading biases are then given a range of HBias ± 90◦ where the objective function

weighting is constant before tapering to a weight of 0 at HBias± 180◦. at is,

bL2F = bF2L + 180◦, (5.2)

HBiasfollower = bF2L, (5.3)

and

HBiasleader = bL2F + 180◦ = HBiasfollower. (5.4)

e resulting objective function over heading for BHV_FolloweLeader is shown in Fig. 5-7. Even though

HBiasleader = HBiasfollower at any given moment in time, each AUV is only responsible for calculating

its own ‘leader’ or ‘follower’ HBias value, according to how it has been assigned. is is because only AUV

position values—not the HBias values—are shared over the acoustic link.

N (0˚)

E (90˚)

N (0˚)

E (90˚)HBias leader

HBias follower

bL2FbF2L

Leading AUV

Following AUV

Figure 5-6: A sketch depicting desired heading angles (clockwise from north, light blue dotted arrows),
HBias, as the desired directions of motion for the leader and follower AUVs, and the AUVs’ absolute
bearings (angles clockwise from north, red solid arrows) to each other, bL2F and bF2L, as calculated by
BHV_FolloweLeader.

is creates a behavior in which the leader AUV tends to move away from the follower while the follower

moves toward the leader. If more followers were chained onto the first follower, the idea is that the AUVs
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Figure 5-7: Objective function over heading for BHV_FolloweLeader, where heading ,h,—on which the
objective function and heading bias are centered—is set by each AUV. At any given point in time, h =
HBiasleader = HBiasfollower. us, due to the utility of the function being flat on the interval h± 90◦ and
tapering linearly to zero at h±180◦, the leader will travel generally away from the follower while the follower
roughly moves in the direction of the leader.

would all be able to move along a front or other oceanographic boundary in follow-the-leader style, while still

zigzagging across the boundary, adapting to the front’s local position. Ideally, a separation distance constraint

like that of BHV_RubberBand (see [95]) would be added to the AUVs’ behavior set to maintain synoptic

sampling coverage in the along-front direction as well.

5.6 3D Front Tracking

Including the third (vertical) dimension in characterizing a front is important due to features that occur in

the vertical water profile, such as thermoclines, pycnoclines, Chlorophyll maxima, etc. Using a single AUV

executing an adaptive horizontal helix behavior (BHV_FrontTrackHelix) along the front line and with the

central axis at a fixed depth, the front through that depth can be estimated as a plane.

Multiple AUVs may also be employed, each at a different depth, but roughly vertically aligned, to create

a 3D map of a front. Each AUV would independently perform either 2D adaptive zigzag front tracking or

3D adaptive helix front tracking, while a separate behavior would be designed to keep them roughly stacked

vertically. is, however, is beyond the scope of this thesis and will not be addressed further here.

5.6.1 BHV_FrontTrackHelix (3D)

e 3D, single-AUV front tracking behavior, BHV_FrontTrackHelix, designed in this work is based on the

same weighted linear least squares estimation of the front line at a given depth that is used in the adaptive front
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tracking zigzag behavior, but the AUV’s position is guided by a horizontal helix around the chosen depth’s

front line. In designing this behavior for an AUV, the helix characteristics are constrained by:

• the AUV’s speed,

• the AUV’s maximum ascent angle (∼ 30◦),

• the desired helix radius (manually selected based on water depth and depth of AUV),

• and the front line estimate at the helix’s center depth.

e AUV’s desired position on the helix, (x, y, z, tnow), is calculated as follows. e helix must be

rotated in the horizontal plane to align with the front line estimate, yctr, using the rotation matrix, R, and

rotation angle, θ. e rate of travel around the helix must also be slowed to account for the AUV’s speed and

ascent angle limitations, which are taken into account when calculating the period, p, and, subsequently, the

angular rate of travel, ω, on the helix. Table 5.1 serves as a reference for the variables, which are related in the

calculation of the desired AUV position, Equations 5.5-5.15.

First, approximate the angular oscillation rate, ω, of the AUV moving along the helix path at speed v:

p ≈ 2(2r)

v sin
(
α

π

180◦

) (5.5)

ω =
2π

p
≈ 2π

p
P , where P = 2 (5.6)

∴ ω ≈
πvP sin

(
α

π

180◦

)
2r

=
πv sin

(
α

π

180◦

)
r

(5.7)

Next, calculate AUV position on the helix path in the horizontal plane based on the time duration since the

helix began, with the helix’s center axis aligned with the x-axis (x, y):

∆t = tnow − t0 (5.8)

 xh

yh

 =

 cω∆t

r sin(ω∆t)

 (5.9)

en, rotate and translate the AUV position on the helix path in the horizontal plane through angle θ to align

the helix’s center axis with yctr, (xrot, yrot):
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Table 5.1: Helix position calculation variables

Variable Definition

yctr Front line estimate at a given depth (−zctr), [m]
−zctr Helix center depth, [m]
m Slope of front line estimate in horizontal space, [m/m]

b
Intercept of front line estimate with y-axis in horizontal space,
[m]

t0 Helix start time, [Unix sec]
tnow Current time, [Unix sec]
∆t Time since helix start, [sec]
2πc Constant, separation distance of helix loops (user-selected), [m]
r Radius of helix, [m]
α Ascent angle of AUV, ≤30◦, [◦]
R Rotation matrix

θ
Rotation angle to align the horizontal helix axis with the front
estimate line, [rad]

p
Period of helix oscillation based on AUV speed, calculated
approximating the sinusoidal motion of the helix as a zigzag,
[sec]

ω
Angular rate of oscillation based on AUV speed, calculated
approximating the sinusoidal motion of the helix as a zigzag,
[rad/sec]

P
Petillo scaling factor, to account for variations in AUV speed
along the helix path and reduce doubling-back motion (P = 2
for the Bluefin 21” AUVs in our virtual experiments)

v AUV’s (desired) speed, [m/s]

(x, y, z, tnow)
Desired AUV position on the helix at the current time, ([m],
[m], [m], [sec])

R =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (5.10)

yctr = mx+ b (5.11)

θ = tan−1(m), where − π ≤ θ ≤ π (5.12)
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 xrot

yrot

 = R×

 xh

yh

+

 0

b


=

 xh cos(θ)− yh sin(θ)

xh sin(θ) + yh cos(θ) + b


=

 cω∆t cos(θ)− r sin(ω∆t) sin(θ)

cω∆t sin(θ) + r sin(ω∆t) cos(θ) + b


(5.13)

and calculate the vertical position of the AUV on the helix, z:

z = r cos(ω∆t)− zctr (5.14)

Finally, assign the proper values to the desired current AUV position along the helix, which drive the AUV’s

motion using autonomy:

(x, y, z, tnow) = (xrot, yrot, z, tnow) (5.15)

Section 5.7 describes the resulting virtual experiments and data collected from testing the 2D, 3D, and

multi-AUV front tracking behaviors described above.

5.7 Virtual Experiments & Results

In order to compare preplanned front mapping missions to adaptive front tracking missions, a number of

virtual experiments were run with one AUV performing a fixed preplanned horizontal zigzag while a second

AUV used adaptive front tracking behaviors to track the front it detected. e AUV conducting the fixed

preplanned zigzag shared its start location with that of the adaptive AUV. e heading, amplitude, and period

of the preplanned zigzag were selected based on operator estimation of the front position from a random

snapshot of the front at the AUVs’ operational depth. All AUVs were assigned the same operational depth (or

helix center-axis depth) in a given virtual experiment, and the virtual experiments ended when the fixed zigzag

mission finished or the virtual experiment exceed a specified amount of time (for other comparative missions

not involving the fixed zigzag mission). e performance of fixed zigzag to adaptive front tracking missions

was evaluated and compared using a number of performance metrics, which are described in Section 5.8.1.

4D MSEAS ocean models integrated into the MIT Laboratory for Autonomous Marine Sensing Systems

(LAMSS) AUV virtual experiment environment, described in Section 5.7.1 and Appendix A, were used as

realistic oceanographic environments for testing all of the behaviors described in Sections 5.5 and 5.6.
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5.7.1 MSEAS 4D Ocean Model Environment

e MSEAS group at MIT uses oceanographic data coupled with fluid dynamics and physical oceanography

principles to create 4D, spatiotemporally dynamic, gridded ocean models [60]. ese models are provided

in NetCDF format with a number of tools written in MATLAB to read, interpolate, and plot the model

data. MSEAS models were incorporated into the LAMSS AUV virtual experiment setup to provide a realistic

testing environment for the environmentally adaptive feature tracking missions, including data extraction and

visualization tools. e details of this LAMSS-MSEAS interface and the associated tools are in Appendix A.

MSEASModeling System e Multidisciplinary Simulation, Estimation, and Assimilation System (MSEAS)

[96] is used to study and quantify tidal-to-mesoscale processes over regional domains with complex geome-

tries and varied interactions. Its modeling capabilities include implicit two-way nesting for multiscale hydro-

static primitive equation (PE) dynamics with a nonlinear free-surface [97] and a high-order finite element

code on unstructured grids for non-hydrostatic processes also with a nonlinear free-surface [98–100]. Other

MSEAS subsystems include: initialization schemes [101], nested data-assimilative tidal prediction and inver-

sion [102]; fast-marching coastal objective analysis [103]; stochastic subgrid-scale models (e.g., [104, 105]);

generalized adaptable biogeochemical modeling systems; Lagrangian Coherent Structures; non-Gaussian data

assimilation and adaptive sampling [106–108]; dynamically-orthogonal equations for uncertainty predic-

tions [109–111]; and machine learning of model formulations [112]. e MSEAS software is used for ba-

sic and fundamental research and for realistic simulations and predictions in varied regions of the world’s

ocean [113–120], including monitoring [121], naval exercises including real-time acoustic-ocean predic-

tions [122] and environmental management [123].

Model Selection for Virtual Experiments For the application of front tracking, the Mid-Atlantic Bight

(MAB) region was selected for the shelfbreak front off the Atlantic coast of the U.S. and the robust model

available for this region. e data input to the MAB model are from the Shallow Water 2006/Autonomous

Wide Aperture Cluster for Surveillance (SW06/AWACS) exercise that took place in the MAB in August and

September 2006, and the time frame selected from the models covers approximately August 28–September

8, 2006. Within this window of time, Tropical Storm Ernesto passed through the MAB region from roughly

September 1–3, 2006, adding variation and mixing along the Gulf Stream and shelfbreak to the data collected

for the resulting models. e SW06 data has been gridded by the MSEAS group for the full region provided

in the MAB model. An updated version of this model is available on the MSEAS SW06 Re-Analyses website

[124], along with the associated MATLAB tools for plotting and interpolation.
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e environmental parameters available for the MSEAS MAB model are temperature, T , salinity, S,

and zonal, meridional, and vertical currents, u, v, and w, respectively, at each grid point, (Longitude,

Latitude, Depth, time). e shelfbreak front is most apparent when looking at salinity (see Fig. 5-8), but

it is also relatively clear in the temperature signature [43]. Since many temperature sensors are more robust

than salinity sensors (which are often sensitive to temperature changes), temperature is used as the parameter

that guides the decisions in the front tracking behaviors. However, accurate salinity, density, or sound speed

measurements can also be used as input to the same front tracking algorithms when they are frontal indicators.

Figure 5-8: A horizontal slice of the MSEAS SW06 model data for the Mid-Atlantic Bight region. e
color variations indicate the salinity values. e SW06 domain is the full domain bounded by the black-
bordered box, and the AW06 domain is bounded by the smaller white-bordered box. Image credit: MSEAS
group [124].

SW06/AWACS Simulation e real-time Shallow Water 2006 (SW06)/AWACS exercise was carried out in

the New Jersey Shelf/Hudson Canyon region over the time period August–September 2006 [125–128]. Based

on this experiment, realistic ocean fields were created using the free-surface MSEAS PE model employing

two-way implicit nesting with tidal and atmospheric forcing. e coarse domain (SW06) is a 522 km ×

447 km domain with 3 km resolution. e fine domain (AW06) is a 172 km × 155 km domain with

1 km resolution. Both domains employ 100 vertical levels in a double-σ configuration (see app. 1.1 in

[97]). e bathymetry used for this simulation was a combination of the NOAA [129] Coastal Relief Model

combined with V8.2 (2000) of the Smith and Sandwell [130] topography in the deep regions. e estimation
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of the initial conditions was based on two objective analyses, one inshore and one offshore of the expected

shelfbreak. e initial conditions were estimated using in situ data from Rutgers SeaGliders, National Marine

Fishery Services (NMFS) cruises, CTD casts collected aboard the research vessels Knorr, Quest and Tioga,

as well as Scanfish data. ese observations were augmented with additional synoptic data from the World

Ocean Database (WODB) [131], the Global Temperature and Salinity Profile Programme (GTSPP) [132]

and pseudo profiles to bolster the shelfbreak front. e synoptic data were melded with the World Ocean

Atlas (WOA) [133,134] climatology modified to match the 2006 slope conditions. Feature models [135–137]

for the shelfbreak front, Gulf Stream and slope recirculation gyre were employed to ensure realistic synoptic

structures. e position of the Gulf Stream was estimated based on SST and NAVOCEANO feature analyses.

e simulations were forced with atmospheric fluxes derived from the Weather Research and Forecasting

system (WRF) [138] and the Navy Operational Global Atmospheric Prediction System (NOGAPS) [139],

and laterally forced with OTIS tides [140]. e synoptic data is assimilated at 3 hr intervals to control

uncertainties. Extensive sensitivity studies were performed to select the model parameters which best match

the observations. New time-dependent sponging and lateral radiative boundary conditions were formulated

to prevent spurious reflections at the boundaries.

AUV Operation Region Within the MAB model SW06 domain, two AUV operation boxes were defined

in the area where the Pioneer Array is planned to be deployed with AUVs and gliders at the shelfbreak south of

Cape Cod, MA. In this region, the model has 3 km grid resolution. A third AUV operation box was defined

southwest of the Pioneer Array along the shelfbreak east of New Jersey (the AW06 domain) where a 1 km grid

resolution model is available in addition to the 3 km resolution SW06 model. ere is a distinct thermal and

salinity front present along the entire shelfbreak, highlighted in Fig. 5-9, that was used for testing the front

tracking behaviors described in Sections 5.5 and 5.6.

5.7.2 Preplanned Missions

e preplanned missions used in the virtual experiments consisted of either a zigzag across a straight line (Fig.

5-10) or a zigzag following an isothermal contour (Fig. 5-11). e straight-line zigzag was at constant depth

and heading with a fixed amplitude, distance, and number of straight leg segments. e isotherm-following

zigzag was also at constant depth, although the zigzag amplitude varied (but was larger for the most part)

and the number of straight leg segments was greater. e isothermal contour position was assumed to be

known and static for planning purposes (taken from a random snapshot of a horizontal model slice at the
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Figure 5-9: e shelfbreak thermal and salinity front, highlighted in white, through the Mid-Atlantic Bight
region. e color variations indicate the salinity values. e SW06 domain is the full domain bounded by
the black-bordered box, and the AW06 domain is bounded by the smaller white-bordered box. Adapted
from [124].

AUVs’ operational depth), but a large coverage area was selected for the survey to maximize sampling distance

across the front and minimize loss of the front line. e isotherm-following zigzag was scripted from hand-

selected waypoints on the same snapshot to follow the frontal contour (with front intersect angles attempting

to stay near 45◦), so the resulting survey area covered by either preplanned mission does not always reflect the

position of the dynamic front over time.

5.7.3 New Adaptive Missions

e adaptive front tracking missions consist of one or more AUVs tasked with detecting and tracking an

isothermal (or isohaline or isopycnal) contour representing the front line, using temperature (or salinity or

density) measurements it collects in situ. Whether using one or many AUVs for these missions, each AUV runs

either the 2D (BHV_FrontTrackNoBdry) or 3D (BHV_FrontTrackHelix) front tracking behavior to keep it

tracking the front locally while (in the multi-AUV case) another behavior such as BHV_FolloweLeader

coordinates the AUVs’ motion relative to each other for increased spatiotemporal coverage in the dynamic

virtual experiment (and real) environment (see Table 5.2).
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Figure 5-10: A preplanned AUV zigzag mission (magenta ‘Macrura’ line) at constant depth, heading, ampli-
tude, length, width, and period. e zigzag mission is configured based on a recent snapshot of the temper-
ature field at the selected AUV operation depth. e small grid squares are 1 km × 1 km. e blurry purple
line follows a frontal isotherm.

Table 5.2: Adaptive Front Tracking Behavior Combinations

Dimensions Single/Multiple AUVs Behaviors

2D Single BHV_FrontTrackNoBdry

2D Multiple BHV_FrontTrackNoBdry with
BHV_FolloweLeader or BHV_RubberBand

3D Single BHV_FrontTrackHelix

3D Multiple BHV_FrontTrackHelix with behavior for
vertical AUV distribution

3D Multiple BHV_FrontTrackNoBdry with behavior for
vertical AUV distribution
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Figure 5-11: A preplanned AUV zigzag mission along an isothermal contour (green ‘Neptune’ line connecting
waypoints) at constant depth and amplitude. e zigzag mission (originally) along a frontal isothermal (blurry
purple line) is configured based on a recent snapshot of the temperature field at the selected AUV operation
depth. In this snapshot, it is apparent that the front has advected away from the location it was in when this
mission was originally planned. e small grid squares are 1 km × 1 km.
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Single AUV

When only one AUV is used for 2D front tracking, the AUV attempts to track along the front in horizontal

space, crossing the front locally at an ∼45◦ angle to the front line. Since there is a fixed distance traveled

before the AUV turns around to re-cross the front, the resulting motion under ideal conditions creates an

approximately constant amplitude zigzag pattern that travels along the front boundary as the front shifts its

location in time and space (see Fig. 5-12). Good front tracking conditions generally consist of low currents

in horizontal space, such that the front doesn’t move faster than the AUV can follow, and a gradually curving

front line lacking isolated pockets of high or low temperatures.

Figure 5-12: An adaptive 2D front tracking mission with nearly ideal front tracking at constant depth. e
adaptive AUV path is the yellow ‘Unicorn’ line and the preplanned AUV path is the magenta ‘Macrura’ line,
while the frontal isotherm location is highlighted (at the time of this snapshot) by the blurry purple line.

When conditions are poor for front tracking, the AUV’s adaptive front tracking motion tends to yield

more clusters of overlapping loiter patterns, as seen in Fig. 5-13. is occurs most frequently when the front

line curves sharply or creates a closed loop on the order of 10 km or less, or when horizontal currents are

strong enough to move the front line away from the AUV faster than the AUV can move.

In the case of 3D front tracking, a single AUV follows a helical path with the helix axis locally centered

about a fixed-depth frontal isotherm. A close-up GEOV screenshot of this helix motion is shown in Fig. 5-14.
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Figure 5-13: An adaptive 2D front tracking mission with poor front tracking at constant depth. e adaptive
AUV path is the yellow ‘Unicorn’ line and the preplanned AUV path is the magenta ‘Macrura’ line, while the
frontal isotherm location is highlighted (at the time of this snapshot) by the blurry purple line.

Under good tracking conditions, the resulting AUV path will largely look like a meandering slinky. However,

under bad 3D front tracking conditions, the AUV spends most of its time loitering at constant depth to try

to determine where the local front line is, similar to poor 2D front tracking runs.

Multiple AUVs

Multi-AUV front tracking has only been successfully demonstrated thus far with the 2D adaptive front track-

ing algorithms. As mentioned previously, the concept for this case is to have multiple AUVs moving along the

front line at a fixed depth to create a ‘global’ front tracking behavior that has all the AUVs lined up traveling

the same direction along the front (follow-the-leader configuration). e superimposed ‘local’ behavior for

each AUV is simply the 2D adaptive front tracking zigzag motion across the local front line. is concept

is illustrated in Fig. 5-2, and AUV paths from an associated virtual experiment run with 2 AUVs are shown

in Fig. 5-15. Similarly, multiple AUVs could be run in follow-the-leader configuration while individually

running the 3D helix front tracking behavior to add a range of depth samples to the collected data, but this

has not been tested in virtual experiments.
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Figure 5-14: A closeup of a 3D helical front tracking path (thick yellow ‘Unicorn’ line) about a constant
depth. e central axis of the helix (dashed line) is aligned with the front estimate line locally.

Figure 5-15: A snapshot of the paths of two AUVs performing adaptive 2D front tracking and exhibiting
follow-the-leader coordination as they move in the same direction along the front. e two AUV paths
are the yellow ‘Unicorn’ line and the magenta ‘Macrura’ line, and the projected frontal isotherm location is
highlighted (at the time of this snapshot) by the blurry purple line. In this case, Unicorn was the leader and
Macrura was the follower. e motion of the front over time is evident from the spatial offset of the paths
traced by the two AUVs, where Macrura was trailing Unicorn along the front.
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5.7.4 Mission Configurations

is section details the specific virtual experiment mission configurations used to test the adaptive missions

in various configurations and evaluate the adaptive missions against the preplanned missions. e dynamics

model for Bluefin AUVs was used for all AUVs in all virtual experiments in order to keep the AUV dynamics

constant. In all cases, Unicorn and Macrura were the two AUVs selected to run mission in a single virtual

experiment. In the one set of virtual experiments that includes the front-following preplanned zigzag mission

in addition to the adaptive zigzag and straight preplanned zigzag missions, Neptune is used as the third AUV.

e array of virtual experiments and their configurations, goals, and missions for each AUV are summarized

below and detailed in Tables 5.3, 5.4, & 5.5.

• Runs 0–7: 2D, 2-AUV, 1 adaptive & 1 preplanned, vary adaptive and straight zigzag amplitude (8

virtual experiments)

• Runs 8–11: 2D, 2-AUV, both adaptive, comparative: follow-the-leader & rubber band (4 virtual

experiments)

• Runs 12–13: 2D, 3-AUV, comparative: 1 adaptive, 1 preplanned straight, & 1 preplanned along-front

zigzag (2 virtual experiments)

• Runs 14–21: 2D, 2-AUV, 1 adaptive & 1 preplanned, vary detection-phase loiter radii (8 virtual

experiments)

• Runs 22–23: 2D, 2-AUV, both adaptive, compare: detection-phase loiter & detection-phase spiral (2

virtual experiments)

• Runs 24–31: 3D, 2-AUV, 1 adaptive zigzag & 1 adaptive helix, vary depth & helix dimensions (4

virtual experiments)

• Runs 32–33: 2D, 2-AUV, both adaptive, compare AW06 & SW06 model resolution effects (2 virtual

experiments)

• Runs 36–64: 2D, 2-AUV, 1 adaptive & 1 preplanned, constant amplitude and depth, comparative:

adaptive & preplanned straight zigzag (29 virtual experiments)
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Table 5.3: Virtual Experiment Configurations: Runs 0–7 & 8–11

Overall Mission 2D, vary zigzag amplitudes
2D, both adaptive, following,
follow-the-leader vs. rubber

band

2D, both adaptive, following,
follow-the-leader vs. rubber

band

Run ID 0–7 8, 10 9, 11

UnicornMission BHV_FrontTrackNoBdry BHV_FrontTrackNoBdry,
BHV_FolloweLeader BHV_FrontTrackNoBdry

MacruraMission
Straight zigzag
(BHV_Waypoint)

BHV_FrontTrackNoBdry,
BHV_FolloweLeader

BHV_FrontTrackNoBdry,
BHV_RubberBand

NeptuneMission none none none

Loiter/Spiral loiter loiter loiter
Loiter Radius [m] 2000 2000 2000

Adaptive Front
Track Zigzag
Config Zigzag Amplitude

[m]
100, 500, 1000, 5000 500 500

Loiter/Spiral —– —– —–
Loiter Radius [m] —– —– —–
Helix Radius [m] —– —– —–

Adaptive Front
Track Helix
Config Helix Constant

[m]
—– —– —–

Zigzag Width [m] 200, 1000, 2000, 10000 —– —–
Zigzag Length [m] 60000 —– —–
Zigzag Period [m] 400, 2000, 4000, 20000 —– —–
Zigzag Amplitude
[m]

100, 500, 1000, 5000 —– —–
Preplanned
Straight Zigzag
Config

Zigzag Heading
[◦]

109 —– —–

Preplanned Front-Following Zigzag
Config

—– —– —–

Leader —– Unicorn —–Follow-the- Leader
Config Follower —– Macrura —–

Rubber Band Config —– —–

Station Point = Uni’s x-y
position; Inner Radius = 5 km;
Outer Radius = 10 km; Outer
Speed = 1.8 m/s; Stiffness = 0.1

Model SW06 SW06 SW06

Depth/Helix Center Depth [m] 30 30 30

Start Time(s)
08/28/2006 12:00:00 GMT &
09/03/2006 12:00:00 GMT

08/28/2006 12:00:00 GMT &
09/03/2006 12:00:00 GMT

08/28/200612:00:00 GMT &
09/03/2006 12:00:00 GMT

Datum (SW corner of 200 km × 200
km Op Box)

(38.6◦N, -71.9◦E) (38.6◦N, -71.9◦E) (38.6◦N, -71.9◦E)

Start Location ([m],[m]) (100000,113000) (100000,113000) (100000,113000)

Desired Speed [m/s] 2 2 2

—– = Configuration not applicable during the associated runs.
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Table 5.4: Virtual Experiment Configurations: Runs 12–13, 14–21, & 22–23

Overall Mission 2D, 3-AUV comparison 2D, vary adaptive loiter radius 2D, detection loiter vs. spiral

Run ID 12–13 14–21 22–23

UnicornMission BHV_FrontTrackNoBdry BHV_FrontTrackNoBdry BHV_FrontTrackNoBdry

MacruraMission
Straight zigzag
(BHV_Waypoint)

Straight zigzag
(BHV_Waypoint) BHV_FrontTrackNoBdry

NeptuneMission
Front-following zigzag
(BHV_Waypoint) none none

Loiter/Spiral loiter loiter loiter (Unicorn), spiral (Macrura)
Loiter Radius [m] 2000 1000, 2000, 4000, 8000 2000

Adaptive Front
Track Zigzag
Config Zigzag Amplitude

[m]
500 500 500

Loiter/Spiral —– —– —–
Loiter Radius [m] —– —– —–
Helix Radius [m] —– —– —–

Adaptive Front
Track Helix
Config Helix Constant

[m]
—– —– —–

Zigzag Width [m] 8000 8000 8000
Zigzag Length [m] 60000 60000 60000
Zigzag Period [m] 16000 16000 16000
Zigzag Amplitude
[m]

4000 4000 4000
Preplanned
Straight Zigzag
Config

Zigzag Heading
[◦]

101 109 109 & 101

Preplanned Front-Following Zigzag
Config

Selected waypoints (see Table
5.10) —– —–

Leader —– —– —–Follow-the- Leader
Config Follower —– —– —–

Rubber Band Config —– —– —–

Model SW06 SW06 SW06

Depth/Helix Center Depth [m] 30 30 30

Start Time(s)
08/28/2006 12:00:00 GMT &
09/03/2006 12:00:00 GMT

08/28/2006 12:00:00 GMT &
09/03/2006 12:00:00 GMT

08/28/2006 12:00:00 GMT &
09/03/2006 12:00:00 GMT

Datum (SW corner of 200 km × 200
km Op Box)

(39.409291◦N, -71.934359◦E) (38.6◦N, -71.9◦E) (38.6◦N, -71.9◦E) &
(39.409291◦N, -71.934359◦E)

Start Location ([m],[m]) (100000,113000) (100000,113000) (100000,113000)

Desired Speed [m/s] 2 2 2

—– = Configuration not applicable during the associated runs.
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Table 5.5: Virtual Experiment Configurations: Runs 24–31, 32–33, & 36–64

Overall Mission
3D, adaptive zigzag vs.

adaptive helix

2D, adaptive zigzag in 3 km vs.
1 km resolution environment,

AW06 domain

2D, adaptive vs. preplanned
straight zigzag, random start

times

Run ID 24–31 32–33 36–64

UnicornMission BHV_FrontTrackNoBdry BHV_FrontTrackNoBdry BHV_FrontTrackNoBdry

MacruraMission BHV_FrontTrackHelix BHV_FrontTrackNoBdry Straight zigzag
(BHV_Waypoint)

NeptuneMission none none none

Loiter/Spiral loiter loiter loiter
Loiter Radius [m] 2000 2000 2000

Adaptive Front
Track Zigzag
Config Zigzag Amplitude

[m]
500 500 500

Loiter/Spiral loiter —– —–
Loiter Radius [m] 2000 —– —–
Helix Radius [m] 30, 100, 300, 1000 —– —–

Adaptive Front
Track Helix
Config Helix Constant

[m]
60, 200, 600, 2000 —– —–

Zigzag Width [m] —– —– 8000
Zigzag Length [m] —– —– 60000
Zigzag Period [m] —– —– 16000
Zigzag Amplitude
[m]

—– —– 4000
Preplanned
Straight Zigzag
Config

Zigzag Heading
[◦]

—– —– 109 & 101

Preplanned Front-Following Zigzag
Config

—– —– —–

Leader —– —– —–Follow-the- Leader
Config Follower —– —– —–

Rubber Band Config —– —– —–

Model SW06 SW06 (Macrura), AW06
(Unicron) SW06

Depth/Helix Center Depth [m] 30, 100, 300, 1000 30 30

Start Time(s)
08/28/2006 12:00:00 GMT &
09/03/2006 12:00:00 GMT

08/28/2006 12:00:00 GMT &
09/03/2006 12:00:00 GMT

Psudo-random, between
08/28/2006 & 09/08/2006

Datum (SW corner of 200 km × 200
km Op Box)

(39.409291◦N, -71.934359◦E) (38.4◦N, -73.4◦E) (38.6◦N, -71.9◦E) &
(39.409291◦N, -71.934359◦E)

Start Location ([m],[m]) (100000,25000) (100000,113000) (100000,113000)

Desired Speed [m/s] 2 2 2

—– = Configuration not applicable during the associated runs.
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5.8 Analysis

All virtual experiment runs listed at the end of Section 5.7.4 will be qualitatively and quantitatively analyzed

here using a number of performance metrics and observations of the missions’ performance. For the large

batch of 2-AUV virtual experiments comparing the 2D adaptive front tracking behavior to the pre-planned

straight zigzag behavior (Runs 36–64, Section 5.7.4), the overall improvement (or lack thereof ) of the adaptive

missions over the preplanned ones will also be quantified.

5.8.1 Performance Metrics

A number of performance metrics have been developed to evaluate and compare the front sampling ability of

both preplanned and adaptive AUV front tracking missions. e variables measured during the front tracking

missions to calculate the performance metrics are given below, followed by the calculations for the metrics

themselves.

Variables

tmission = Total mission time

vavg = Average AUV speed

vnav = Actual AUV speed at a given time (sample)

Nspd = Total number of AUV speed sample points

vavg =
1

Nspd

Nspd∑
i=1

(vnav)i (5.16)

θ = Front intersect angle

Dtotal = Total distance traveled

Dtotal =

Npos∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 (5.17)

where Npos = Total number of AUV position locations

Dfront = Total possible distance AUV could have tracked along front, given tmission. Estimated by the best-

case calculation (AUV perfectly tracks the front, crossing the front at an angle of θ).

Dfront = tmissionvavg cos(θ) (5.18)
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Don_front = Distance AUV tracked along the front line (≤ Dfront)

Ncross = Number of front crossing points, total, while tracking front

Dfrom_front = Perpendicular distance (closest point of approach) from AUV position, (x, y), to front esti-

mate line

Dfrom_front =
−mx+ y − b√

(m2 + 1)
(5.19)

where m and b are the slope and intercept, respectively, of the front line estimate in the local x-y grid

∂T/∂r = e temperature (T ) gradient in the across-front direction, relative to the front estimate line

∂T

∂r
=

∂T

∂Dfrom_front
(5.20)

Metrics

ρ = Crossing Density; i.e., how many front crossings were made by the AUV per unit length of the front line

that was tracked (higher values equal better performance)

ρ =
Ncross

Don_front
(5.21)

Dcross = Distance between Crossings; i.e., the average distance the AUV traveled between front crossings

(higher values equal worse performance)

Dcross =
1

ρ
(5.22)

ϵ = Front Sampling Efficiency; i.e., the percentage of Dfront that was tracked and sampled by the AUV

(higher values equal better performance)

ϵ =
Don_front

Dfront
× 100% (5.23)

ER = Excess Ratio; i.e., how much of the AUV’s travel distance was in excess of the distance along the front

that the AUV captured the front (higher values equal worse performance)

ER =
Dtotal

Don_front
(5.24)
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FEE = Front Estimate Error, which compares the |∂T/∂r|max location to the local estimated front location,

as captured by the AUV (higher values equal worse performance)

FEE = Dfrom_front@|∂T/∂r|max on a zigzag leg (5.25)

TC = Tracking Confidence, which is an evaluation of the confidence level that the actual front was fol-

lowed/sampled by the AUV, expressed as a percentage (higher values equal better performance)

TC = 2

(
N+

Ntot

)
× 100% (5.26)

where N+ is the number of above-average ∂T/∂r bins, Ntot is the total number of ∂T/∂r bins, and the

scaling factor of 2 accounts for the fact that most ∂T/∂r sample bins have below-average values, and a

minority of samples have above-average values due to sharp peaks in ∂T/∂r in the across-front direction, so

at best it would be expected to see N+/Ntot = 0.5.

In order to determine the distance each AUV traveled along the front, Don_front, each virtual experi-

ment run had to be replayed twice in post-processing using the Google Earth interface for Ocean Vehicles

(GEOV) with auto-updating overlays of the temperature field showing highlighted isothermal lines at the

AUV-calculated frontal temperature. For each replay, Google Earth’s Path tool was used to track the path of

one AUV along the frontal isotherm, discontinuing and resuming the path segments when the AUV strayed

from and reacquired the front (respectively). e sum of the path segment lengths from a single replay was

recorded asDon_front for the AUV whose path was mapped. All other performance metrics variables that did

not involveDon_front for calculation were actively recorded and updated as the virtual experiments were run-

ning. e MOOS process pFrontTrackMetrics was written to keep track of the performance metrics variables’

values as the virtual experiments ran.

Once all of the performance metrics variables’ values were extracted from the data logs and Don_front

values were determined, the actual performance metrics were calculated. When performing the data extrac-

tion, only data collected on both AUVs while the preplanned straight zigzag was being executed were used.

In the virtual experiments where both AUVs were adaptively tracking the front, a timer was set to stop both

AUVs’ missions simultaneously to maintain equal mission time. is allows us to keep the total mission time

for both AUVs approximately equal to improve validity of comparison of the two front mapping techniques

(preplanned vs. adaptive) and evaluation of adaptive front tracking configuration variables.

Based on the performance metrics defined in Equations 5.21-5.24 and summarized in Table 5.15 at the
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end of this chapter, higher Crossing Density (ρ) and Sampling Efficiency (ϵ) values indicate better performance

tracking along the front, while higher Distance between Crossings (Dcross) and Excess Ratio (ER) values

indicate worse performance. It is often desirable to maintain some across-front motion of the AUVs as well,

thus extremes of huge ρ and tiny Dcross and ER values are not necessarily optimal.

In summary, sailing along the front is good, but in many cases, crossing the front frequently is also good.

e desirable performance metrics criteria for these two cases are summarized here:

• Sailing very closely along the front should maximize Crossing Density and Sampling Efficiency and

minimize Distance between Crossings and Excess Ratio as much as possible.

• Maintaining crossing of the front over some length scale—i.e., the Rossby radius of deformation (e.g.,

3–10 km)—while sailing along the front should maximize Sampling Efficiency and result in relatively

high Crossing Density and low Distance between Crossings and Excess Ratio (but not the extreme

values desirable for directly along-front motion).

5.8.2 Data Analysis

Runs 36–64: 2D, comparing adaptive & preplanned straight zigzag front tracking

ese 2D, 2-AUV (1 adaptive, 1 preplanned) virtual experiments maintained constant AUV zigzag amplitudes

and operational depth, aiming to collect data for a comparison of adaptive zigzag and preplanned straight zigzag

front tracking methods.

Virtual experiment Runs 36–64 were designed to determine a baseline of performance for adaptive front

tracking versus preplanned straight zigzag front sampling. A quantitative analysis of preplanned versus adap-

tive missions has been performed for the case of single AUVs doing 2D front tracking. e Unicorn AUV was

tasked with 2D adaptive front tracking, while the Macrura AUV was given a preplanned fixed zigzag pattern

to execute. In all cases, both Unicorn (adaptive) and Macrura (preplanned) started at the same location and

executed their paths over the same mission duration. Macrura’s preplanned path was selected to cover the

general location of the front near the MAB shelfbreak south of Cape Cod, MA. e preplanned path’s con-

figuration is given in Table 5.6. Unicorn’s adaptive zigzag was configured based on the spatiotemporal scales

of the front and the speed limitations of the AUV. e adaptive front tracking configuration parameters are

given in Table 5.7.

With this setup, 29 missions were completed with both AUVs starting at (100000 m, 113000 m) relative

to two Datum locations: (38.6◦N, -71.9◦E) and (39.409291◦N, -71.934359◦E). e former (more southerly,
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Table 5.6: Configuration of Macrura’s Preplanned Straight Zigzag Path

Characteristic Value

Start Location (local XY grid) (100000 m, 113000 m)

Datum (old/new) (38.6◦N, -71.9◦E) / (39.409291◦N,
-71.934359◦E)

Heading (old/new) 109◦/101◦

Survey Length 60000 m
Survey Width 8000 m
Survey Period 16000 m

Table 5.7: Configuration of Unicorn’s Adaptive Zigzag Path

Characteristic Value

Start Location (local XY grid) (100000 m, 113000 m)

Datum (old/new) (38.6◦N, -71.9◦E) / (39.409291◦N,
-71.934359◦E)

Front’s Spatial Scale 10000 m
Front’s Temporal Scale 36000 s
zigzag Amplitude 500 m
Time Between Re-Initializations 36000 s
Front Intersect Angle 45◦

Initial Pattern Loiter, radius 2000 m

‘old’) Datum location corresponded with a fixed zigzag heading of 109◦, while the latter (‘new’) Datum

required a fixed zigzag heading of 101◦ to accommodate the slight change in general heading of the front

north of the shelfbreak. e various performance metric variables were tracked while the virtual experiments

were running and, after the fact, the performance metrics themselves were calculated and plotted for both

AUVs in post-processing. ese results are shown in Figs. 5-16, 5-17, and 5-18, where each figure represents

a different set of virtual experiment runs. In order to keep as many parameters constant as possible, the AUV

running the preplanned zigzag (Macrura) tracked its front crossings based on the frontal temperature that the

adaptive AUV (Unicorn) determined for front tracking.

As mentioned previously, based one the performance metrics defined in Equations 5.21-5.24, higher

Crossing Density (ρ) and Sampling Efficiency (ϵ) values indicate better performance, while higher Distance

between Crossings (Dcross) and Excess Ratio (ER) values indicate worse performance. Table 5.8 summarizes

the percentage and number of runs in which adaptive front tracking missions were improvements over the
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Figure 5-16: Runs 36–45: Performance metrics for Macrura’s preplanned zigzag missions (pink squares) and
Unicorn’s adaptive front tracking missions (yellow circles), plotted for each virtual experiment run. Datum:
(38.6◦N, -71.9◦E). Preplanned zigzag heading: 109◦. Better and worse values for each performance metric
are indicated on the plots.

preplanned zigzag mission. It is clear from Table 5.8 that, for all performance metrics, the adaptive front

tracking algorithms are generally an improvement over using a preplanned zigzag mission for collecting data

along a front.

Additionally, Tracking Confidence (TC) was evaluated for the adaptive missions based on temperature

data binned (by distance from the front line estimate, into 1 m bins) over entire missions. e average TC

for the adaptive front tracking mission in Runs 36–64 was 59.2%, with a standard deviation of 9.5%. e

tracking confidence values, along with the Front Estimate Errors (FEE; averaged over the FEEleg calculated

for each leg in a run) for the adaptive front tracking missions in each run are plotted in Figs. 5-19, 5-20,

and 5-21. For 28/29 (96.6%) of the runs, the magnitude of the mean FEE was less than 400 m (100% had

magnitudes less than 800 m), which is relatively small compared to the O(10 km) horizontal spatial scale of

the MAB shelfbreak front. e low FEE values mean that the adaptive AUV did a good job covering the

actual front interface (|∂T/∂r|max) while staying close to the estimated front line when tracking the front,

and the middling TC values (greater than 40% for all of the runs, greater than 50% for 82.8% the runs,

greater than 70% for 13.8% of the runs) mean that the adaptive AUV sampled close to the front interface in

at least 25% of the temperature (and thus |∂Tbinned/∂r|) bins in 82.8% of the runs.
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Figure 5-17: Runs 46–55: Performance metrics for Macrura’s preplanned zigzag missions (pink squares) and
Unicorn’s adaptive front tracking missions (yellow circles), plotted for each virtual experiment run. Datum:
(39.409291◦N, -71.934359◦E). Preplanned zigzag heading: 101◦. Better and worse values for each perfor-
mance metric are indicated on the plots.

For the TC and FEE values, it is important to note that the distances represented by these values (O(100

m)) are much smaller than the 3 km resolution of the ocean model being used for these virtual experiments.

Since the data in the model are linearly interpolated between the grid points, it is not fully representative of

the smaller scale variations in temperature that would be observed in the real ocean, and thus these TC and

FEE values will not be not accurate in real ocean environments (or higher-resolution models). However, these

values are accurate for data smoothed or gridded to approximately 3 km resolution, as was used here. In order

to get more accurate TC and FEE results for higher-resolution and real ocean environments, improvements

are still needed to the 2D adaptive front tracking behavior to make it successful in these environments (see

analysis from Runs 32–33, below).

In summary, the results and analysis presented above from the comparison of adaptive and preplanned

straight zigzag front tracking methods suggest that, for all performance metrics, the use of the adaptive zigzag

behavior for front tracking is generally an improvement over using preplanned straight zigzag surveys to collect

data along a dynamic ocean front.
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Figure 5-18: Runs 56–64: Performance metrics for Macrura’s preplanned zigzag missions (pink squares) and
Unicorn’s adaptive front tracking missions (yellow circles), plotted for each virtual experiment run. Datum:
(39.409291◦N, -71.934359◦E). Preplanned zigzag heading: 101◦. Better and worse values for each perfor-
mance metric are indicated on the plots.

Table 5.8: Percentage of Runs 36–64 where adaptive missions were improvements over the preplanned
zigzag mission, according to the performance metrics.

Run IDs
36–45 46–64 36–64

runs percent runs percent runs percent

ρ 8/10 80.0% 19/19 100.0% 26/29 89.7%
ϵ 10/10 100.0% 8/19 42.1% 18/29 62.1%
ER 10/10 100.0% 8/19 42.1% 17/29 58.6%
Dcross 8/10 80.0% 19/19 100.0% 26/29 89.7%

Datum/Fixed Zigzag Heading
(38.6◦N,
-71.9◦E) / 109◦

(39.409291◦N,
-71.934359◦E) /
101◦

Total
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Figure 5-19: Runs 36–45: Tracking Confidence and average Front Estimate Errors for Unicorn’s adaptive
front tracking missions, plotted for each virtual experiment run. e TC was calculated from spatially-binned
temperature data over entire runs. e FEE was averaged over the FEEleg calculated for each leg in a run, and
the standard deviations are plotted here as error bars around the mean values. Datum: (38.6◦N, -71.9◦E).
Better and worse values for each performance metric are indicated on the plots.
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Figure 5-20: Runs 46–55: Tracking Confidence and average Front Estimate Errors for Unicorn’s adaptive
front tracking missions, plotted for each virtual experiment run. e TC was calculated from spatially-binned
temperature data over entire runs. e FEE was averaged over the FEEleg calculated for each leg in a run,
and the standard deviations are plotted here as error bars around the mean values. Datum: (39.409291◦N,
-71.934359◦E). Better and worse values for each performance metric are indicated on the plots.

132



56 57 58 59 60 61 62 63 64
0

10

20

30

40

50

60

70

80

90

100

Run ID

T
C

 [
%

]

Tracking Confidence & Front Estimate Error for Adaptive Front Tracking Missions

56 57 58 59 60 61 62 63 64

−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

600

800

Run ID

M
e

a
n

 F
E

E
 [

m
] 

w
it

h
 S

td
 D

e
v

Figure 5-21: Runs 56–64: Tracking Confidence and average Front Estimate Errors for Unicorn’s adaptive
front tracking missions, plotted for each virtual experiment run. e TC was calculated from spatially-binned
temperature data over entire runs. e FEE was averaged over the FEEleg calculated for each leg in a run,
and the standard deviations are plotted here as error bars around the mean values. Datum: (39.409291◦N,
-71.934359◦E). Better and worse values for each performance metric are indicated on the plots.
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Runs 0–7: 2D, vary zigzag amplitudes

ese 2D, 2-AUV (1 adaptive, 1 preplanned) virtual experiments maintained constant AUV operational depth

while varying the adaptive and straight zigzag amplitudes, aiming to collect data for an evaluation of the effect of

zigzag amplitude on the performance of the adaptive and preplanned missions.

Runs 0–7 evaluated the effect of zigzag amplitude on the preplanned straight zigzag mission and the

adaptive front tracking zigzag mission, keeping the zigzag amplitudes and front intersect angles equal between

the two missions. e zigzag amplitudes evaluated were 100 m (Runs 0 & 4), 500 m (Runs 1 & 5), 1000 m

(Runs 2 & 6), and 5000 m (Runs 3 & 7). Each zigzag amplitude was evaluated at two model time ranges.

e resulting performance metrics are plotted in Fig. 5-22, and general results are given in Table 5.9. e

results that matter most in this case, however, are trends of improvement or degradation in front tracking as

the zigzag amplitudes change. Both adaptive and preplanned missions show a general decrease in crossing

Density (and increase in Distance between Crossings) as the zigzag amplitude increases, but an increase in

Sampling Efficiency. e excess ratio is the most definitive for the preplanned missions, in which an increase

in zigzag amplitude corresponds to a sharp decrease in Excess Ratio, suggesting that amplitudes of O(1000 m)

or more are best for the preplanned straight zigzag. us, in the previous and following virtual experiments,

a preplanned straight zigzag amplitude of 4000 m (8000 m zigzag width) was selected. As for the adaptive

missions, there is only a slight improvement (decrease) in Excess Ratio as zigzag amplitude increases. Since

there is no definitive improvement to using a larger versus smaller adaptive zigzag, a 500 m amplitude was

selected for the baseline adaptive mission.

Table 5.9: Percentage ofRuns 0–7where adaptive missions
were improvements over the preplanned zigzag mission, ac-
cording to the performance metrics.

Run IDs
0–7

runs percent

ρ 5/8 62.5%
ϵ 8/8 100%
ER 8/8 100%
Dcross 5/8 62.5%

In summary, the results and analysis presented above from the evaluation of the effect of zigzag amplitude

on the performance of the adaptive and preplanned straight zigzag missions suggest that the use of amplitudes

of O(1000 m) or more are best for the preplanned straight zigzag, while there is no significant increase or
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Figure 5-22: Runs 0–7: Performance metrics for Macrura’s preplanned zigzag missions (pink squares) and
Unicorn’s adaptive front tracking missions (yellow circles), plotted for each virtual experiment run. Runs 0–7
evaluated effect of zigzag amplitude on the preplanned & adaptive missions. e zigzag amplitudes evaluated
were 100 m (Runs 0 & 4), 500 m (Runs 1 & 5), 1000 m (Runs 2 & 6), and 5000 m (Runs 3 & 7). Each
zigzag amplitude was evaluated at two model time ranges. Better and worse values for each performance
metric are indicated on the plots.

decrease in adaptive zigzag performance as the zigzag amplitude increases.
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Runs 8–11: 2D, both adaptive, collaborative AUV following, follow-the-leader vs. rubber band behav-

iors

ese 2D, 2-AUV (both adaptive) virtual experiments maintained constant AUV zigzag amplitude and operational

depth while varying the AUVs’ collaborative following behavior, aiming to collect data for comparison of the front

tracking performance while using BHV_FolloweLeader vs. BHV_RubberBand to control the AUVs’ relative

positioning to each other while tracking the front.

Virtual experiment Runs 8–11 evaluated both the new follow-the-leader (acting on both AUVs) and old

rubber band (acting on just the the ‘following’ AUV, Macrura) behaviors for use with 2D multi-AUV front

tracking. In each run, both AUVs (Unicorn & Macrura) were adaptively tracking the front, and Macrura was

following Unicorn using either BHV_FolloweLeader (Runs 8 & 10) or BHV_RubberBand (Runs 9 & 11)

at two time ranges in the MSEAS model. e resulting performance metrics for both AUVs are plotted in

Fig. 5-23. IfMacrura is doing a good job followingUnicorn and tracking the same front, it would be expected

to see both AUVs with relatively close performance metrics values, as is observed for Density, Efficiency, and

Distance between Crossings. e only measure with significant differences in value are the Excess Ratios,

in which it is seen that, over both time ranges, the rubber band behavior (which is only acting on Macrura

and does not affect Unicorn’s motion) tends to improve Macrura’s Sampling Efficiency. However, with the

follow-the-leader behavior an overall improvement is observed in Sampling Efficiency for both AUVs that is

about on par with or greater than the Efficiency of Macrura using the rubber band behavior.

In summary, the results and analysis presented above from the preformance comparison of the follow-

the-leader and rubber band 2D multi-AUV adaptive front tracking behaviors suggest that, based on the few

data points available, BHV_FolloweLeader is an improvement over BHV_RubberBand for 2D multi-AUV

adaptive front tracking.
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Figure 5-23: Runs 8–11: Performance metrics for 2D multi-AUV adaptive front tracking missions, plotted
for each virtual experiment run. Macrura (pink squares) was following Unicorn (yellow circles) using either
BHV_FolloweLeader (Runs 8 & 10) or BHV_RubberBand (Runs 9 & 11) at two time ranges in the
MSEAS model. Each multi-AUV behavior was evaluated at two model time ranges. Better and worse values
for each performance metric are indicated on the plots.

Runs 12–13: 2D, 3-AUV comparison, adaptive vs. preplanned straight vs. preplanned front-following

zigzag

ese 2D, 3-AUV (1 adaptive, 1 preplanned straight, 1 preplanned front-following) virtual experiments main-

tained constant AUV zigzag amplitudes and operational depth, aiming to collect data for a comparison of adaptive

zigzag, preplanned straight zigzag, and preplanned front-following zigzag front tracking methods.

Runs 12 & 13 experiment with comparing 3 AUVs, each with a different method of sampling the front.

e usual two AUVs, Unicorn and Macrura, perform their basic adaptive and preplanned straight zigzag

missions along the front, respectively, while a third AUV (Neptune) follows a set of hand-selected waypoints

in a preplanned front-following zigzag pattern. Neptune’s waypoints were selected to achieve full across-front

coverage while roughly crossing the front at the same front intersect angle (45◦) as Unicorn and Macrura’s

missions. e waypoints are given in Table 5.10 and plotted over the operational area in Fig. 5-24. ese

front-following zigzag points were selected from a horizontal slice of temperature from the MSEAS model at

the AUVs’ operational depth (30 m) and a random time within the model’s bounds to best approximate the

data an AUV operator might have to base a preplanned front-following mission off of. e only difference in
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this case versus an actual deployment is that the temperature map used to plan the waypoints along the front

is at the AUV operational depth, whereas an operator on an actual deployment is most likely to have only a

recent satellite sea surface temperature (SST) image, not a map at depth. is suggests that the data from the

preplanned front-following zigzag in these virtual experiments would likely show better performance results

than one that could be planned for a real deployment using SST maps.

Table 5.10: Neptune’s preplanned front-
following waypoint pattern in the local X-Y
grid relative to the Datum (39.409291◦N, -
71.934359◦E).

Waypoint ID X [m] Y [m]

Start 100000 113000
1 100000 105000
2 114000 111000
3 123000 97000
4 123000 112000
5 131000 97000
6 145000 113000
7 145000 93000
8 162000 103000
9 172000 85000
10 180000 104000
11 196000 80000

Results from these two virtual experiment runs are plotted in Fig. 5-25 and performance metrics values

are given in Table 5.11 for the adaptive vs. straight zigzag and the adaptive vs. front-following zigzag.

Table 5.11: Percentage of Runs 12–13 where adaptive missions were improve-
ments over the preplanned zigzag missions, according to the performance metrics.

Run IDs
12–13 (vs.
straight zigzag)

12–13 (vs.
front-following
zigzag)

runs percent runs percent

ρ 2/2 100% 2/2 100%
ϵ 0/2 0% 0/2 0%
ER 0/2 0% 0/2 0%
Dcross 2/2 100% 2/2 100%
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Figure 5-24: e hand-selected points for the preplanned AUV front-following mission along a frontal
isotherm at constant depth. e waypoints were selected based on a ‘recent’ snapshot of the temperature
field at the selected AUV operation depth (30 m) on August 29th, 2006, at 06:00:00 GMT. e frontal
isotherm highlighted here with the blurry purple line is at 14.9 ◦C. e uneven spacing of the waypoints
attempts to maintain a local front intersect angle of approximately 45◦. e small grid squares are 1 km × 1
km.

e two missions to compare here to assess the performance of the preplanned (non-adaptive) front-

following zigzag are the two preplanned zigzags (Fig. 5-25). e preplanned front-following zigzag exhibited

reduced performance when compared to the preplanned straight zigzag for all applicable performance met-

rics (crossing Density, Efficiency, Excess Ratio, and Distance between Crossings). is is largely due to

the selection of the preplanned front-following waypoints, which were more spread out than the straight

zigzag waypoints in order to maintain an approximately 45◦ front intersect angle while guaranteeing coverage

across and along the predicted front (based on a recent horizontal slice of temperature at depth). If instead a

smaller-amplitude fixed front-following zigzag pattern had been chosen, it is likely that similar results would

have been observed, where the zigzag amplitude is too small to maintain coverage across the front when the

front is spatiotemporally dynamic in the small-scale to mesoscale.

When comparing the preplanned front-following zigzag to the adaptive zigzag (Fig. 5-25 and Table 5.11),

it is important to note that the adaptive zigzag displayed poor front tracking during both runs (similar to Fig.

5-13). Despite reduced performance of the poorly-executed adaptive zigzag mission compared to that of both

preplanned zigzag missions when looking at Efficiency and Excess ratio numbers, the adaptive mission still

succeeded in increasing crossing Density and decreasing Distance between Crossings. e caveat here is that

the adaptive zigzag did not capture much data in the along-front direction further than about 10km from the
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Figure 5-25: Runs 12–13: Performance metrics for Neptune’s preplanned front-following zigzag missions
(green triangles), Macrura’s preplanned straight zigzag missions (pink squares), and Unicorn’s adaptive front
tracking missions (yellow circles), plotted for each virtual experiment run. ese 3-AUV mission sets were
evaluated at two model time ranges. Better and worse values for each performance metric are indicated on
the plots.

starting location.

In summary, the results and analysis presented above from the comparison of adaptive zigzag, preplanned

straight zigzag, and preplanned front-following zigzag methods suggest that the use of this particular pre-

planned front-following zigzag results in a reduction in performance when compared to the preplanned

straight zigzag. It cannot be concluded, however, whether the adaptive zigzag mission was an improvement

(or not) over the preplanned zigzag missions without more virtual experiment runs over different time frames,

as done in the 2-AUV adaptive vs. preplanned straight zigzag runs (Runs 36–64).

Runs 14–21: 2D, vary detection loiter radius (adaptive)

ese 2D, 2-AUV (1 adaptive, 1 preplanned) virtual experiments maintained constant AUV zigzag amplitudes

and operational depth while varying the detection-phase loiter radius of the adaptive AUV, aiming to collect data

for an evaluation of the effect of loiter radius on the performance of the adaptive missions.

Runs 14–21 evaluated the effect of initial (detection-phase) loiter radius on the adaptive front tracking

zigzag mission. e loiter radii evaluated were 1000 m (Runs 14 & 18), 2000 m (Runs 15 & 19), 4000 m
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(Runs 16 & 20), and 8000 m (Runs 17 & 21). Each loiter radius was evaluated at two model time ranges.

e resulting performance metrics are plotted in Fig. 5-26, and general results are given in Table 5.12.

e results that matter most in this case, however, are trends of improvement or degradation in front detection

and tracking as the loiter radius is changed. ere is a general decrease in crossing Density and increase in

Distance between Crossings as loiter radius is increased, which suggests that a smaller loiter radius is better.

However, the Efficiency plot shows a distinct peak and the Excess Ratio plot shows a marginal minimum with

a 4000 m loiter radius for both time ranges (Runs 16 & 20). e combination of these results suggests that

4000 m or slightly smaller may be the optimal loiter radius. e smaller 2000 m loiter radius was selected

for the base adaptive front tracking mission in order to expedite initial detection of the front, though these

results suggest that Sampling Efficiency may have been sacrificed in doing so, and the AUV may be traveling

slightly more distance than necessary.
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Figure 5-26: Runs 14–21: Performance metrics for Macrura’s preplanned zigzag missions (pink squares) and
Unicorn’s adaptive front tracking missions (yellow circles), plotted for each virtual experiment run. Runs
14–21 evaluated effect of initial loiter radius on the adaptive missions. e loiter radii evaluated were 1000
m (Runs 14 & 18), 2000 m (Runs 15 & 19), 4000 m (Runs 16 & 20), and 8000 m (Runs 17 & 21). Each
loiter radius was evaluated at two model time ranges. Better and worse values for each performance metric
are indicated on the plots.

In summary, the results and analysis presented above from the evaluation of the effect of loiter radius on

the performance of the adaptive missions suggest that the use of a detection-phase loiter radius of 4000 m or

slightly smaller may be optimal for 2D adaptive front tracking performance.
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Table 5.12: Percentage of Runs 14–21 where adaptive mis-
sions were improvements over the preplanned zigzag mis-
sion, according to the performance metrics.

Run IDs
14–21

runs percent

ρ 7/8 87.5%
ϵ 7/8 87.5%
ER 7/8 87.5%
Dcross 7/8 87.5%

Runs 22–23: 2D, detection-phase loiter vs. spiral

ese 2D, 2-AUV (both adaptive) virtual experiments maintained constant AUV zigzag amplitude and operational

depth, with one AUV using the detection-phase loiter and the other using the detection-phase spiral, aiming to collect

data for a comparison of the effect of the detection-phase loiter vs. spiral on the performance of the adaptive missions.

Runs 22 & 23 compare the use of the detection-phase initial loiter to the detection-phase initial spiral

with both AUVs performing independent 2D adaptive front tracking simultaneously. Macrura (pink) used

the initial spiral and Unicorn (yellow) used the initial loiter. e resulting performance metrics are plotted in

Fig. 5-27, where each run is a different time range in the model. Here it is observed that the only consistent

performance metrics between the loiter and spiral detection phases over the two time ranges are Density and

Distance between Crossings (where one is just the inverse of the other). In these cases, it is seen that the initial

loiter has better overall results. However, given the toss-up for the Efficiency and Excess Ratio metrics and

the fact that only two data points where available, results are inconclusive.

In summary, the results and analysis presented above from the comparison of the effect of the detection-

phase loiter vs. spiral on the performance of the adaptive missions suggest that, lacking more data, results are

inconclusive as to whether the initial loiter or spiral pattern improves 2D adaptive front tracking more.
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Figure 5-27: Runs 22–23: Performance metrics for 2D adaptive front tracking missions, plotted for each
virtual experiment run. Macrura (pink squares) used a detection-phase initial spiral and Unicorn (yellow
circles) used a detection-phase initial loiter at two time ranges in the MSEAS model. e two AUVs operated
independently to track the front. e loiter vs. spiral missions were evaluated at two model time ranges.
Better and worse values for each performance metric are indicated on the plots.

Runs 24–31: 3D, adaptive zigzag vs. adaptive helix

ese 3D, 2-AUV (1 adaptively zigzagging in 2D, 1 adaptively helix-ing in 3D) virtual experiments varied the

AUV operational (central) depth and helix dimensions while maintaining constant zigzag amplitude on the adap-

tively zigzagging AUV, aiming to collect data for an evaluation of the performance of the 2D zigzag vs. 3D helix

adaptive front tracking behaviors.

Runs 24–31 evaluated the 3D adaptive helix front tracking mission against the 2D adaptive zigzag front

tracking mission. For these runs, Unicorn was assigned to the 2D adaptive zigzag mission and Macrura was

running the 3D adaptive helix mission. ese missions were centered at four different depths, and the helix

radius was set equivalent to center depth while the spacing between helix loops (2πc) was set to four times the

helix radius (to maintain 45◦ front intersect angles). e depth-centers selected for the virtual experiments

were 30 m (Runs 24 & 28), 100 m (Runs 25 & 29), 300 m (Runs 26 & 30), and 1000 m (Runs 27 & 31),

where radiushelix = depthctr and 2πc = 4radiushelix. Each different depth-centered set of missions was

evaluated at two model time ranges. e performance metrics results from these runs are plotted in Fig. 5-28.

For most of these runs, the 3D adaptive helix showed reduced performance (lower Efficiency, higher
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Figure 5-28: Runs 24–31: Performance metrics forMacrura’s 3D adaptive helix front tracking missions (pink
squares) and Unicorn’s 2D adaptive zigzag front tracking missions (yellow circles), plotted for each virtual
experiment run. Each different depth-centered set of missions was evaluated at two model time ranges. Better
and worse values for each performance metric are indicated on the plots.

Excess Ratio, and—for half of the runs—reduced crossing Density) when compared to the 2D adaptive zigzag

(see Table 5.13), with the lowest Efficiency and greatest Excess while the helix was centered at 1000 m due to

the AUV frequently straying too far from the front over the period of one helix loop. e highest sampling

Densities and smallest Distances between Crossings for the helix, however, occurred during the runs centered

at 30 m and 1000 m. For the helix centered at 30 m this was actually a significant improvement over the 2D

zigzags, since the helix tracked the front well with a smaller (30 m) radius (analogous to a smaller adaptive

zigzag amplitude) than the adaptive zigzag with a 500 m amplitude and thus collected a denser sampling of

front data. In the case of the helix centered at 1000 m having comparatively higher Densities and smaller

Distances between Crossings than the 2D adaptive zigzags, this apparent improvement in performance comes

with the caveat that the helix was continuously losing the front line and returning to the last detected front

crossing location (thus finding a ‘new’ crossing point right next to the previous one) after re-starting the helix

motion, rather than performing the helix behavior to its full extent. is resulted in a glut of front crossings

within a small area for the helix centered at 1000 m, but very little tracking along the front using the helix,

resulting in very poor performance despite the seemingly good Density and Distance between Crossings

metrics.
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Table 5.13: Percentage of Runs 24–31 where 2D adaptive
zigzag missions were improvements over 3D adaptive helix
missions, according to the performance metrics.

Run IDs
24–31

runs percent

ρ 4/8 50%
ϵ 7/8 87.5%
ER 7/8 87.5%
Dcross 4/8 50%

is overall reduction in performance from the 2D to the 3D adaptive front tracking is expected, given

that the 3D helix requires the AUV to travel a longer path (changing depth) as it crosses the front, rather than

gathering many points at the fixed helix-center depth. Since fewer points are available to the 3D adaptive

helix behavior to determine the presence and location of a front crossing point at the helix-center depth (there

may be as few as two points at the center depth on a given rotation of the AUV around the helix) than there

are for the 2D adaptive zigzag behavior at constant depth, there is higher risk of the helix losing the front

location as it travels through depth. For the runs centered at 30 m, 100 m, and 300 m, in fact, the reduction

in performance is somewhat balanced by the data set being collected, which is 3-dimensional in space rather

than just 2-dimensional. e 3D data set collected by the helix captures the distribution of temperature with

depth, making it possible to approximate the front’s structure as a plane in 3D space rather than just as a 2D

line. is means it is possible to successfully collect a 3D spatial distribution of temperature along the front

using this horizontal helix front tracking behavior without the need for a second AUV, with the concession

of a slight reduction in performance compared to the 2D adaptive zigzag behavior.

In summary, the results and analysis presented above from the evaluation of the performance of the 2D

zigzag vs. 3D helix adaptive front tracking behaviors suggest that, despite the slight reduction in performance

when compared to the 2D adaptive zigzag behavior, the use of the 3D adaptive helix behavior for front tracking

is still useful and important for capturing the coupled vertical and horizontal temperature distributions at the

frontal interface between two water masses with only one AUV.

Runs 32–33: 2D, adaptive zigzag in 3 km vs. 1 km resolution environment, AW06 domain

ese 2D, 2-AUV (both adaptive) virtual experiments maintained constant AUV zigzag amplitude, operational

depth and operational area (AW06 domain), with one AUV running in the linearly-interpolated 3 km resolution

SW06 ocean model and the other in the linearly-interpolated 1 km resolution AW06 ocean model, aiming to collect
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data for a comparison of model resolution (larger- vs. smaller-scale data variation) effects on 2D adaptive front

tracking performance.

Runs 32–33 evaluated the performance of 2D adaptive zigzag front tracking in higher-resolution models.

For these virtual experiments, both Unicorn and Marcura ran the same 2D adaptive missions individually.

e difference between the two AUVs was that Unicorn was running the 1 km resolution AW06 model and

Macrura was running the 3 km resolution SW06 model (used for all other previously-described runs). e

performance in the 1 km and 3 km domains was measured using the 1 km and 3 km models, respectively.

Again, the virtual experiments were evaluated at two model time ranges. e performance metrics results

from these runs are plotted in Fig. 5-29 and summarized in Table 5.14.
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Figure 5-29: Runs 32–33: Performance metrics for 2D adaptive zigzag front tracking missions, whereMacrura
was running the 3 km resolution SW06 model (pink squares) and Unicorn was running the 1 km resolution
AW06 model (yellow circles), plotted for each virtual experiment run. e 3 km vs. 1 km resolution missions
were evaluated at two model time ranges. Better and worse values for each performance metric are indicated
on the plots.

Based on the results from Runs 32–33, it is clear that front tracking performance from all performance

metrics was reduced when using the higher (1 km) resolution AW06 model for the virtual experiment environ-

ment instead of the usual 3 km SW06 model. is is likely due to BHV_FrontTrackNoBdry being sensitive to

all variations in temperature measured by the simulated CTD sensor sampling the linearly-interpolated grid-

ded model. It is also possible that increased zigzag amplitude or decreased front intersection angle may more
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Table 5.14: Percentage ofRuns 32–33where running a 2D
adaptive zigzag missions in a higher-resolution model was
an improvement over running the same mission in a lower-
resolution model, according to the performance metrics.

Run IDs
32–33

runs percent

ρ 0/2 0%
ϵ 0/2 0%
ER 0/2 0%
Dcross 0/2 0%

robustly sample and track a higher-resolution front by forcing the AUV to move beyond the smaller-scale

frontal isotherm variations before changing heading to cross the frontal isotherm again.

If the model resolution is higher, there is less smoothing in the interpolated data, and thus more smaller-

scale variation that exhibits more complex thermal structure. Actual in-water temperature measurements

can have variations on scales that are smaller than 1 m, which is much finer resolution than even the 1 km

resolution AW06 model tested here. e small thermal structure is good to sample and retain in a data set,

but can throw off temperature-based autonomy algorithms and behaviors as the temperatures quickly jump

around. To reduce the negative effect of in-water small temperature variations on the 2D mesoscale front

tracking behavior presented here, it will be crucial to either employ real-time smoothing or filtering of the

collected temperature data, or to tune the zigzag amplitude and front intersection angle to move the AUV

well beyond the complex frontal zone on each zigzag leg. (e full-resolution data would still be recorded for

future use, before any smoothing could be applied.)

Similar methods for increasing robust handling of noisy temperature data were applied to AUV adaptive

thermocline tracking methods by Wang et al. [40] during the FAF05 in-water exercise and prior virtual

experiments. eir temperature data were “boxed-averaged” over vertical and horizontal grids with resolutions

selected according to the oceanographic scales of interest, and the CTD noise was somewhat reduced by

estimating and rejecting the noise probabilistically. ey also evaluated a number of behavior configuration

values and combinations to tune their system for optimal thermocline tracking, according to the mission

objectives. A temperature binning method was also used in the adaptive thermocline tracking work presented

in Chapter 3 of this thesis and in Petillo et al. [3]. In the future, similar methods to those mentioned here

should be applied to the adaptive front tracking behaviors and temperature data processing described in this

chapter to improve performance in more realistic environments.
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Our 2D adaptive front tracking behavior had previously been tested and developed with only the 3 km

resolution model. us, these results suggest a necessity for smoothing the temperature data to approximately

3 km resolution as it is collected. is could be done by low-pass filtering the temperature data, keeping a

weighted temperature average over some time window as the ‘current’ temperature for a given AUV position—

reducing the higher-resolution temperature variations—, or by binning the temperature data spatially based

on a 3 km grid superimposed on the local x-y coordinate grid. e former two ideas have potential to be

simple yet robust solutions. e latter would require essentially constructing, storing, and constantly updating

a basic gridded model of collected temperature data and performing complex interpolation as is done with

the MSEAS models in virtual experiments and in [40], which can be processor-intensive. Another detractor

from using any sort of binning or low-pass filtering to a 3 km resolution would be the subsequent inability of

the AUV to accurately track more closely to the front to collect data from smaller-scale features such as any

turbulence structure at the frontal interface. Alternately, or in addition, further tuning of the adaptive zigzag

amplitude and front intersection angle can be evaluated and applied through future virtual experiments to

improve the adaptive front tracking performance in the 1 km and more realistic higher-resolution models.

In summary, the results and analysis presented above from the comparison of 3 km and 1 km model

resolution effects on 2D adaptive front tracking performance suggest that, for all performance metrics, the

use of the higher-resolution (1 km) model reduced performance of the adaptive zigzag behavior (when using

the tuned configuration parameters for virtual experiments in the 3 km resolution model) due to the behavior’s

sensitivity to all variations in temperature. us, it will be necessary to improve this behavior by low-pass

filtering or binning the environmental data to approximately 3 km resolution for use in both higher-resolution

models and in-water deployments. Additionally, further tuning based on performance evaluation of adaptive

zigzag amplitude and front intersection angle should be completed and applied for improving adaptive front

tracking in the 1 km and higher-resolution models.

5.9 Receiver Operating Characteristic Curves

Receiver operating characteristic (ROC) curves may also be applied to the virtual experiment data as a measure

of front tracking performance. ese curves compare the probability that the AUV performing adaptive 2D

front tracking will correctly detect a front (probability of detection, PD) to the probability that it will falsely

detect a front (probability of false alarm, PFA), for a variety of threshold values. e ROC curve for front

tracking is generated based on the probability density functions (PDFs) of the magnitudes of the temperature

gradients (|∂T/∂r|) in horizontal space at the front while front tracking (signal plus noise) and away from
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the front (noise). From these PDFs, the PD and PFA can be determined as the area under the curves for

the on-front and away-from-front AUVs, respectively, to the right of a threshold temperature gradient value.

e threshold value is selected based on the temperature change between the ends of each adaptive zigzag leg

and on the zigzag amplitude. Fig. 5-30 plots the resulting ROC curve for the 2D isotherm-based adaptive

zigzag front tracking method presented in this work against the ROC curve for thermocline tracking that

was presented in Chapter 3. is suggests that this front tracking method can have a decent probability of

detection (80%) with a reasonably small probability of false alarm (17%).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curves for Front Tracking (|dT/dr|) and Thermocline Tracking (|dT/dz|)

P
F A

P
D

 

 

|dT/dr|
P

D
: 2D Adaptive Front Tracking Zigzag

P
F A

: Constant Depth (away from front)

|dT/dz|
P

D
: Adaptive Thermocline Tracking Yoyo

P
F A

: Constant Depth at 60m (away from thermocline)

Baseline

Figure 5-30: ROC curves comparing the performance of the 2D adaptive front tracking method (|∂T/∂r|,
black) to the adaptive thermocline tracking method from Chapters 3 and 4 (|∂T/∂z|, magenta). e red
curve is a baseline for comparison, where the probability of detection, PD, is equal to the probability of false
alarm, PFA. Curves following the left and top edges of the plot exhibit ‘better’ performance.

5.10 Conclusion

e goals of the work presented in this chapter were to apply AAEA and Feature Tracking to adaptively sample

along and across an ocean front using only the data collected on board AUVs, gathering a synoptic data set of
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the position of the front over time while improving sampling efficiency and density over current preplanned

AUV sampling surveys.

To this end, three adaptive autonomy behaviors were developed for front tracking in 2D and 3D space,

with single and multiple AUVs: BHV_FrontTrackNoBdry (2D front-following zigzag), BHV_FrontTrackHelix

(3D front-following helix), and BHV_FolloweLeader (multi-AUV coordination for front tracking in the

horizontal plane). A number of performance metrics were developed for comparative evaluation of these be-

haviors. e 2D front tracking behavior’s performance was also evaluated against that of a preplanned zigzag

survey (representative of current methods used for collecting data along a front). A spatiotemporally dynamic

MSEAS model of the Mid-Atlantic Bight (MAB) region off the east coast of the U.S. was used as a testing

environment for virtual experiments, allowing these new AUV front tracking methods to be evaluated.

e front tracking behaviors presented here are essentially isotherm-following behaviors, since the across-

front temperature gradient can vary in the along-front direction and the uncertain angle at which an AUV

crosses the front and samples the temperature would affect the apparent temperature gradient at a given

location. e front tracking behaviors use a three-phase process (conceptualized in Fig. 5-5) to achieve front

isotherm tracking:

1. Detection: e AUV performs a survey of the local region to detect the front (loiter or spiral behavior),

an isotherm is selected to represent the front line, and a minimum of three front ‘crossing’ points are

collected to trigger the classification phase.

2. Classification: e AUV estimates the local front as a line using a weighted linear least squares ap-

proximation, requiring at least three crossing points to be within a specific spatiotemporal range of the

current time and AUV position to produce the linear approximation for tracking to begin.

3. Tracking: e heading of the AUV is set to intersect the front line estimate at a 45◦ angle. e

front estimate is updated when the AUV crosses the front on that heading, and the heading required

to intersect the front again (also at a 45◦ angle) is determined and set once the AUV has traveled a

specified distance from the front. is results in a zigzag path along the front that follows the front as

it shifts over space and time.

Overall, the 2D adaptive front tracking behavior presented here succeeded in improving front mapping

performance over that of a preplanned straight zigzag pattern at least 58% of the time in virtual experiments

(Runs 36–64: adaptive vs. preplanned straight zigzag). e performance metrics used to evaluate the adaptive

and preplanned front tracking behaviors are summarized in Table 5.15. Adaptive front tracking had the largest
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Table 5.15: Summary of performance metrics equations.

Performance Metric Equation
Better
Values

Significance

Crossing Density
[crossings/m]

ρ =
Ncross

Don_front
(5.21) higher*

How many front crossings were
made by the AUV per unit
length of the front line that was
tracked

Sampling Efficiency
[%]

ϵ =
Don_front

Dfront
× 100% (5.23) higher

e percentage of Dfront that
was tracked and sampled by the
AUV

Excess Ratio ER =
Dtotal

Don_front
(5.24) lower*

How much of the AUV’s travel
distance was in excess of the
distance along the front that the
AUV captured the front

Distance between
Crossings
[m/crossing]

Dcross =
1

ρ
(5.22) lower* e average distance the AUV

traveled between front crossings

Front Estimate
Error [m]

FEE =
Dfrom_front@|∂T/∂r|max on
a zigzag leg (5.25)

lower

Compares the |∂T/∂r|max

location to the local estimated
front location, as captured by
the AUV

Tracking
Confidence [%]

TC = 2

(
N+

Ntot

)
× 100%

(5.26)
higher

An evaluation of the confidence
level that the actual front was
followed/sampled by the AUV,
expressed as a percentage

* It is often desirable to maintain some across-front motion of the AUV, thus extremes of huge ρ and tiny
Dcross and ER values are not necessarily optimal.

and most consistent impact on front Crossing Density (ρ) and Distance between Crossings (Dcross), where it

was an improvement over the preplanned straight zigzag 89.7% of the time. Adaptive front tracking showed

less stark Sampling Efficiency (ϵ) and Excess Ratio (ER) improvements over the preplanned straight zigzag,

displaying improved numbers 62.1% and 58.6% of the time, respectively. It is also apparent that the start

location of the front tracking missions affects the performance of adaptive versus preplanned front tracking.

When the front tracking missions were moved north onto the shelf from the old mission area south of the

shelfbreak, the adaptive front tracking algorithms tended to track the front worse than the preplanned zigzag

despite the stronger across-front temperature gradient in the more northerly location. is was due to a

mesoscale slope-water eddy surrounded by an isotherm of the same temperature as the front that Unicorn

(adaptive AUV) was stuck in while trying to track along the front north of the MAB shelfbreak. e average

Tracking Confidence (TC) for the adaptive front tracking missions in Runs 36–64 was calculated as 59.2%,
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with a standard deviation of 9.5%, suggesting that the actual shelfbreak front is usually sampled in 25%-34%

of the range bins around the estimated front line. For the majority of the runs, the adaptive mission’s Front

Estimate Error (FEE) value was under 400 m, with standard deviations mostly under 150 m, suggesting that

the adaptive AUV tracked fairly close to the ‘actual’ front line. It is important to note here that the TC and

FEE values are only valid for 3 km resolution environments with linear interpolation (or similar) between

grid points and are not valid for higher-resolution models or the actual ocean environment without further

improvement to the front tracking behavior. In addition, the passing of tropical storm Ernesto in the MSEAS

model had little discernible effect on the adaptive front tracking performance.

Runs 0–7 (varying zigzag amplitudes) suggested that zigzag amplitudes of O(1000 m) or more are best

for the preplanned straight zigzag, while there is no definitive improvement to using a larger versus smaller

adaptive zigzag in the range of 100–5000 m amplitudes.

Runs 8–11 (multi-AUV follow-the-leader vs. rubber band) showed that both follow-the-leader and rub-

ber band behaviors were suitable for 2D multi-AUV adaptive front tracking, but that the follow-the-leader

behavior tended to improve the front tracking of both AUVs over using the rubber band behavior, whereas

the rubber band only improved the ‘follower’ AUV’s front tracking.

Runs 12–13 (adaptive vs. preplanned straight vs. preplanned along-front zigzag) are inconclusive as to

the improvement of the adaptive zigzag mission over the preplanned zigzag missions, or vice versa. More runs

during different model time ranges are needed, as done in Runs 36–64, to draw more definitive conclusions.

In addition, the set of preplanned front-following waypoints selected for these runs results in a reduction

in performance when compared to the set of preplanned straight zigzag waypoints used, suggesting that

preplanned front-following waypoints that are hand-selected by a person are not necessarily an improvement

in the case of a temporally dynamic front.

Runs 14–21 (varying adaptive loiter radius) suggest a significant Sampling Efficiency gain from a detection-

phase initial loiter radius of approximately 4000 m, though the range of 2000–4000 m for loiter radius is

acceptable due to the slight gain in crossing Density at lower radii without sacrificing too much Sampling

Efficiency.

Runs 22–23 (adaptive loiter vs. spiral) hint at only marginal adaptive front tracking improvement from

using the detection-phase initial loiter over the initial spiral. Coupled with the fact that only two data points

were available, results are inconclusive as to whether the initial loiter versus spiral pattern actually improves

2D adaptive front tracking more.

Runs 24–31 (2D adaptive zigzag vs. 3D adaptive helix) suggest a general reduction in front tracking
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performance when using the 3D adaptive horizontal helix compared to the 2D adaptive zigzag, except when

using the helix centered at 30 m. is reduction in performance is due to—and somewhat balanced by—the

fact that the helix is also collecting data over a continuous depth range (rather than just one depth) along and

across the front. at is, the 2D adaptive zigzag behavior collects all of its data points at a constant depth (thus,

it has a lot of data at the depth at which it is determining the front), whereas the 3D adaptive helix behavior

may have as few as two points collected at its center depth (at which it is determining the front) per period

of travel around the helix, making the helical front tracking much more sensitive to spurious data values or

smaller-scale temperature variations than the zigzag front tracking at constant depth. e 3D motion of the

helix will, however, allow the front to be approximated (in future work) as a plane instead of just a line, and

it adds a depth dimension to the coverage of the front where helical front tracking occurs.

Runs 32–33 (2D adaptive front tracking in a 3 km vs. 1 km resolution environment) show that, due

to poor performance with an increase in model resolution, some form of real-time temperature data binning

(low-pass filtering) may be necessary to achieve the same 2D adaptive front tracking performance results with

higher-resolution models and real data as done with the 3 km resolution SW06 model. Additionally, further

tuning based on performance evaluations of varying adaptive zigzag amplitude and front intersection angle

parameters should be completed and applied to improve adaptive front tracking in the 1 km and higher-

resolution models (similar to Runs 0–7).

An ROC curve performance analysis of the 2D adaptive front tracking method presented in this chapter

suggests that this front tracking method can have a decent probability of front detection and tracking (80%)

with a reasonably small probability of false alarm (17%). Although this is not ideal, it is very reasonable given

the dynamic environmental conditions and is on par with the ROC curve performance of the thermocline

tracking method.

Ultimately, the added complexity of using adaptive front tracking to sample along a front must be weighed

against the amount of human-AUV interaction and resources necessary to deploy a preplanned AUV survey

for the the same purpose. Preplanned surveys require an initial survey of the area (with ship-deployed or

towed instruments, AUVs, satellite data, or a combination thereof ) to find clues as to where the front might

be, AUV deployment on a preplanned path to collect data, AUV recovery or significant time with the AUV

on the surface to upload the data to the operators and scientists on the ship, time for human-based (often

computer-aided) data analysis and planning a new mission, and finally AUV redeployment with the new

mission. is preplanned survey cycle must continue until a sufficient data set has been collected or available

shipboard time has run out. As a counterpoint to preplanned front surveys, adaptive front tracking only
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requires the operator or researcher to have a rough idea of where a front might be, as the AUV will determine

the exact location and follow the front itself, requiring no shipboard data processing and no redeployment

or planning of new missions to maintain sampling along the front. is significantly reduces the time the

AUV spends not tracking the front (i.e., on the surface awaiting redeployment or conducting a much larger

amplitude zigzag to ensure frontal coverage) and frees up a ship’s resources for other scientific experiments

to be performed simultaneously. In conclusion, autonomous and adaptive front tracking techniques add up-

front complexity to an AUV’s software, but, once implemented, significantly reduce the labor and uncertainty

involved in efficiently gathering a synoptic data set characterizing an oceanographic front, making the use of

autonomous and adaptive front tracking methods worthwhile.

154



Chapter 6

Plume Tracking

6.1 Introduction

e ability to detect and track underwater plumes in an ever more efficient manner is relevant to both sci-

entists and civilians alike. ese underwater plumes may be in the form of hydrothermal vent plumes found

deep in the ocean, oil spills which may be far out at sea or near coasts or fishing grounds, harmful algal blooms

(HABs) that cause beach closures and make exposed shellfish toxic to humans, river outflow plumes of chem-

icals or suspended sediment, plumes of tracer dye, etc. Each type of plume has specific physical, chemical,

and biological properties, as well as characteristic spatial and temporal scales over which the plume’s area of

coverage changes significantly. Dynamic ocean features such as these are best sampled from a variety of per-

spectives (using complimentary sensor measurements and/or taking measurements from different positions

inside or outside of the plume), of which a few approaches are described in [4, 39, 41, 42, 46, 141–144].

e plume detection and tracking techniques described in the aforementioned papers have the common

approach of using AUVs to complete the bulk of the plume sampling, employing autonomous plume detec-

tion and tracking algorithms on board the AUVs when possible. However, for each group, a different type of

AUV is used to detect and track a different type of plume using different autonomy algorithms. ese differ-

ences make it difficult to compare the individual approaches to plume tracking. us, we propose to evaluate

a variety of AUVs based on their capabilities (design, mobility, deployment duration, on-board processing

Portions of this chapter are ©2010 IFAC. Reprinted, with permission, from S. Petillo and H. Schmidt, “Autonomous and Adaptive
Plume Detection and Tracking with AUVs: Concepts, Methods, and Available Technology,” Proceedings of the 9th IFAC Conference
on Manoeuvring and Control of Marine Craft. [5]
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power, etc.) in an attempt to find an optimal plume-to-AUV match.

Finally, we discuss the various autonomous and adaptive plume detection and tracking techniques that

have been tested and suggest a system of our own involving the use of a fleet of autonomously collaborating

AUVs that communicate in near real time using acoustic transmissions and adapt their motion to changes

in the environment to best detect and track a plume. Part of this approach is similar to the front tracking

methods described in Chapter 5 and, thus, employs the AAEA and Feature Tracking method described in

Chapter 3. Here we will also account for the fact that, depending on plume type, the AUV(s) will be either

looking for the approximately 2D spatial boundary of the plume’s non-buoyant layer in the horizontal plane,

or for the plume’s source location.

6.2 Plumes

Plumes are dynamic features that evolve over space and time. Below we describe three prominent types

of plumes, how they form, how they are characterized, and how we can detect them using AUV-mounted

sensors.

6.2.1 Hydrothermal Vent Plumes

Hydrothermal vents occur on the sea floor at circulation zones near underwater plate boundaries, most of-

ten along plate spreading centers. In these regions, seawater seeps down into the earth’s crust, undergoing

chemical reactions as it is rapidly heated within the rock below before it is ejected back up through a sea floor

hydrothermal vent and into the cold surrounding seawater. is chemical-filled vent fluid rises, reacts with

its surrounding environment, cools, mixes, and spreads out horizontally at some distance above the sea floor

to form a hydrothermal vent plume. is process is depicted in Fig. 6-1.

Hydrothermal vent plumes are characterized by the spatial extent of a plume’s non-buoyant layer above

the sea floor, which, according to [146], can extend tens to thousands of kilometers from the vent itself. us

far, the most successful way to find the source of a hydrothermal vent plume is to first find the plume, and

then track its chemical and physical signature back to its source. In particular, scientists examine temperature

anomaly, particle content, water velocity, chemical tracers (iron, manganese, helium, methane, hydrogen

sulfide), and bathymetric signatures in the water near potential hydrothermal vent sites to determine the

presence of a plume and vent field.

A number of sensors that detect the aforementioned chemical and physical signatures are given in table 6.1

(see [147] and [148] for further sensor details). Many of these sensors can be mounted off-the-shelf onto an
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Figure 6-1: Formation of a hydrothermal vent plume. Image credit: [145].

Table 6.1: Sensors to detect hydrothermal vent plumes and sources

Signature Sensors
Temperature
anomaly

CTD (Conductivity-Temperature-Depth) sensor

Particle content Optical sensors: transmissometer, nephelometer
Water velocity Acoustic sensors: ADCP (Acoustic Doppler Current Profiler),

sidescan sonar, multibeam sonar
Chemical tracers Optical sensors: SUAVE (System Used to Assess Vented

Emissions), ZAPS (Zero Angle Photon Spectrophotometer), eH
(redox potential) sensor

Bathymetry Multibeam mapping sonar, camera (still or video)

AUV, although some are still custom-made for oceanographic applications.

6.2.2 Oil Spills

ere are two primary sources of oil input into the ocean: natural seeps from beneath the sea floor that

account for about 50% of oil in the coastal ocean and oil spills (and oil runoff) from human activities (see

Fig. 6-2). Since the methods for detecting oil seeps are not within the scope of this chapter, we address only

oil spill characteristics here. When an oil spill results from human activities, the source location is often well

known, and scientists need to know the spatial extent of the resulting oil plume in order to assess damage

to the environment, flora, fauna, ocean-sourced food supplies, and coastal human populations. Although a

large portion of oil rises to the surface during a spill event to form a slick, over time (on the order of seconds

to years) the chemicals in oil react with the seawater and are consumed and broken down by microbes in the

water, leading to an eventual fallout of the remains of the oil into a layer in which it is neutrally buoyant
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Figure 6-2: Sources of oil in the ocean. Image credit: Jack Cook, [149].

and/or into a pile on the sea floor, where microbes in the sediment further break down the oil. As evidenced

in the work of [46], a significant amount of oil may be entrained in a neutrally buoyant layer well below the

sea surface long after the surface slick has been dispersed and before total fallout occurs.

Oil spills vary widely in horizontal extent depending on the type of source supply (e.g., ship leak, broken

well pipe on a drilling rig, shore runoff, etc.) and local flow characteristics. e underwater plume from

the leaking MC252 Macondo well site in the Gulf of Mexico, for example, exhibited 5-day-old oil that had

spread over 30 kilometers from the well head location when the team of [46] found and mapped the plume.

e residence time associated with oil in the ocean can vary from months to years, depending on the

severity of the spill/leak. Seep oil in particular remains on the surface or suspended in the water column for

anywhere from about 10 hours to 5 days before settling to the sea floor (see [149]). us, a similar time line

is likely for some oil resulting from spills.

Finally, the best way to detect the presence of oil in the water is to analyze the hydrocarbon concentration

of the water. ere are a number of sensors that have been used to detect hydrocarbons in the water remotely,

in a lab, and in situ. [150] have used thermal infrared sensors, laser fluorosensors, and radar to sense hydrocar-

bon concentration. Other techniques involve ADCP or Doppler Velocity Log sensors to record the currents

and predict spreading direction of the oil, while a mass spectrometer is used to detect the hydrocarbons.

6.2.3 Harmful Algal Blooms

Harmful algal blooms differ from hydrothermal vent plumes and oil seeps and spills in that HABs do not

have a source location feeding the plume (bloom). Instead, HABs are triggered when significant amounts

of nutrients (nitrogen and phosphorous) and light are sustained in a region, resulting in an abundance of
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algal growth (blooming) that is often visible by the human eye as tiny red, green, orange, or brown particles

(algae) floating in a thick layer near the surface of the water. Such areas are often classified as eutrophic zones

along the coast, since nutrient runoff from land usage gets trapped in the relatively shallow and warm coastal

waters, resulting in algal blooms. In such high concentrations, the toxins in some types of algae become lethal

to marine organisms that consume them (and to people that eat the contaminated seafood), and can even

result in a hypoxic zone due to the depletion of dissolved oxygen by the excess of algae.

Since HABs do not have a source, once the bloom is formed, it is transported largely by physical ocean

processes such as coastal currents, wind, buoyancy, mixing, tides, and eddies. is transport can carry the

bloom hundreds to thousands of kilometers. e vertical extent of the bloom is often on the order of tens if

centimeters, making it a nearly 2D feature in space, spreading out horizontally near the surface or along the

thermocline, covering 10–1000 kilometers in range (see [151]). e residence time of a given HAB varies

widely based on nutrients, light, and algal life cycle.

ere are a number of ways to detect and classify algae in a HAB, some of which are in situ, and some

must be used on samples in a lab (see [151]). In situ sensors for HAB detection:

• Nutrient monitors

• Antibody probes (for a phosphorous-regulated protein)

• Flow cytometry

• Chlorophyll in vivo fluorescence (not ideal, as not all HABs contain chlorophyll)

• Nucleotide probes

• Quantitative polymerase chain reaction (PCR)

Other sensors for HAB detection:

• Microarray chip technology

• Electrospray ionization mass spectrometry

• Visual microscopic examination of water/biomass samples (a slow and tedious process)

6.3 AUVs

Having classified the primary plume types that we would like to detect and track with AUVs, we now move

on to classify the abilities and traits of a variety of AUVs. Although this will not be a thorough classification
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of all AUVs, since there are many different commercial and made-in-house AUVs in the ocean community

today, we aim to generalize a number of AUVs into categories that will allow us to best select a type of AUV

to track a specific type of plume.

e most basic attributes to look at when comparing AUVs are speed, deployment duration (battery life),

propulsion (active or passive), range of motion control, depth rating, navigation method, communication,

hotel power load on board, autonomy system, hull shape, ease of retrofitting sensors, and what sensors it

carries ‘off the shelf ’. See table 2.2.

To pair AUVs with a type of plume it is best suited to detect or track, we will consider the two pri-

mary classifications of AUVs: gliders and actively propelled AUVs. For long-duration deployments (days to

months), the duration of gliders makes them the best type of AUV for the job. Multiple gliders distributed

in a coordinated manner are also marginally sufficient to track a HAB advected by ocean currents, since the

passive propulsion and resulting slow speed of gliders through the water are directly affected by the currents as

well, pushing the gliders in the same direction as the plume is advected (see [41,42]). For very deep missions

that are time-dependent (achievable in or requiring short mission time, as in hours or days), involve plumes

that are highly time-variant, or require tracking a plume to its source against the local currents, actively pro-

pelled AUVs are the better choice despite their shorter deployment duration. is includes quickly detecting,

tracking, and mapping an oil spill plume as in [46], as well as searching for hydrothermal vents near the sea

floor while the plume changes location due to deep currents as experienced by [39]. In these cases, actively

propelled AUVs may be used solo, or in a coordinated fleet if a meso- or large-scale plume must be mapped

as the plume advects with the changing currents. Actively propelled AUVs would also be useful in quickly

surveying the plume extent of a HAB in the horizontal plane, providing more of a snapshot of the HAB

position as the AUV(s) is(are) deployed from day to day (and retrieved to recharge overnight).

6.4 Plume Tracking Methods

With a knowledge of the capabilities of various AUVs and the characteristics of underwater plumes, there

are a variety of approaches to take towards autonomously and adaptively detecting and tracking plumes with

AUVs. Here we will look at the plume detection and tracking methods of a number groups and present the

preliminary methods proposed by our group.
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6.4.1 Related Literature

Tracking the general motion of HABs with AUVs (gliders, in particular) has been explored by [41] and [42].

[41] used a regional ocean model off of the coast of California to forecast the advection of an imaginary HAB

that is tagged by actual Lagrangian drifters in the region, while [42] look for “hotspots” of high-concentration

HAB patches using satellite and high-frequency radar data sets. Both use the frequently-updated remote

sensing information and in-water drifter positions to tag the HABs, and then run mission-planning algorithms

on a shore- or ship-side computer to update waypoint paths every few hours for gliders deployed in the area

to actively track the (imaginary) HAB as it advects. Although these are good approaches to HAB tracking, the

use of remotely sensed data or models requires extra time, computational power, and hard drive storage space

that is not available on board gliders, and often not available on actively-propelled AUVs either, requiring

connection of the AUVs to some shore- or ship-side computer to update the models and AUV paths.

e works of Farrell et al. [141] and Pang & Farrell [142] are very significant to this field, as they employ

actively-propelled AUVs to detect and track man-made plumes of Rhodamine dye back to their sources in

a relatively constant flow field within the bottom boundary layer of coastal waters (<30 meters deep). e

REMUS AUV used by the group in field experiments was equipped with an ADCP unit to record the currents

through the water column, a sensor that could detect trace concentrations of the Rhodamine dye for tracking

the plume, and on board autonomy algorithms that perform lawnmower pattern surveys in the horizontal

plane at constant altitude above the sea floor until the sensors detect the dye plume, at which point the AUV

switches autonomously into plume-tracking mode. In plume-tracking mode, it uses a combination of real-

time current data and dye concentration data it has collected to determine the direction of travel with the

highest probability of finding the dye source, zigzagging across the plume in the horizontal plane until it has

determined the source location. Pang [143] takes this one step farther using Artificial Potential Field methods

in simulation to improve upon source localization algorithms with the application of tracking hydrothermal

vent plumes to find the vent locations.

e work by Jakuba et al. [39] takes a somewhat different approach using a towed instrument package

with a CTD and optical backscatter (OBS) sensor to detect the non-buoyant plume emitted from hydrother-

mal vents at the Juan de Fuca Ridge, and then deploying WHOI’s ABE AUV to localize the hydrothermal

vents. e vent localization was done as nested lawnmower surveys of successively finer resolution using a

combination of eH, temperature, depth, and OBS sensors, multibeam bathymetric mapping, and photos for

creating photomosaics of the sea floor vent sites. e increased efficiency that would result from automating

the nested surveys and incorporating current measurements into vent localization is also discussed in the pa-
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per, and the resulting autonomous nested survey technique for sampling and mapping feature-rich areas in

hydrothermal vent fields is discussed by Yeorger et al. in [152].

Camilli et al. [46] took a reconfigurable, but not autonomous, zigzagging plume tracking approach to

detect and track the path of the underwater oil plume from the leaking Macondo well in the Gulf of Mexico

using WHOI’s Sentry AUV. Sentry’s mass spectrometer gathered hydrocarbon concentration data along its

path, sending snippets of data via acoustics back to the shipboard AUV operator for inspection in case the

AUV mission needed reconfiguring to keep the vehicle in contact with the plume. Towed instruments and

instruments cast over the side of the ship to collect further data and water samples also provided data to

augment and verify the data collected by Sentry. is is one example in which, if more on-board AUV

autonomy were employed to adapt the AUV’s motion to its sensor readings, much mission planning and

AUV redirection on the part of the AUV operators and scientific crew could have been eliminated, and AUV

excursions kilometers from the plume could have been significantly reduced, saving time and battery power.

e advantage to the approach taken by Camilli et al. was that it was reliable to implement and execute over

the very short time frame they had available for mission preparation, deployment, and recovery, even if the

signal from the plume were not nearly as clear as it was in this case. e autonomous algorithms they had

available and new eH sensor they were using had not been rigorously tested to be satisfactorily reliable with

potentially very weak hydrocarbon signals in such a pressing situation.

Finally, Cannell et al. [144] proved autonomous and adaptive plume mapping and boundary tracking

possible using a single AUV to map the outflow plume of cooling water from a nuclear power plant. e

AUV could adaptively zigzag across the plume and along the plume boundary.

6.4.2 Our Approach

We propose to employ a behavior-based autonomy architecture on board AUVs (both actively-propelled

and gliders) in order to make the adaptation of the AUVs’ motions to the environment fully autonomous.

Preliminary testing of autonomous and adaptive environmental feature tracking has already been successfully

completed on a number of models of actively propelled AUVs (see [3]), but the power restrictions on board

gliders have prevented the use of fully on-board autonomy thus far. A number of groups (including ours) are

currently looking into this problem, and we expect to see some fully autonomous gliders tested in the next

few years as more autonomy systems migrate onto low-power embedded computers.

It is easiest to attempt plume tracking with a single AUV due to the relative simplicity of deploying

and monitoring only one vehicle; however, it may be physically impossible to collect a synoptic data set
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representing a meso- or large-scale plume with only one AUV due to speed, battery life, and other constraints.

On the meso- and large- horizontal spatial scales (tens to hundreds of kilometers, or more) frequently covered

by dynamic underwater plumes, it is reasonable to assume that the use of multiple AUVs with the ability to

autonomously coordinate their own motions through acoustic (or radio-frequency, if absolutely necessary)

communication methods would be advantageous.

With fully autonomously-controlled AUVs in mind (both solo and coordinated in a network), we discuss

various approaches to tracking plumes with different characteristics below. We assume that non-buoyant

plume layers can be approximated as 2D when plume tracking in the horizontal plane.

Non-buoyant layer plume detection.

e search for a non-buoyant layer plume consists of motion in the horizontal plane coupled with depth

excursions along the vertical axis. e vertical motion is a yo-yo pattern to determine the depth range in

which the non-buoyant plume is floating. is allows all types of AUVs (gliders and otherwise) to be suited

to this task. e horizontal motion of an AUV may be a circular pattern centered around the source location

(if known) to determine the dominant direction that the plume has spread in, or it may be a rectangle, strait

line, or lawnmower survey pattern over an area where sources are predicted to be nearby (or if there is no

source, as in a HAB) in hopes of detecting a plume.

Plume source discovery.

To find an unknown source location after a plume is detected, detect and track the non-buoyant plume back

to its source. ere are a number of approaches to this which are best suited to actively propelled AUVs, with

the ability to make headway swimming against the currents and easily change heading if necessary. Gliders

are much slower to travel and maneuver, with a maximum speed through water of under 0.5 m/s (and often

<0.3 m/s), making little or negative headway against currents any greater than about 0.5 m/s.

Assuming an AUV has a current measuring device such as an ADCP on board, once the plume is detected,

the AUV may attempt to swim directly upstream against the current towards the presumed source location.

However, it is likely that the plume’s meandering motion from time-dynamic currents results in an indirect

path back to the source, requiring the AUV to perform a horizontal zigzagging motion to remain in contact

with the plume as it follows the plume upstream. If the plume is relatively skinny, O(1 km), and the currents

are largely constant in direction, as in [141] and [144], it is possible to use a single AUV to track the plume

back to the source, or map the plume. A more wide-spread or patchy plume may require multiple AUVs to
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most efficiently track upstream while maintaining contact with the plume. Another source discovery method,

mentioned by [39], tracks the plume in the direction (horizontally) of increasing vertical current velocity in

the non-buoyant layer. e active source, if it is on or near the sea floor, will spew a vertical jet of fluid and/or

particles, resulting in the largest vertical currents at the position above its location. Again due to the potential

for highly time-dynamic currents advecting a non-buoyant plume over a relatively short time scale (hours), an

autonomously coordinated network of AUVs should be deployed to improve plume sampling coverage and

work together to track the plume to its source, avoiding the spatial and temporal aliasing problem experienced

by [39] while tracking hydrothermal vent plumes with their single AUV over hours-long missions.

Plume boundary tracking.

For the times we want to track just the boundary position of a plume (assuming it is 2D in the horizontal

plane), there are two approaches we can take, depending on the spatial extent of the plume in the horizontal

plane. In these cases, the vertical yo-yo motion of a glider is unnecessary, its means of locomotion make it

slow, and most gliders cannot power the acoustic communication hardware necessary for multi-AUV missions

without drastically reducing deployment duration. us, we propose the use of an autonomously coordinated

network of actively-propelled AUVs for plume boundary tracking, much like that discussed in Appendix B

( [4]) and using front boundary tracking methods described in Chapter 5.

As noted above, a single actively-propelled AUV can track a plume boundary by zigzagging across the

entire plume width, if the plume is relatively skinny, O(1 km) wide. If a plume is much larger in horizontal

extent, more of a blob-shape, or highly dynamic in time, it is most efficient to employ multiple coordinated

AUVs to find and track the plume boundary. is involves autonomy on both a ‘global’ scale and a ‘local’

scale, as illustrated in Fig. 6-3. e global scale would ideally entail multiple AUVs communicating and

exchanging data using acoustics in real time to autonomously coordinate their search patterns to find the

plume boundary, and then re-arrange their positions along the boundary of the plume to maintain optimal

spacing between AUVs and collect a synoptic data set around the entire plume boundary. On the local scale,

each AUV will track the plume boundary in its immediate vicinity by zigzagging in and out of the plume across

the boundary, using adaptive autonomy to adjust its direction of travel in real time as the edge of the plume

shifts in space and time, similar to the method used by [144]. In order to keep adaptive and autonomous

plume tracking robust to ‘holes’ in the plume and small variations in the local plume boundary position, each

AUV would keep track of “inside-of-plume” and “outside-of-plume” samples (a boolean indicator) within

some temporal or spatial range from its current position, averaging over the samples to determine whether it
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Figure 6-3: Concept for multi-AUV coordination and tracking of a plume boundary on the ‘global’ scale,
and ‘local’ scale tracking of the plume boundary using a zigzag pattern across the boundary in the horizontal
plane. e circles are range rings around each AUV, specifying the range within which all samples collected
by the AUV may be considered current measurements of the plume (all samples within the characteristic time
and spatial scales of the dynamic plume).

has most likely left the plume (and should reverse its travel direction), or is still in the plume. Preliminary

details of the setup, implementation, and logistics of this multi-AUV plume boundary tracking system are

described in [4] and Appendix B.

6.5 Conclusion

It is relatively inefficient to go to sea to tow instruments from a ship in extensive survey patterns in hopes of

detecting the signature of an underwater plume. While it is more efficient to deploy ROVs or pre-programmed

AUVs for this purpose, an ROV requires constant supervision and can only travel as far and deep as its

tether will reach, while a pre-programmed AUV must transmit data to the shore lab or ship lab for extensive

data analysis by the scientists before refining the AUV’s search pattern. us, in this chapter we gather and

present information on the plume characteristics of hydrothermal vent plumes, oil spills, and harmful algal

blooms, and pair the various types of plumes with types and abilities of AUVs that we believe would be most

efficient to track each plume type or find a plume source. With this plume-AUV pairing knowledge, we have

determined that the most efficient approach to dynamic plume and plume source tracking is to use a fleet
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of autonomously-coordinated, actively-propelled AUVs, each with an individual on-board autonomy system

that allows for autonomous adaptation of the AUV’s motion to changes it senses in the local environment (e.g.,

hydrocarbon concentration drops as an AUV swims out of an oil plume, so the AUV autonomously changes

heading to swim back into the plume). e multi-AUV approach to plume tracking, with autonomous

adaptation of AUV motion to other AUVs and to changes in the environment, offers the opportunity to

efficiently collect spatiotemporally synoptic data sets of plumes and plume sources that are essential to getting

the most out of limited at-sea time and to better understanding and monitoring these ocean features.

Plume tracking methods conclude the extent to which we have investigated complex autonomous and

adaptive ocean feature tracking methods on board AUVs. e methods covered throughout this thesis will

be summarized in Chapter 7, as well as some potential future directions for extending this work.
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Chapter 7

Conclusion & Future Directions

e goal of this work was to develop a method of adaptively and autonomously tracking hydrographic features

using AUVs, based solely on the data that the AUVs can collect and process on board, in real time. e

constraints imposed upon the development of this method were to use AUVs to sample and track features

1) adaptively to account for the dynamic nature of hydrographic features, 2) collaboratively between AUVs

(and other marine platforms) to collect data sets exhibiting improved synopticity for feature detection and

classification, and 3) autonomously such that the AUVs determine the spatiotemporal positions or boundaries

of the features, to more efficiently detect and track the features with as little human intervention as possible.

Chapter 1 gave an introduction to the work presented in this thesis, including motivation, constraints,

and the proposed approach to autonomous and adaptive oceanographic feature sampling and tracking that is

presented from concept to implementation and field results throughout the rest of this thesis.

Chapter 2 provided the technical and oceanographic background for the thesis. It explained some of the

available AUV technologies, the challenges of working with AUVs in the ocean environment, and the concept

of characteristic spatiotemporal scales of oceanographic features. It also looked at past and current methods

of oceanographic feature tracking from the literature to further motivate the work in this thesis.

Chapter 3 introduced the concept of Autonomous and Adaptive Environmental Assessment (AAEA) of

oceanographic features using AUVs. is concept was then applied to thermocline tracking with AUVs as a

proof-of-concept taken from theory to implementation. ermocline tracking results were given for multiple

field experiments.

Chapter 4 described the Internal Wave Detection Experiment in the Tyrrhenian Sea in 2010. is ex-

periment was designed to showcase the use of autonomous and adaptive thermocline tracking coupled with

multiple autonomously coordinated AUVs to capture the signals of any passing internal waves. e results
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characterizing the detected internal waves were also presented.

Chapter 5 explored autonomously and adaptively detecting and tracking underwater fronts in detail.

ese features are often significantly complex and dynamic in both horizontal space and time. 2D, 3D, and

multi-AUV front tracking behaviors that have been developed for this work and tested in virtual experiments

were described, and results from the tests in a simulated MSEAS ocean model environment of the Mid-

Atlantic Bight region were presented.

Chapter 6 explored concepts and approaches for autonomously and adaptively detecting and tracking

various types of underwater plumes.

is thesis has applied the process of Autonomous Adaptive Environmental Assessment and Feature

Tracking on board AUVs to the sampling and tracking of a number of oceanographic features in the dy-

namic ocean environment. AAEA is a process by which an AUV autonomously assesses the hydrographic

environment it is swimming through in real time. is assessment is essentially the detection of hydrographic

features of interest and leads naturally to the subsequent active/adaptive tracking of a selected feature. e

detection-tracking feedback loop setup with AAEA currently aims to use solely an AUV’s self-collected hy-

drographic data (e.g., temperature, conductivity, and/or pressure readings), along with a basic quantitative

definition of an underwater feature of interest, to detect and track the feature. Feature tracking must be both

autonomous in the sense that the AUV operator is not involved in guiding the vehicle outside of commanding

it to “track feature X,” and adaptive in the sense that, as a dynamic feature evolves over space and time, the

AUV will recognize any changes and alter course accordingly to retain data coverage of the feature.

e features explored for AUV sampling and tracking in this thesis included thermoclines, internal waves,

fronts, and plumes, in increasing order of complexity. e feature detection and tracking methods developed,

using both individual and multiple AUVs, have provided increased efficiency and synopticity in sampling,

while reducing the amount of human guidance necessary to collect the desired data sets.

Chapters 3 & 4 presented methods of autonomous and adaptive thermocline tracking and internal wave

detection with multiple AUVs, which have been validated successfully in field experiments. e Internal

Wave Detection Experiment in particular has also contributed new oceanographic findings to the scientific

community, characterizing internal waves in the Tuscan Archipelago Basin—in the Tyrrhenian Sea west of

Italy—that were previously unknown to the researchers studying the area. Chapter 5 discussed a novel method

for front tracking, including autonomy behavior implementations for 2D, 3D, and multi-AUV autonomous

and adaptive front tracking. Virtual experiment results from testing the front tracking behaviors reveal a

general improvement in efficiency and increase in along-front sampling density over conventional preplanned-
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path methods, as well as a reduction in distance traveled that did not track along the front. e only downfall

to the 2D front tracking behavior as it stands is the sensitivity to small-scale (<3 km) temperature variations

that was observed in the higher-resolution ocean model it was tested in. Chapter 6 researched various types

of underwater plumes and devised new concepts and methods that could be implemented to track them in

the future, including the use of multi-AUV front tracking methods that were developed in Chapter 5 to

synoptically track along plume boundaries dynamic in space and time.

7.1 Looking Ahead

ere are many extensions of this research as AUVs become more widely used by the oceanographic commu-

nity. e first step is to further improve the 2D front tracking behavior by adding front detection and front

temperature selection using the temperature at the peak azimuthal temperature gradients around a circular

initial loiter. e next objective would be to decrease the sensitivity of the 2D front tracking behavior to

small-scale changes in temperature by including active binning or time-averaging techniques to smooth the

data in real time, essentially applying a low-pass filter to the raw data, and by tuning the front tracking config-

uration parameters (zigzag amplitude and front intersection angle) to optimize performance according to the

data resolution available. en the front tracking with smoothing could be re-evaluated in virtual experiments

using a high-resolution model (say, a 1 km resolution ocean model superimposed with 1 m resolution ‘noise’

data taken from AUV-collected field observations of temperature). Once the tuned front tracking behavior

with smoothing has been validated in virtual experiments, it will be immediately ready for field testing on

a thermal front using any actively-propelled AUV with a CTD and decent navigation. Field testing of the

multi-AUV follow-the-leader behavior should also be done at this stage, both with and without front tracking

behaviors running simultaneously. ere is also room for more research into implementing 3D, multi-AUV

front tracking with AUVs distributed throughout the water column to better characterize the interface be-

tween the two water masses that meet at the front. In regard to plume tracking, some groundwork has been

laid here for autonomous and adaptive plume tracking behavior development based on the methods presented

in this thesis, but there is a good deal of development, evaluation, and re-evaluation to be completed before

these or related plume tracking methods can be fielded with confidence.

Finally, there are a multitude of other features that can be sampled more efficiently and synoptically

with AUVs using the foundational methods and algorithms developed throughout this thesis. e use of

temperature as the tracer of choice here can readily be exchanged for other tracers such as salinity, sound

speed, density, chemical concentration, dissolved oxygen concentration, flow velocity, or even bathymetry, to
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name a few. In the case of thermocline tracking, the same algorithms have already been successfully tested in

tracking the ‘acousticline,’ and it is up to future AUV operators and scientists to find creative new ways to put

these feature tracking methods and algorithms to use to improve their oceanographic sampling techniques.
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Appendix A

MSEAS Integration

A.1 LAMSS-MSEAS Interface

is appendix describes the interface between environmental sensors on board a simulated AUV in the MIT

Laboratory for Autonomous Marine Sensing Systems (LAMSS) AUV Autonomy Simulator and the Multi-

disciplinary Simulation, Estimation, and Assimilation Systems (MSEAS) ocean models.

A.1.1 Virtual Experiment Environment

e LAMSS AUV Autonomy Simulator allows the user to run virtual AUV experiments using AUVs running

autonomy behaviors with a variety configurations using acoustic communications (or a simulation thereof )

and sensor models. e MSEAS group creates, develops and utilizes physics-driven numerical models of

dynamic oceanographic environments based on data from current and historical in situ and remotely sensed

measurements. ese models and data are used for ocean forecasting and nowcasting, dynamical diagnostics,

and as environments for simulations and virtual experiments that benefit from incorporating a dynamic ocean

model to verify performance. us, the combined LAMSS-MSEAS interface, which allows virtual AUV

experiments to be tested in a dynamic ocean model environment, is shown in Fig. A-1.

e boxes marked in red represent the simulated processes. Most of the simulated processes use the

uField toolbox, which contains a number of tools for supporting multi-vehicle missions where each vehicle is

Portions of this appendix are reprinted, with permission, from A. Balasuriya, S. Petillo, and A. Yaari, “LAMSS-MSEAS Interface
Control Document,” 2013. Unpublished.
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Figure A-1: LAMSS-MSEAS simulator interface.

connected to a shoreside/topside community. In Fig. A-1, AUV simulator components are shown in the left

and shoreside/topside components are shown on the right.

e iSensor module in Fig. A-1 represents the software interface with a physical sensor in a real vehicle

and with a simulated sensor in a simulated vehicle. In virtual experiments, iSensor requests sensor data from

the MSEAS model using uField tools as illustrated in Fig. A-2. In the LAMSS simulator, two instances of

the iSensor module are iCTD_OceanModel and iADCP_OceanModel, which stream data for the CTD and

ADCP respectively.

e messages being passed between modules on a simulated AUV to create the LAMSS-MSEAS inter-

face include a request message from iCTD_OceanModel or iADCP_OceanModel on the AUV to obtain

the environmental characteristics, SIM_OCEANENV_REQUEST, which is re-packaged by uFldOceanEn-

vSensor with a unique request identification number and the most recent time and AUV position into the

SIM_OCEAN_MODEL_REQUEST message. e SIM_OCEAN_MODEL_REQUEST is then sent to

pOctaverMIT (Fig. A-3), which queries the MSEAS ocean model for the ocean characteristics at the time

and location requested through an Octave interface (getmseas_octave_new.m and readmseaspe_octave.m), re-

sulting in the reply message, SIM_OCEAN_MODEL_REPORT, containing the ocean characteristics along

172



MOOS/IvP

uFld and Ocean Model

uFldShoreBroker

uFldOceanEnvSensor

uFldNodeComms

pOctaverMIT

MOOS/IvP

Command and Control

Goby-2 iCommander

Topside

Environmental Model

Numerical Ocean Model

Vehicle /

Dynamics

Physical 

Sensor

MOOS/IvP

AUV Mako

iSensor

Vehicle / 

Dynamics

Physical 

Sensor

Goby-2

pHelmIvP

iVehicleCtrl

Addtl MOOS

DCCL

Commands

DCCL

Reports

Simulated Acous!c Modem

uFldNodeBroker pNodeRpt

pMarineSIM

MOOS/IvP

Glider Hammerhead

iSensor Goby-2

pHelmIvP

iVehicleCtrl

Addtl MOOS

DCCL

Commands

DCCL

Reports

Simulated Radio Modem

uFldNodeBroker pNodeRpt

pMarineSIM

SIM_OCEANENV_REQUEST
vname=mako,stype=ctd

S
IM

_
O

C
E

A
N

_
M

O
D

E
L
_

R
E

Q
U

E
S

T

Id
=

1
,v

n
a

m
e

=
m

a
k

o
,sty

p
e

=
ctd

...

Virtual Ocean Environment

Figure A-2: iSensor request for data from shoreside/topside.

with the information from the request message. is reply is then consumed by uFldOceanEnvSensor (Fig.

A-4), which strips the unique ID number and transfers the environmental data back to iCTD_OceanModel

or iADCP_OceanModel as SIM_OCEANENV_REPORT. e contents of SIM_OCEANENV_REPORT

is then used by various modules and behaviors on the AUV. e aforementioned messages and modules are

detailed below.

SIM_OCEANENV_REQUEST = “vname=vehicle name, stype=sensor type”

vname – e name of the underwater vehicle

stype – Sensor type (e.g., for CTD data stype=ctd or for ADCP data stype=adcp)

SIM_OCEAN_MODEL_REQUEST = “id=...,vname=...,stype=...,x=...,y=...,lat=...,lon=...,depth=...,time=...”
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Figure A-3: pOctaverMIT requests data from MSEAS through getmseas_octave_new.m and readmsea-
spe_octave.m Octave scripts.

id – Request ID

vname – Requested vehicle name

stype – Type of sensor, e.g., CTD or ADCP

(x,y) – Local coordinates of the data requested

(lat,lon) – Global coordinates of the data requested

depth – Depth of the data requested

time – Time at which data is requested

pOctaverMIT (a derivative of pOctaver by Arjan Vermeij at CMRE, Italy) is used to execute Octave

scripts (M-files) based on messages passed through the MOOS database in the LAMSS AUV Simulator. In

this case, pOctaverMIT is configured to read the MSEAS ocean model CTD/ADCP data at the position

and time requested by the AUV, as shown in Figs. A-2 and A-3. pOctaverMIT initializes the paths to the

MSEAS ocean model NetCDF files containing the environmental data, sets the MOOS variables that the

Octave script will require as input and output, sets the path to where the Octave script resides, and sets the

name of the function in the script.
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Figure A-4: iSensor receiving sensor data from MSEAS using uField tools.

e pOctaverMIT configuration for querying MSEAS models is as follows:

ProcessConfig = pOctaverMIT/MSEAS

{

common {

log: false

app_tick: 1

comm_tick: 1

verbosity: VERBOSE

initializer {

type: INI_STRING

moos_var: "NC_FILE_PATH_TS"

sval: "$(MISSION_ROOT)/cruise/current/data/environment/pe_out_ts.nc"

}
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initializer {

type: INI_STRING

moos_var: "NC_FILE_PATH_V"

sval: "$(MISSION_ROOT)/cruise/current/data/environment/pe_out_vrot.nc"

}

initializer {

type: INI_DOUBLE

moos_var: "MSEAS_START_TIME"

dval: 1156759200

}

initializer {

type: INI_DOUBLE

moos_var: "NESTED"

dval: 0

}

}

in_variable: "SIM_OCEAN_MODEL_REQUEST"

in_variable: "NC_FILE_PATH_TS"

in_variable: "NC_FILE_PATH_V"

in_variable: "POCTAVERMIT_START_TIME"

in_variable: "MSEAS_START_TIME"

in_variable: "NESTED"

out_variable: "SIM_OCEAN_MODEL_REPORT"

out_variable: "MSEAS_MODEL_TIME"

octave_search_path: "~/lamss/src/octave/mseas"

octave_function_name: "getmseas_octave_new"

publish_time: NOW

}
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Initialization (initializer) & input variables (in_variable):

NC_FILE_PATH_TS – Path to the MSEAS model NetCDF file containing temperature & salinity data

NC_FILE_PATH_V – Path to the MSEAS model NetCDF file containing 2D or 3D current data

MSEAS_START_TIME – Desired UTC start time within the model time range (e.g.,

1156759200; if out of the model range, it will be automatically shifted in time until it is within), or 0 to

start at the first available time slice of the model, or -1 to set the start time in the model based on the current

actual time

NESTED – Are we using nested MSEAS models? 1=yes, 0=no

Other input variables (in_variable):

SIM_OCEAN_MODEL_REQUEST – String containing the sensor type and AUV position and time that

the ocean model data is being requested for. See configuration above.

POCTAVERMIT_START_TIME – Time pOctaverMIT started running, used to shift the start time of the

virtual experiment to within the temporal bounds of the MSEAS model.

Output variables (out_variable):

SIM_OCEAN_MODEL_REPORT – String containing the sensor type and AUV position and time that

the ocean model data is being requested for, plus the ocean model data simulating the sensor outputs (i.e.,

temperature, salinity, & sound speed, or u, v, & w current components). See configuration below.

MSEAS_MODEL_TIME – String containing the model time (different from the actual time) associated

with the values output in the SIM_OCEAN_MODEL_REPORT.

SIM_OCEAN_MODEL_REPORT = “id=...,vname=...,stype=...,x=...,y=...,lat=...,lon=...,depth=...,time=...,

sensor_parameters”

id – Request ID

vname – Requested vehicle name

stype – Type of sensor, e.g., CTD or ADCP

(x,y) – Local coordinates of the data requested
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(lat,lon) – Global coordinates of the data requested

depth – Depth of the data requested

time – Time at which data is requested

sensor_parameters – In the case when stype=ctd, sensor_parameters will be “temperature=...,salinity=...,

soundspeed=...” and when stype=adcp it will be “u=...,v=...,w=...”

When configuring the in_variable and out_variable fields, the order in which the variables are defined in

the configuration must match the order in which they are input to and output from the Octave function/script

that is being called.

Other configuration parameters:

octave_search_path – Path to where the desired Octave script resides

octave_function_name – Name of the Octave function/script to execute using the aforementioned input &

output MOOS variables

publish_time – When to publish the out_variable. NOW will publish immediately on each iteration of the

Helm

For the MSEAS interface, getmseas_octave_new.m is run in Octave through pOctaverMIT. is script

queries readmseaspe_octave.m and get_petim0_octave.m, which are slightly altered, Octave-compatible ver-

sions of the original MSEAS-supplied scripts for reading MSEAS NetCDF files (respectively readmseaspe.m

and get_petim0.m, originally written for MATLAB). e readmseaspe_octave.m and readmseaspe.m scripts

should not be changed without consulting the MSEAS group! When readmseaspe_octave.m is queried by

getmseas_octave_new.m, the requested environmental data value (i.e., temperature, salinity, u current, v cur-

rent, or w current) is returned for the position and time of the environmental ‘sample’ requested by the AUV.

ese environmental data are then re-packaged with the request message by getmseas_octave_new.m and

published to the MOOSDB as the out_variable, SIM_OCEAN_MODEL_REPORT.

uFldOceanEnvSensor on the shoreside/topside will then re-package the report—as required to keep with

the generalized sensor simulation structure of the uField toolbox—and send it to the vehicle using uField

tools, as shown in Fig. A-4.

SIM_OCEANENV_REPORT = “vname=...,stype=...,x=...,y=...,lat=...,lon=...,depth=...,time=...,
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sensor_parameters”

vname – Requested vehicle name

stype – Type of sensor, e.g., CTD or ADCP

(x,y) – Local coordinates of the data requested

(lat,lon) – Global coordinates of the data requested

depth – Depth of the data requested

time – Time at which data is requested

sensor_parameters – In the case when stype=ctd, sensor_parameters will be “temperature=...,salinity=...,

soundspeed=...” and when stype=adcp it will be “u=...,v=...,w=...”

e virtual experiments can also be configured to work without the uField tools. is is desirable in the

cases where the missions being simulated are soon to be implemented on AUVs deployed in the real ocean

(where uField tools cannot be used). It is also desirable in cases where multiple AUVs are being simulated on a

single computer and processing power is limited (uField tools are more processing-intensive than workarounds

that break out of the uField structure but achieve an identical virtual-experiment result).

To eliminate the use of the uField chain in virtual experiments, we simply bypass all of the communi-

cations that are set up in the uField community (by simply not using the ‘ufld’ flag described below), but

retain the use of uFldOceanEnvSensor under the alias of uSimOceanEnvSensor through the creation of a

new configuration plug, uSimOceanEnvSensor.plug, that is identical to that of uFldOceanEnvSensor.

A.1.2 Mission Simulation

Commands:

ese commands are run from the topside and vehicle directories of the missions-* repositories to begin a

virtual AUV experiment using the MSEAS ocean models.

> cd ~/missions-lamss/topside

> ./simulation_launch.sh mseas mseas_display warp=10

> cd ~/missions-lamss/vehicletype/vehiclename

(e.g., > cd ~/missions-lamss/auv/unicorn)

> ./simulation_launch.sh mseas warp=10

179



Flags:

mseas – Use the high-fidelity environmental fields generated by MSEAS, rather than the default databases

for bathymetry and CTD simulation. Note: can be run with or without the ufld flag.

ufld – Use the MOOS-IvP uField toolbox for emulating a multinode communication environment. Replaces

the default legacy network simulator iModemSim, compared to which it provides a number of advantages,

most importantly the capability to simulate the network in warped time.

Note: When the ufld flag is used (thus using the uField structure for communication between the vehicles

and topside/shoreside), the topside simulation must be launched before and vehicle simulations are launched.

Otherwise, uField may not function properly.

A.2 Topside Tools

Two topside tools have been developed for use in virtual experiments involving MSEAS models and in real

ocean deployments.

A.2.1 MSEAS Display

e MSEAS Display tool is used in conjunction with the Google Earth interface for Ocean Vehicles (GEOV)

to display temperature, salinity, or currents as a dynamically updating overlay of color in Google Earth while

monitoring AUVs in virtual experiments. Fig. A-5 shows a sample screen shot of this display. is display

was particularly valuable for development, testing, simulation, and evaluation of the front tracking behaviors

described in Chapter 5.

A.2.2 CTD Display

e CTD Display tool is used both during virtual AUV experiments in MSEAS ocean models and during

real AUV deployments. is tool displays the temperature and salinity measurements and the derived sound

speed and density values collected by the AUV. ese four environmental properties each are plotted against

sample time, 3D location, and depth, resulting in a spread of 12 plots. Fig. A-6 shows the near real-time CTD

display from the Internal Wave Detection Experiment described in Chapter 4. ese plots are updated each

time the topside receives an acoustic packet containing the latest CTD data from an AUV, which is roughly

every few minutes during real deployments and in virtual experiments. is gives the topside AUV operator
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Figure A-5: e topside MSEAS display (colorful temperature overlay) running in Google Earth using the
GEOV tool to visualize the paths and positions of the AUVs (yellow and magenta paths and arrows) during a
virtual experiment. e MSEAS temperature overlay updates on a timer set by the user during configuration
such that the dynamic environment in the MSEAS model is properly visualized through updating the overlay
over time. e overlay updates are based on the current time and an AUV’s current location and depth, which
is especially useful when testing environmentally adaptive autonomy behaviors in virtual experiments.

a better sense of the environment an AUV is encountering in near real time, allowing for initial validation

and evaluation of environmentally adaptive AUV behaviors as a mission progresses. It also allows the topside

operator to predict whether irregularities in expected AUV behavior might be caused by the environment,

such as poor acoustic communications at the thermocline depth or problems surfacing due to freshwater

lensing.
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Figure A-6: e near real-time topside CTD display from the GLINT ’10 Internal Wave Detection Experi-
ment (details in Chapter 4).

182



Appendix B

Constructing a Distributed AUV Network

for Underwater Plume-Tracking Operations

B.1 Introduction

e underwater environment itself is hazardous to humans, as we cannot survive without air to breathe

and our bodies cannot withstand the ambient pressure deep underwater, yet we could not exist without the

presence of large bodies of water on our planet. e health of the oceans has a significant impact on both

marine and human life. is has been observed most recently through the impact of offshore oil spill plumes

and harmful algal blooms (HABs) on coastal waters. However, even in healthy ocean conditions, the ocean

environment can be dangerous for humans, such as near the extreme temperatures and chemicals spewing

out of hydrothermal vents into fluid clouds deep in the ocean. ese features of the ocean environment

create a challenge for underwater exploration and oceanographic data collection. e use of autonomous

(unmanned) underwater vehicles (AUVs) in such environments is crucial to safely and efficiently completing

these tasks, as they can be designed to withstand biological and chemical contaminants, high pressures, and

extreme temperature variations. AUVs (especially actively-propelled ones) can also be programmed to react

autonomously and adaptively to changes in their environments by controlling their own motion, unlike

is appendix is ©2012 Stephanie Petillo et al. Reprinted, with permission, from S. Petillo, H. Schmidt, and A. Balasuriya, “Con-
structing a Distributed AUV Network for Underwater Plume-Tracking Operations,” International Journal of Distributed Sensor Net-
works: Special Issue on Distributed Mobile Sensor Networks for Hazardous Applications. [4]
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drifters, moored sensing arrays, or sensing buoys.

Oil spill plumes, HABs, and clouds of hydrothermal vent fluid in particular can each be viewed as a type

of underwater plume (much like a cloud or plume of smoke), evolving in 3D space and over time. ese

plumes can range in scale from tens of meters to hundreds of kilometers in horizontal space at their neutrally

buoyant depths and move with the prevailing currents, as well as spread and diffuse into the surrounding water

masses [46,68]. Trying to track meso- and large-scale features (as plumes often are) with relatively small AUVs

requires the coordinated effort of multiple AUVs, due largely to both battery life and AUV speed limitations.

Willcox et al. [153] take a unique approach to this challenge in which they determine an optimal AUV survey

and sampling strategy by quantifying an AUV’s energy efficiency, quantifying the degree of synopticity with

which an AUV can measure an ocean process, and accounting for inherent survey errors in the sampling

strategy. Plume tracking also brings forth the problem of spatiotemporal aliasing of data when the plume

is too large and/or moving too fast for a single AUV to collect a cohesive data set to accurately detect and

track the plume edges as the plume evolves in space and time. at is, the samples taken by the AUV(s)

must overlap within the plume’s characteristic temporal and spatial scales to collect a synoptic data set. e

importance of an ocean feature’s spatial and temporal scales on feature detection and classification using AUVs

is further emphasized by the work of Zhang et al. [76]. us, in this work we address the motivation for and

challenges of constructing a network of AUVs to perform plume boundary tracking over two dimensions

in space (horizontal) with time variations. We have chosen to track the boundary of a plume, rather than

its center or maximum concentration, because the boundary gives a complete picture of the plume’s spatial

extent in the horizontal plane, where it is most likely to intersect a coastline or get entrained by currents and

carried to another part of the ocean. We also present a simulated plume environment sampled by AUVs,

from which we attempt to reconstruct the plume as a sum of Fourier orders as an initial estimate of the plume

shape. e example of an oil leak, such as that from the Deepwater Horizon disaster in the Gulf of Mexico in

2010 [46], will be used to motivate a number of numerical assumptions in this work, though we try to keep

this first-pass plume simulation as general as possible to other types of plumes as well.

In addition, it is useful to know a bit about the AUVs we are using to guide numerical values for virtual

AUV experiments. For most field trials and autonomy testing, our group in the Laboratory for Autonomous

Marine Sensing Systems at the Massachusetts Institute of Technology uses two Bluefin 21” AUVs (21” hull

diameter, ∼3 m in length), as shown in Fig. 4-1. ese vehicles demonstrate the best motion and stability

control at speeds between 1 and 1.8 m/s, with navigational error of about 1%–5% of the distance traveled

between surfacing to get a position fix via GPS. e AUVs navigate using a Leica DMC-SX Magnetic Compass
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and a Crossbow AHRS (attitude heading reference sensor). e navigational error quoted above assumes the

AUV has constant DVL (Doppler velocity log) bottom-lock, has completed a compass hard iron/soft iron

calibration, and has completed a compass star maneuver (for compass calibration in the water). Beyond

this, the Bluefin software on the AUV also does some calibrations and math to improve the navigational

accuracy to achieve the range above. To maintain reasonable stability control and navigational accuracy, the

AUVs are usually commanded to travel at 1.5 m/s (though this speed varies due to autonomous adaptation

to the AUVs’ situations) and surface for a GPS position fix every 30 minutes, resulting in about 50–100

m of navigational error. Other instrumentation currently on board consists of a conductivity-temperature

(CT) sensor, a pressure sensor, and an acoustic modem with transducer, however, these vehicles could also

be equipped with sensors that could measure chemical tracer concentrations or biological (Chlorophyll-a,

Colored Dissolved Organic Matter, etc.) concentrations for the purposes of detecting oil, hydrothermal vent

fluid, or algal concentrations. For communicating with the AUVs (Sections B.3.3 and B.4), we make extensive

(and nearly exclusive) use of an acoustic communication structure (AUV-to-AUV and AUV-to-ship/lab) that

has been actively developed and refined in recent years to give virtually real-time updates (delays on the

order of minutes) of scientific and navigational data (more details on this are found in the Goby project

documentation [6, 7]). Linking all of these pieces together is the autonomy system on board each AUV.

is includes the Mission Oriented Operating Suite (MOOS) and the IvP Helm (IvP stands for Interval

Programming), which coordinate to implement the execution of autonomy behaviors by the AUVs. ese

behaviors autonomously and adaptively control the heading speed and depth of the vehicle, depending on

the behavior the AUV operators have chosen to run (more on this in Section B.4 and [1, 2]).

B.2 Spatiotemporal Aliasing Problem

One of the most common challenges of working with AUVs to track ocean features is that of spatiotemporal

aliasing. at is, when the samples taken are too far apart in space and/or time to be able to resolve the

boundaries or position of a dynamic feature at a given point in space and time. is is effectively a trade-off

between data coverage and data resolution. ere are two extremes here (for example):

1. A single AUV can survey a small area (∼O(1 km), low spatial coverage) with very high spatial sampling

resolution (>O(1 sample/m)) to resolve small-scale features in the water, such as pockets of turbulence.

However, this survey would not have great enough coverage to determine the bounds of a 10 km wide

algal bloom encompassing the sampling area.
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2. A single AUV can survey an area once over a long time period (≥ O(10 hr), high temporal coverage)

for hydrothermal vent plumes. However, it may take so long (> 10 hours) to perform a spatially-

comprehensive survey, as witnessed by Jakuba et al. in [39], that the plume has advected away from its

initial surveyed position during that period (poor temporal resolution) and the survey must be redone

with less coverage to resolve the motion of the plume.

Somewhere in the middle of the above ‘coverage vs. resolution’ scenarios resides a delicate balance in which

the characteristic scales of a dynamic feature (say, a plume of oil) coincide with (one half ) the rate at which the

feature is sampled. is is essentially a sampling of the plume at its spatial and temporal Nyquist frequencies

to maximize both coverage and resolution of the plume within the data set. us, it is necessary to know the

characteristic spatial and temporal scales of the feature of interest for more intelligent path-planning purposes

(see Fig. 2-4), most likely involving multiple AUVs for tracking mesoscale features that are dominantly dy-

namic in two or more dimensions of space, or any feature highly dynamic in time (such that an AUV moving

≤ 2 m/s could not keep up).

e necessity for designing a multi-AUV network to implement more intelligent and efficient mission

planning is highly motivated by this aliasing problem, and relevant methods used by Zhang et al. and Willcox

et al. to optimize AUV surveys and motivate the use of solo and multiple AUVs in efficient spatiotemporal

ocean sampling and feature tracking will be important to take into account in implementing robust plume

tracking algorithms and techniques on board AUVs [76, 153].

B.3 Advantages and Challenges of an AUV Network

B.3.1 Working as a Team

An AUV network allows for the dynamic interaction of multiple AUVs to better adapt to dynamic features in

the marine environment. at is, a network of AUVs has the ability to distribute its nodes around the entire

boundary of a plume and move with the plume boundary, whereas a solo AUV may be optimally placed

for sampling within a plume but could not determine the horizontal spatial extent of a plume and track it

simultaneously on its own. Using the estimated characteristic scales of the plume (from satellite imagery,

past surveys, or physics-based calculations) in guiding the AUV autonomy behaviors (described in Section

B.4), the network of AUVs can be distributed in space and time to detect and track the plume boundary and

avoid aliasing the data. is desire for adaptive feature tracking also underscores the necessity for using mobile

(self-propelled) sensing platforms instead of, or in conjunction with, fixed and drifting sensing platforms (e.g.
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buoys, Argo floats) such that sampling is performed more efficiently (minimizing overlapping data) and the

scientist can be certain that he/she has captured a complete data set describing the plume.

B.3.2 Autonomous Coordinated Control

e brains behind coordinating a sophisticated network of AUVs for plume tracking is the underlying au-

tonomy system that must run on board each AUV. An autonomy system, such as that described in Section

B.4, allows an AUV to adapt to its environment in near real time, without human intervention. A few of

the minimum requirements of using and interacting with a robust autonomy system are inter-AUV (acous-

tic) communications, support for adaptive autonomy behaviors (supplied by the user) to be executed by the

AUVs, and an intelligent (autonomous) means of deciding which behaviors have priority during a given mis-

sion. We propose a tiered mission planning structure for this system in which the large-scale, overall mission

drives the initial formation of the AUVs (assigning each an initial position), and then allows each AUV to

use individual autonomy behaviors to follow the plume edge in its local vicinity. After a period of time,

the local data collected by all AUVs is then exchanged across the network to update the plume model and,

subsequently, the large-scale mission of the AUVs. From here the overall mission, to local missions, to data

collection, exchange, and reprocessing loop continues for as long as required by the scientist/user.

B.3.3 Acoustic Communication

One of the primary challenges using multiple AUVs simultaneously in the underwater environment is that

of communication. Radio-frequency (RF) waves are quickly attenuated in the water within a few meters of

the surface, leaving acoustics as the primary method of real-time underwater communication. Until now,

there have been few (if any) options for intelligent multi-AUV (>2 AUVs) acoustic communication schemes,

though the Goby underwater communication and autonomy project (version 2.0) strives to remedy the need

for coordinated message queuing and passing between multiple (and potentially an unknown total number

of ) AUVs [6, 7]. is will allow each AUV to discover and communicate with neighboring AUVs and share

data and knowledge with the sensing platforms in its underwater network. As this part of version 2.0 of the

Goby project is still in development, it is currently undergoing initial field testing and will hopefully come

into use in the next year.

It is important to note, however, that plumes are often meso-scale features or larger, and AUV-to-AUV

and AUV-to-ship/lab acoustic communication (at least in the public domain and on power-limited AUVs)

is only possible up to a range of about 10 km. Our group at MIT has found that our equipment is usually
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limited to about 2 km of acoustic communication range in the coastal ocean and lake environments we have

performed most experiments in recently. Our Bluefin 21” AUVs and lab setup, which are each equipped

with a WHOI Micro-modem and model WH-BT-2 28 kHz transducer, transmit data in the frequency band

of 23–27 kHz, centered around 25 kHz [8]. ere are two realistic solutions to the acoustic communication

range restriction we experience. e first and more complex solution is to implement a multi-hop acoustic

communication scheme in which data from one AUV is passed down through a chain of AUVs to its desti-

nation. is is time consuming due to the nature of sending and listening for transmitted data packets one at

a time between communicating AUVs. Given that AUVs will often be hundreds of meters apart or more and

sound speed propagation is about 1500 m/s in the ocean, data packets take an observable amount of time to

transmit through the water (O(1 sec)). is method would also require extensive research into data routing

on dynamic and time-scheduled messaging networks. e second and more immediately feasible (potentially

more reliable) solution would be to restrict communication of large environmental data sets to RF or satellite

methods while an AUV is on the surface and utilize a delay tolerant network rescheduling scheme. Although

this method removes much of the real-time underwater data passing between AUVs (with the exception of

basic position updates of nearby AUVs for avoiding collisions), it would take a large burden off of the acoustic

channel and still allow each AUV to be re-directed based on the most current overall picture of the plume

while still performing solo autonomous and adaptive plume boundary tracking in its local vicinity in real time.

Periodic surface communication would work best in the case that the AUVs can surface with great enough

frequency (within the characteristic time scale of the plume) to be re-directed to a more optimal sampling

position, but with low enough frequency that the plume tracking mission is not significantly disrupted by

the AUV taking the time to come to the surface more often.

B.3.4 Data Fusion

e fusion of data both from multiple sensors on a single AUV and all sensors across all networked AUVs is

crucial to the success of coherently adapting a fleet of AUVs to track an ocean feature and collect a synoptic

data set. When fusing data from a single vehicle, the largest concerns are keeping all data accurately time-

and position-stamped. Across multiple AUVs, the data must also be quality-checked for corruption during

transmission after passing it from one vehicle to the next. It is proposed that, on board each AUV, the

computer must mesh the data sets from all AUVs into a single data set, sorted over the times and positions

at which each data point was taken, for each variable (i.e., temperature, salinity, etc.). Upon processing of

these data on board (as on-board processing is the only way to adapt to a dynamic environment in real time),
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for each variable, probability weighting functions over time and space must be applied to each data point

based on the characteristic spatiotemporal scales of that variable. We prefer to use a basic Gaussian-shaped

weighting function for this task. is will associate, say, all temperature readings taken in the last few minutes

and within a radius of a kilometer horizontally (assuming the AUV can resolve its position with even better

accuracy), but will ignore any temperature readings that fall outside of these ranges as independent from those

inside. is essentially creates an overlap of data within a radius of one standard deviation about the sample

point, as sketched in Fig. 2-2, that can be used to prevent insufficient sampling in a data set. is data fusion

method could be implemented using an SQLite (or similar) database on each AUV to compound and sort all

of the environmental data from all AUVs, which may then be processed in a mathematics program such as

MATLAB or Octave, or by a simple C++ parser with algorithms utilizing C++ vector math libraries. is is

similar to creating an evidence grid of the AUVs’ environmental data [13]. e resulting ocean environment

reconstructed through data fusion with weighting can guide the mission planning for a fleet of AUVs tasked

to track a plume. e AUVs can survey an area with high enough resolution to find the boundary of the

plume, approximate the plume shape (see Section B.5) with higher weighting near the actual sample points,

and revise their coordinated survey strategy based on this new estimate of the plume boundary position.

B.4 Adaptive Behavior Implementation

When conducting field experiments with AUVs (usually only 1 or 2) in the water, our group at MIT runs the

Mission Oriented Operating Suite (MOOS) as the underlying autonomy system on board the AUVs and on

our topside mission-command computer. MOOS provides a publish-subscribe architecture that essentially

deals with information sharing between autonomy processes and behaviors on board each AUV, as well as

through the water between the AUVs and the topside computer [1]. To add some intelligence to the system,

the IvP Helm (IvP stands for Interval Programming) is used in conjunction with MOOS to implement the

use of autonomy behaviors (e.g., vertical yo-yos, trail-an-AUV, horizontal racetracks, safety behaviors) on

the AUVs, optimizing over the vehicle’s speed, heading, and depth [1, 2]. e acoustic communications are

handled through the Goby (stable version 1.0) autonomy software on all platforms, where it schedules the

transmissions of each node (AUVs, communication buoys, topside operator, etc.) in the network [6,7]. Goby

encodes data on one node, initializes the data transmission through the acoustic channel, and then decodes

the data when they are received on another node. All of these pieces to our autonomy architecture allow our

AUVs to adapt their motion based on sensor readings, without a human in the loop. is allows for ocean

feature detection and tracking by AUVs to occur both autonomously and adaptively, as demonstrated in the
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following examples.

B.4.1 ermocline Tracking as a Proof-of-Concept

e aforementioned autonomy system has been put to the test in performing autonomous, adaptive thermo-

cline tracking in the Tyrrhenian Sea (Italy) and Lake Champlain (Vermont, U.S.A.). As described in [3], a

simple thermocline tracking algorithm, which also accounts for the characteristic scales of the thermocline,

has been developed and tested over the past few years using single AUVs of varying manufacture. Fig. B-1 is a

conceptual sketch of the adaptive thermocline tacking process, while more detail can be found in [3]. e idea

here is that the thermocline, which is a feature only qualitatively defined in most oceanographic literature,

must be quantitatively defined using actual data in real time for more efficient and adaptive oceanographic

sampling. Here it is assumed that the thermocline is relatively homogeneous in horizontal space within the

AUV’s operational region (for our vehicles, usually about 25 km2 or less). at is, given an AUV’s tempera-

ture measurements through the water column, on-board processing of the temperature data is accomplished

spatially in 1D by binning the temperatures by depth ranges smaller than the characteristic (vertical) length

scale of the thermocline in the experimental area (O(10 m) in shallow water) and using finite differences to

determine the region of greatest change in temperature over change in depth. e characteristic time scale

of shallow water thermoclines (in the regions this algorithm has been tested) was determined by observation

during our field trials to be O(1 hr). us, temperature measurements were averaged over windows of 30

minutes to smooth out small local variations and spurious data points. Once the thermocline region has

been determined by the AUV, the AUV will autonomously adapt its depth range to stay within the current

boundaries of the thermocline and continue to collect a synoptic data set through the thermocline without

expending extra energy to dive unnecessarily deeper or shallower.

Temperature

D
e
p
th

Thermocline}

Figure B-1: A conceptual sketch of an AUV performing thermocline tracking. e AUV completes a dive
from the surface to as deep as allowable, collecting temperature data. e depth range of maximum tempera-
ture change per unit depth is determined as the thermocline region. e calculated upper and lower bounds
of the thermocline region are then used to bound the vertical yo-yos of the AUV, essentially tracking the
thermocline region. Used with permission from [3].
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e successful field testing of this thermocline tracking process serves as a proof-of-concept for the feasi-

bility of performing adaptive, autonomous feature tracking with an AUV, guided by the feature’s spatial scale

in 1D (vertically) and temporal scale to drive intelligent and efficient data collection. ermocline tracking

provides a solid first stepping stone into the field of multi-dimensional oceanographic feature tracking, from

which we can move on to implementing applications with more complex features (dynamic in 2D or 3D

space, and time) such as underwater plumes.

B.4.2 Plume Tracking

Plume detection and tracking using AUVs has come to the forefront of the oceanographic research community

in recent years through the impacts of HABs and oil spills on coastal populations and the intrigue of studying

the alien environment in the vicinity of hydrothermal vents. Smith et al. uses a regional ocean model to

predict the advection of a patch of water representing a HAB off the California coast, which is tagged by an

actual Lagrangian drifter to passively mark and track the centroid of the imaginary HAB. AUVs (gliders) are

then deployed to arrive at waypoints on the approximate boundary of the HAB when the HAB is predicted

to reach that point. e calculated arrival paths of the AUVs are based on the plume boundary predictions

from a regional ocean model, and the waypoints of the gliders are updated every few hours based on the

previous dive’s data and the model’s predictions of the future boundary location of the advecting the patch

of water [41]. Similarly, Das et al. uses satellite and high-frequency (HF) Radar data sets to determine the

location of high-concentration HAB patches and targets these ‘hotspots’ using AUV (glider) path planning

algorithms guided by the paths of the drifter tags for finer resolution sampling [42]. In a second paper, Das et

al. expand this HAB tracking method further to perform Lagrangian observation studies in which the AUVs’

(gliders’) survey paths are pre-calculated to survey an advecting patch of water in its Lagrangian frame of

reference to maintain sufficient spatial and temporal data resolution [50].

e difference between the aforementioned literature and the implementation methods in this work lie

in the ability of the propelled AUVs we propose to use to exhibit much better navigation control, faster

speeds, limited but sufficient acoustic communication while underwater, entirely on-board data processing,

and real-time feedback and reaction to sensed changes in the ocean environment without a human in the

loop (no path-planning algorithms or predetermined paths/waypoints fed to the AUV by scientists), which

makes the AUVs truly autonomous and adaptive. is is, of course, at the cost of the battery duration of the

AUVs, which must be recharged much more frequently. Since complex dynamic ocean models are often very

large, it is not realistic to run them on board AUVs that must be fully autonomous. Satellite and HF Radar
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images are only useful for detecting plumes with surface expressions, eliminating their usefulness in detection

of neutrally buoyant plumes below the top 10 m of water. us, we seek to develop a method of plume

tracking that can rely solely on the environmental data collected over space and time by the AUVs. e only

caveat here is the assumption that a single initial large-scale survey has already been done by an AUV or other

sensing platform (or a recently updated regional ocean model has been run) in the region encompassing the

plume such that an approximate plume boundary location at the plume’s neutrally buoyant depth is known

at the time of AUV deployment. e details of obtaining this initial plume boundary location are beyond

the scope of this appendix, but are addressed in Chapter 6.

As mentioned in Section B.3.1, it is useful to approach plume tracking by knowing something about

the general dynamics and characteristic scales of the plume, as well as any information about its source (for

oil leaks or hydrothermal vent sites) or ocean conditions necessary for occurrence (for HABs), and what

data values from various sensors might signal that a measurement was taken inside a plume. As mentioned

above, since there are many approaches to first detecting a plume that are beyond the scope of this appendix,

we will assume here that the initial 2D boundary of the plume in the horizontal plane has been detected

or approximated via satellite imagery, recent oceanographic surveys, or the physics of the region of interest

before any AUVs are deployed to track the plume. We will start by concerning ourselves with the horizontal

extent of the plume at its neutrally buoyant depth, over a time span shorter than the plume’s characteristic

time scale (over which the plume boundary displays only minor variations in position). From here we can

sample the plume boundary (defined by a threshold chemical or biological concentration value during field

experiments) with varying numbers of AUVs and estimate the plume shape as a sum of Fourier orders.

With an estimation of the location of a plume boundary at a given depth, multiple AUVs (preferably

enough to maintain slightly overlapping one-standard-deviation spatial scale range circles along the plume

boundary within the plume’s characteristic time scale, similar to the range rings in Fig. 2-2) can be deployed

within the plume, and an algorithm can be used to assign each AUV a starting position near the estimated

plume boundary with approximate equal spacing azimuthally between AUVs about the estimated plume

center point. is initial AUV spacing can be written into an IvP Helm ‘equal azimuth angle’ autonomy

behavior that would attempt to maintain equal azimuthal spacing of the AUVs, even as they progress along

the plume boundary and the boundary shifts position, adjusting the speed of each AUV to compensate if any

one gets too far ahead or falls behind. A second tier of autonomy control will govern the reactions of each

AUV to its local environment with a ‘plume boundary tracking’ behavior. is behavior will have a threshold

concentration value set for whatever tracer is used to signify levels of chemicals or biological productivity are
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indicative of the plume of interest. e plume boundary tracking behavior will direct the AUV to zigzag

horizontally back and forth across the position of this threshold (as it travels azimuthally around the plume

center) to maintain an up-to-date position of the local plume boundary. Finally, on a time interval sufficiently

small (less than the characteristic time scale of the plume) to average these data over time from each vehicle,

each AUV will share its collected plume boundary position data with the other AUVs in the vicinity via

acoustic (or RF or satellite) communication, and each vehicle will sort and process the collective data to

determine the most current plume boundary position by estimating it as a sum of Fourier orders. Each AUV

can then determine if it needs to adjust its speed and big-picture position about the plume edge using the

equal azimuth angle behavior. Not only will this method of plume tracking capture the shorter/smaller-scale

variations of the plume form one time interval to the next, but also create a continuously evolving track of

plume evolution in space and time for a given depth.

With further development to track a plume over longer time scales, we will be able to detect the radial

expansion rate of the plume boundary (if any) and its development due to advection, diffusion, and/or bo-

logical processes, and thus forecast its motion to improve forward-looking mission planning. e best way to

develop this plume tracking process is through simulation, as described in Section B.5. Once the simulation

is complete, we will be able to initialize implementation of autonomous and adaptive plume tracking with

our autonomy architecture by simulating AUVs, (acoustic) communication, and data fusion as described in

Section B.3 until the plume tracking algorithms and their supporting autonomy behaviors are robust enough

for field testing.

B.5 Plume Simulation Environment

Towards the goal of developing plume-following strategies for AUVs, we must first get a sense of the character-

istics of a plume and what the best method is in distributing AUVs about the plume. is requires examining

the results and errors associated with reconstructing the shape of a simulated plume from simulated AUV

sample points along the plume’s edge. Instead of diving into incorporating a more robust or dynamic plume

model developed by an outside group, we choose to simulate a very simple plume boundary in horizontal

space using Fourier orders (a rough 2D plume approximation) such that we could exactly reconstruct the

original plume (again by using Fourier orders) under ideal (though very unrealistic) conditions. is gives

us validation that our plume reconstruction algorithms were derived correctly. ough we introduce a few

sources of plume reconstruction error in the plume simulation and reconstruction process described in this

and subsequent sections, we expect to incorporate a more realistic, already developed plume model in the near
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future such that we are not setting up a situation in which our simulation is doomed to (mostly) succeed. As

this is a first-pass simulation experiment, the effects of advection, dispersion, diffusion, holes in the plume

shape, multiple plume sources, algal life cycle dynamics, and other complexities that may influence a plume’s

development over time are beyond the scope of this work. To test our algorithms and experimental setup over

a simulated characteristic plume time scale, we expand the plume in the horizontal plane over a short period

of time, sample the plume boundary with varying numbers of AUVs (approximating navigation errors), and

then reconstruct the plume from these time-varying sample points. is process is described below.

B.5.1 Modeling a Plume

A rough estimate of a plume boundary in the horizontal plane is achieved using Fourier orders of the form

ΦMhi
= ΣMhi

m=0 [Am ∗ cos(mθ + ϕm)] +R, (B.1)

where Mhi is the highest Fourier order of the series (here we will solve for a plume of Mhi = 20 orders by

estimating it with up to 8 Fourier orders from AUV sample points), Am is the radial amplitude perturbation

of the plume boundary for the mth order, ϕm is the phase shift of the mth order, and R is the unperturbed

radius of the plume. e angles, θ, are in the range [0, 2π) rad about the center of the plume, and ΦMhi
is

the radial distance to the edge of the plume from the center at each angle, θ, for a maximum Fourier order,

Mhi. Generating coefficients A and ϕ at random for each m results in the progression of plume development

shown in Fig. B-2, leading to the overall ‘actual’ plume in Fig. B-3. We have bounded Am to ± R
2m , placing

the most energy in the lower orders to somewhat realistically represent the amplitude variations of the plume

and minimize sharp radial inversions in the boundary shape.

Although it is possible to solve for a very large number of Fourier orders (given enough AUVs over time),

this is not computationally efficient and (as seen in Section B.5.4) has diminishing returns. Using a sum

of many Fourier orders, however, is the most realistic approach (in this simulation) to adding complexity

to the simulated plume shape. Time variation (within the characteristic time scale of the simulated plume)

is also incorporated into this model, providing more total sample points per AUV (Section B.5.2). Over

time scales greater than the characteristic time scale of the simulated plume, it is also possible to simulate

the development of the plume through turbulent and diffusive processes, as well as represent the effect of

dominant currents and algae life cycles on the plume shape. ough the effects of long term time variation

have yet to be incorporated into the plume simulation, we describe a means of simulating, detecting, and

forecasting basic longer-time-scale radial variations in Section B.6.
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Figure B-2: A progression of simulated plume shapes (black) of R = 5 km, building up to Mhi = 20 (blue).

B.5.2 Sampling a Plume

First, it is important to backwards-engineer the simulated plume as follows to be sure that the AUV-sampled-

plume boundary reconstruction algorithms are correct. In a perfect world (with obviously unrealistic assump-

tions) in which a plume is exactly delineated by a finite sum of Fourier orders and AUVs are evenly spaced

around the center of this sharply defined plume at a radius that is on the exact boundary (no navigational

error), theory suggests that 2(Mhi +1) AUVs are necessary to exactly solve Equation B.1 for its 2(Mhi +1)

unknowns (here we assume that we can approximate R as the average of all AUV distances radially from the

plume center, Φavg). However, since the 0th order is of constant radius, we incorporate cos(ϕ0) into A0

and say ϕ0 = 0 rad, reducing the number of unknowns (and AUVs) to 2Mhi + 1. Noise may be added to

the angular and radial positions of the AUVs to simulate navigation error and the imperfection in trying to

coordinate multiple AUVs spaced at exact angles about a circle, on the exact radius of the plume. Further

error will arise from the use of a finite number of AUVs and the necessity of approximating a high order plume

with an often relatively low number of Fourier orders calculated from AUV sample points. Since plumes in

the ocean and in more robust plume models cannot be fully characterized in closed form as a sum of Fourier

orders, error will inherently be added to the AUVs’ Fourier order plume reconstruction when real data or

data from a more robust model are used.

Time steps (within the characteristic time scale of the plume boundary position) may be added to increase

the number of sample points available, givingNsamples = Ntimesteps∗NAUV s, and to increase the maximum
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Figure B-3: e ‘actual’ plume of Mhi = 20 (R = 5 km).

number of Fourier orders, MAUV,max, that can be used to solve for the plume boundary shape. In this

implementation, we applied a bounded, random, linear rate of (positive) radial expansion to the amplitude

of each Fourier order in the ‘actual’ plume, examining time steps of 2 minutes over a sufficiently small period

of 10 minutes for a plume expanding radially at a rate of up to 0.5 m/s. In real-world applications, this

expansion rate is based upon the vertical flow rate from the plume’s source (if present; counteracted somewhat

by buoyancy changes with depth) and horizontal spreading (via advection) and diffusion of the plume at the

sampled depth [68]. If dealing with a HAB, the life cycle of the algae must also be considered.

B.5.3 Reconstructing a Plume from AUV Sample Points

Given NAUV AUVs located about the plume boundary at an instant in time, at radii, ΦAUV , at known

angles, θAUV , a fast Fourier transform algorithm, fft(•), is applied to these data to determine the unknown

coefficients of the plume with Fourier orders M ≤ ⌊(NAUV − 1)/2⌋. e following algorithms are then

used to extract out the coefficients.

R ≈ Φavg =
ΣθAUV

ΦAUV

NAUV
(B.2)

AAUV,m=0 =
1

2
∗
|fft(ΦAUV,m=0|θAUV

)|
NAUV /2

− Φavg (B.3)
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AAUV,m=1:M =
|fft(ΦAUV,m=1:M |θAUV

)|
NAUV /2

(B.4)

ϕAUV,m=0:M = angle[fft(ΦAUV,m=0:M |θAUV
)] (B.5)

From coefficientsAAUV,m andϕAUV,m, we reconstruct the AUV-derived estimation of the plume bound-

ary, ΦAUV,M , as we constructed it in Equation B.1:

ΦAUV,M = ΣM
m=0 [AAUV,m ∗ cos(mθAUV + ϕAUV,m)] + Φavg. (B.6)

e reconstructed plume should match the original Mhi-order plume exactly (except for numerical

roundoff error) when all of the following criteria are met:

• Mhi ≤ MAUV,max = ⌊(NAUV − 1)/2⌋, that is, the maximum Fourier order used to construct the

original plume is less than or equal to the maximum Fourier order used to reconstruct it from AUV

data (in reality Mhi = ∞, so this could never be achieved),

• Φavg = R,

• there is no AUV navigation error,

• there is no time variation,

• all AUVs are evenly spaced about the plume center and exactly on the boundary, and

• there is instantaneous all-to-all communication of data.

Obviously, some error is introduced when any one of these criteria is not met. If time steps are used to

increase the number of sample points, thus increasing MAUV,max, NAUV should be replaced by Nsamples

in all equations in this section (B.5.3), and the spacing of the clustered AUV samples must be interpolated

to equal angular spacing about the plume edge to perform the fast Fourier transform (we have used a cubic

interpolation function).

B.5.4 Results

A set of plume estimates of Fourier orders 1 through 8 are plotted in Fig. B-4 in contrast to the ‘actual’

time-varying plume. ese plots also show the non-interpolated (with navigation error) and interpolated
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AUV positions. e ‘actual’ plume was chosen to have Mhi = 20 to keep the high-frequency variations on

boundary radius to a minimum while maintaining more higher-order variation that a reasonable number of

AUVs (< 10) can exactly resolve. Other numerical assumptions had to be made for the sake of simulation

testing and evaluation based on the Bluefin 21” AUVs that our lab group operates and the approximate area

and expansion rate of a meso-scale plume (similar to that of the Deepwater Horizon disaster in the Gulf of

Mexico in 2010 [46]). Specifically, we take R = 5 km, AUV navigation error = 100 m, and time steps

= 0, 2, 4, ..., 10 min within the characteristic time scale of plume evolution.

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 1, AUVs = 5

X [km]

Y
 [k

m
]

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 2, AUVs = 5

X [km]

Y
 [k

m
]

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 3, AUVs = 5

X [km]

Y
 [k

m
]

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 4, AUVs = 5

X [km]

Y
 [k

m
]

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 5, AUVs = 5

X [km]

Y
 [k

m
]

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 6, AUVs = 5

X [km]

Y
 [k

m
]

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 7, AUVs = 5

X [km]

Y
 [k

m
]

−2 0 2

−4

−2

0

2

4

6

M
AUV

 = 8, AUVs = 5

X [km]

Y
 [k

m
]

 

 

Figure B-4: Plume estimates (blue line) of MAUV = 1, 2, ..., 8 for ‘actual’ plume of Mhi = 20 (black lines,
time-varying), R = 5 km, navigation error = 100 m, and time steps = 0, 2, 4, ..., 10 min. For the 5 AUVs,
the non-interpolated (blue stars) and interpolated (cubic interpolation, red stars) AUV sample points are also
shown for reference.

A set of Monte Carlo simulations was used to quantify the overall mean percent error in the model

based on the number of Fourier orders solved for, varying the number of AUVs while keeping the time steps

consistent over all trials. is is accomplished by comparing the boundary of the estimated plume to the

time-averaged boundary of the actual plume as follows:

%Errorplume =
|Φestimated − Φactual,time−avg|

Φactual,time−avg
. (B.7)

ese results are shown in Fig. B-5 for each set of Fourier orders, with MAUV,max determined by
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Figure B-5: Percent error in plume radius between the estimated and actual (time averaged) plumes, averaged
over 500 trials. Mean values are shown for each maximum Fourier order, with error bars showing±1 standard
deviation.

It is interesting to note that, for a fixed number of AUVs, the general trend appears to be an exponential

decrease in error as a larger number of Fourier orders is solved for. However, upon closer examination of the

error values, the order of lowest error is approximately MAUV,min_error = 2NAUV . is result will help

minimize the error while reasonably limiting the amount of data processing necessary to estimate the plume

boundary. Alternately, for a given Fourier order MAUV , as the number of AUVs increases, the percent error

decreases, as is expected.

B.6 Forecasting Long Term Variations

Having simulated and analyzed a plume over a short time span, we will now explore expanding the plume

simulation to longer time spans to enable plume shape forecasting. ere are two formulations here for the

basic time expansion approximation. We may either assume that the plume expands linearly in time in the

radial direction, with a constant coefficient of expansion, dΦ
dt (Equation B.8), or that both the amplitude and

phase coefficients change linearly in time, with constant coefficients dA
dt and dϕ

dt (Equation B.9). ese are
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the most simplistic cases, which may be built upon in the future into nonlinear coefficients to account for

further complexities from real ocean dynamics.

ΦMhi
(θ, t) = ΣMhi

m=0 [Am ∗ cos(mθ + ϕm)]

+
dΦ

dt
∗ (t− t0) +R (B.8)

ΦMhi
(θ, t) = ΣMhi

m=0[(Am +
dA

dt
∗ (t− t0))

∗ cos(mθ + (ϕm +
dϕ

dt
∗ (t− t0)))]

+ R (B.9)

Assuming one of the above plume formulations and sampling it with AUVs over a number of large time

steps, we can determine the differences in overall plume shape from one point in time to the next and back out

the constant coefficients from there. If the formulation in Equation B.8 is assumed, we may simply find the

mean difference (over all θ) in radius between the estimated plumes at times t0 and t1, as shown in Equation

B.10.

dΦ

dt
≈ mean

[
ΦAUV,M (θ, t1)− ΦAUV,M (θ, t0)

t1 − t0

]
(B.10)

Solving for the Equation B.9 formulation coefficients is more complex. Given estimated plumes from

AUVs at times t0 and t1 sufficiently far apart in time, we must maximize the correlation betweenΦAUV,M (θ, t1)

and ΦAUV,M (θ, t0) over radius and azimuth angle. e tool for this will be a matched filter applied to

ΦAUV,M (θ, t1) and ΦAUV,M (θ, t0), allowing us to back out the constant coefficients once we determine the

phase and amplitude changes between t0 and t1. Repeating either of the above processes over multiple time

steps will further improve the accuracy of the coefficients.

Once we solve for the constant coefficients using either of the above methods, a forecast can be made for

the plume shape by simply applying the linear changes to the estimated plume shape at the last known time

slice, and projecting it forward to the next time step(s). As with any forecasting, however, the accuracy of the

forecast decreases with time steps further into the future. A weighting function (potentially the right side of

a Gaussian) should be included with the forecast to account for this.
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B.7 Looking Ahead

It is important to take what we have learned from this exercise and apply it to a more robust plume simulation,

such as a theory- and data-derived dynamic plume model, as well as to prepare for taking this application into

the field. Following the first iteration of this plume simulation, the next step is to use the plume estimated

by the AUVs over progressive time steps to estimate the linear time perturbation coefficients of each Fourier

order and use these coefficients for future prediction.

Jumping ahead to prepare for realistic implementation of plume tracking in the field, we plan to use our

IvP Helm and Goby autonomy to move the AUVs along the actual plume boundary (in ‘follow the leader’

fashion) as described in Section B.4.2, autonomously adapting their tracks to their real-time measurements

by zigzagging across the boundary, and keeping their angular spacing relatively constant. As AUVs travel

along the boundary azimuthally, all at the same speed, the radial excursions in the boundary may cause the

azimuthal spacing of adjacent AUVs to degrade. To counter this effect, we will employ autonomy behaviors

to change speed and maintain azimuthal distribution when a significant degradation in spacing is detected.

is will first be implemented in virtual experiments to work out any bugs before taking it into the field with

the AUVs.

Other features to add to the plume simulation will account for the effects of advection by currents and

turbulent diffusion. A good estimation for diffusion, used widely in the underwater community, is Fick’s Law

[154], and examples of current effects can be found in [46] and [39]. ese effects may be best incorporated

into the simulation as time varying coefficients similar to those in Section B.6, only nonlinear in time and

space. Another option would be to take advantage of a commercial computational fluids simulator to simulate

these effects. It will also be important to account for the direction of motion of a plume, as this may or may

not cause the leading edge of the plume to be more distinct than the trailing edge. Again, however, we do not

want to reinvent the wheel and may prefer to research and take advantage of already-existing plume models

and data that account for some of these effects with greater detail and accuracy than achievable by the above

method. In the case of the evolution of HABs, we must also account for life cycle evolution of the algae, and

testing with historical data of algal bloom evolution would be useful here [42].

Finally, it is important to gain a knowledge of how each source of error (i.e., navigation error, higher

modes and sharper inversions in plume shape, overall plume radius, cubic interpolation of AUV spacing

about the plume, etc.) affects the overall error in the estimated plume boundary. Such an error-review will

require a wide range of tests, changing only one variable at a time. e cubic interpolation of AUV position

alone will be evaluated against other interpolation techniques, such as the Lomb-Scargle method [155], to
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minimize errors.

B.8 Conclusion

is appendix provides a conceptual outline of the requirements for implementing adaptive, autonomous

plume tracking using a network of AUVs, including a first-pass simulation of detecting and reconstructing

plume shapes solely from AUV sample points, with the example of a plume of oil originating from the sea

floor. Using a sum of Mhi Fourier orders to represent a plume shape at its neutrally buoyant depth, we added

noise in the AUV positions to represent navigation error. We also incorporated linear radial expansion of

the plume over time to simulate plume spreading due to the continuous influx of oil. Reconstruction of the

plume from the time-varying AUV samples was seen to result in errors in the estimated versus original plume

shapes ranging from 9–20% (for 1 through 7 AUVs, Mhi = 20, R = 5 km, navigation error = 100 m, and

time steps = 0, 2, 4,..., 10 min), largely decreasing with an increase in the number of Fourier orders being

solved for, keeping the number of AUVs, navigation errors, and time steps constant. e errors also decrease

as the number of AUVs is increased. With this knowledge and technology we will be able to improve the

plume simulation further based on the physics of plume spreading via currents and diffusion, and employ

adaptive autonomy behaviors with the AUVs to progress them along the plume boundary. In the end, the

plume tracking process presented here will provide a synoptic data set describing the plume based on the

spatiotemporal scales of the feature, using a network of AUVs to prevent data aliasing.
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