
Advances in Integrating Autonomy with Acoustic
Communications for Intelligent Networks of Marine Robots

by

Toby Edwin Schneider
B.A., Physics, Williams College (2007)

Submitted to the Joint Program in Applied Ocean Science & Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Oceanographic Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION
February, 2013

c©2013 Toby E. Schneider. All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce and to distribute publicly copies

of this thesis document in whole or in part in any medium now known or hereafter created.

Author .
Joint Program in Oceanography/Applied Ocean Science & Engineering

Massachusetts Institute of Technology
and Woods Hole Oceanographic Institution

January 22, 2013

Certified by .
Henrik Schmidt

Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology

Thesis Supervisor

Accepted by .
David E. Hardt

Chairman, Committee for Graduate Students
Massachusetts Institute of Technology

Accepted by .
Henrik Schmidt

Chairman, Joint Committee for Applied Ocean Science & Engineering
Massachusetts Institute of Technology
Woods Hole Oceanographic Institution

2

Advances in Integrating Autonomy with Acoustic Communications for
Intelligent Networks of Marine Robots

by
Toby Edwin Schneider

Submitted to the MIT/WHOI Joint Program in Applied Ocean Science & Engineering on
January 22, 2013, in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Oceanographic Engineering

Abstract

Autonomous marine vehicles are increasingly used in clusters for an array of oceano-
graphic tasks. The effectiveness of this collaboration is often limited by communications:
throughput, latency, and ease of reconfiguration. This thesis argues that improved com-
munication on intelligentmarine robotic agents can be gained from acting on knowledge
gained by improved awareness of the physical acoustic link and higher network layers by
the AUV’s decision making software.

This thesis presents a modular acoustic networking framework, realized through a
C++ library called goby-acomms, to provide collaborating underwater vehicles with an
efficient short-range single-hopnetwork. goby-acomms is comprised of four components
that provide: 1) losslessly compressed encoding of short messages; 2) a set of message
queues that dynamically prioritize messages based both on overall importance and time
sensitivity; 3) Time Division Multiple Access (TDMA) Medium Access Control (MAC) with
automatic discovery; and 4) an abstract acoustic modem driver.

Building on this networking framework, two approaches that use the vehicle’s “in-
telligence” to improve communications are presented. The first is a “non-disruptive”
approach which is a novel technique for using state observers in conjunction with an en-
tropy source encoder to enable highly compressed telemetry of autonomous underwater
vehicle (AUV) position vectors. This system was analyzed on experimental data and im-
plemented on a fielded vehicle. Using an adaptive probability distribution in combina-
tion with either of two state observer models, greater than 90% compression, relative to
a 32-bit integer baseline, was achieved.

The second approach is “disruptive,” as it changes the vehicle’s course to effect an im-
provement in the communications channel. A hybrid data- andmodel-based autonomous
environmental adaptation framework is presented which allows autonomous underwa-
ter vehicles (AUVs) with acoustic sensors to follow a path which optimizes their ability to
maintain connectivity with an acoustic contact for optimal sensing or communication.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering

3

4

Biography

Toby Schneider grew up in Woodbridge, CT where he attended Amity Regional High
School, engaging himself in his free time with gardening, model rocketry and program-
ming graphing calculators. He received his Bachelor’s degree in Physics from Williams
College in Williamstown, MA, which is a beautiful small town no one has heard of (but
is pretty much like Woods Hole with mountains instead of an ocean). During his sum-
mers he first worked on the dispersal of corn pollen at the CT Agricultural Experiment
Station, and then in the subsequent summers performed experimental research in laser
physics at Williams. This research went on to form the basis of an undergraduate thesis
on “Precision phase shift spectroscopy in thallium”.

After college, Toby entered the MIT/WHOI Joint Program to perform the work which
comprises this thesis. He has participated in at least fifteen sea trials throughout North
America and Italy, and enjoys seeing his engineering efforts working in the real world.
His hobbies now including hiking and working in his backyard mini-farm.

Acknowledgment

Many thanks to Henrik for guiding the overall arch of my work and for providing an
abundance of opportunities for doing real engineering at sea. I also greatly appreciate the
advice ofmy thesis committeemembers, Jim andHanu, which has undoubtedlymade this
a better work.

Thanks to all the past and present members of my lab at MIT (LAMSS). Ocean robotics
is truly a team effort and you’ve all contributed important pieces. To my fellow adven-
turers in Italy for the first times in 2008: Kevin, it was a real pleasure working with you
and I’m very sad we live on opposite coasts now; Arjuna, thanks for the pizza on the late
nights soldering the payload before SWAMIS09; and Joe, I will never forget hearing your
life story over the world’s longest lunch in Campiglia. To the software core: Mike, thanks
for all the spirited debates on middleware and for the IvP Helm, which is a solid piece of
work; Henrik, for simulating enough thatmy bugs always showed up; Alon, for all the bits
of fascinating trivia; and Ian, for inspiring me to continue to try to fix MOOS. And to my
contemporaries: Steph (“the original”), for being my wingmate on every cruise (and in
life); Erin and Sheida, for taking up the operational duties when I had to focus on finish-
ing this thesis, and Stephanie (Fried), for reminding me that not everyone wants to be a
Linux guru.

TheNATOCentre forMaritimeResearch andExperimentation (upuntil 2012 knownas
NURC) in La Spezia, Italy, deserves special recognition for the GLINT08 through GLINT10
and SWAMSI11 sea trials they coordinated and for which they provided valuablematerial
and intellectual resources. Thanks also to my mentor Tom Pastore during my summer
2009 internship at the Centre for his the advice and support.

The WHOI Acoustic Communications group (the Micro-Modem folks) headed by Lee
Freitag also deserve kudos for their quick and helpful guidance pertaining to allmy (often

5

ignorant) requests for assistance and for their help on the GLINT08 and TIGER12 experi-
ments.

Also, I want to thank the Hanu’s SeaBED group at WHOI for making available the data
from the AGAVE07 expedition. Also, I specifically want to thank Chris Murphy for his
valuable critique of Goby-Acomms and for providing me a chance to participate in his
CAPTURE11 experiment.

Bluefin Robotics deserves credit for their many hours of operations support, often
going beyond the required or expected. Wes, thanks for helping make the Bluefin/MIT
team work smoothly on all our trials.

Many thanks to all the folks who wrote and contributed to the open-source projects
used in my work, from GNU/Linux to MOOS-IvP, the Acoustics Toolbox, and all the li-
braries used in Goby, especially the Boost C++ library.

Furthermore, thanks tomymany good friends in the Joint Program, who have helped
pass many cold winters and tourist-infested summers with cheer and good fun. Also, I
would not be here without the love and encouragement of my family, and for that, I am
deeply thankful and blessed.

Finally, I wish to acknowledge the sponsors of this research for their generous support
of my tuition, stipend, and research:

• the WHOI/MIT Joint Program
• the MIT Presidential Fellowship
• the Office of Naval Research (ONR) # N00014-08-1-0011, # N00014-08-1-0013, and

the ONR PlusNet Program Graduate Fellowship
• the Defense Advanced Research Projects Agency (DARPA) (Deep Sea Operations:

Applied Physical Sciences (APS) Award # APS 11-15 3352-006, APS 11-15-3352-215
ST 2.6 and 2.7)

6

Contents

Contents 7

1 Introduction 9
1.1 Motivation . 9
1.2 Historical Background . 11
1.3 Contributions . 16

2 Goby-Acomms: Amodular acoustic networking framework for short-range
marine vehicle communications 23
2.1 Introduction . 23
2.2 DCCL: data marshalling (or source coding) 27
2.3 queue: Dynamic priority based buffering 38
2.4 amac: Medium Access Control . 46
2.5 modemdriver: Acoustic modem driver . 53
2.6 Goby1 Field Case Studies . 56
2.7 Goby2 Field Trials . 67
2.8 Conclusion . 68

3 Non-disruptive Technique: autonomous modeling to improve source coding 71
3.1 Introduction . 71
3.2 Approach . 74
3.3 State Observation . 76
3.4 Arithmetic coding . 80
3.5 Results on experimental data . 85
3.6 Robustness . 91
3.7 Performance comparison to traditional approach 93
3.8 Conclusion . 95

7

4 Disruptive Technique: autonomous navigation approaches to improve the
physical link 97
4.1 Introduction . 97
4.2 GRAM: Low power in-situ Generalized Acoustic Modeling 100
4.3 GLINT10 Shallow water experiment . 103
4.4 Acoustic Connectivity in Deep Ocean Environments 117
4.5 Conclusion . 123

5 Closing remarks 125

A Unified Command and Control for Heterogeneous Marine Sensing Networks127
A.1 Introduction . 127
A.2 Hierarchical configuration . 132
A.3 Network . 134
A.4 Google Earth interface for Ocean Vehicles (GEOV) 141
A.5 Summary . 145

B Goby-Acomms Details 147
B.1 Goby1 DCCL XML Specification . 147

Bibliography 151

8

1 Introduction

Il semble que la perfection soit
atteinte non quand il n’y a plus rien à
ajouter, mais quand il n’y a plus rien
à retrancher.1

Antoine de Saint-Exupéry, Terre des
Hommes (1939)

1.1 Motivation
In recent years, autonomous underwater vehicles (AUVs) and other marine robots have
gone from being nifty toys for engineers to serving valuable scientific, military, and ex-
ploration roles, often with real social consequences. To highlight a few examples, in the
last decade, AUV researchers have

• surveyed the Arctic with implications for future extraterrestrial exploration [1].

• measured and surveyed the Deepwater Horizon oil spill plume [2].

• performed passive ranging to a sub-sea target (e.g. submarine) using an underwa-
ter hydrophone array [3].

• located the downed Air France Flight [4] to recover valuable post-mortem data.

• discovered the pink terraces of New Zealand [5].

AUVs provide spatial coverage unattainable by fixed sensors, and sensor payload flex-
ibility at very favorable costs compared tomanned systems. Rapid advances in consumer
electronics have allowed AUVs to be outfitted with increasingly powerful computational
ability, leading a trend toward more autonomy in navigation, data acquisition, and data

1Perfection is achieved, not when there is nothing more to add, but rather when there is nothing more
to take away.

9

processing. Sensors, such as sonars and conductivity-temperature-depth (CTD) probes,
have been miniaturized and fitted on AUVs of all sizes. Industry maturation has led to
reduced vehicle cost, allowing more institutions to own and operate fleets of vehicles,
rather thanmaintaining a single, costly robot. This increased ability to realize autonomy
and affordably field clusters of AUVs is desirable as it can lend spatial diversity to sensing
tasks and redundancy to failure.

All of these advances motivate an increased need for underwater wireless communi-
cation. Collaboration between autonomous assets requires a certain exchange of infor-
mation, almost by definition. Sensor data, either raw or processed, is often of a timely
nature and cannot wait until the end of the mission to reach the human scientists or op-
erators. Data that reaches operators during the mission can allow a certain parallelism
between robotic and human intelligence: the people can make decisions based on these
data to influence the robotic system’s future behavior. These decisions must be propa-
gated to the deployed nodes, which again requires the ability to send underwater tele-
grams.

AUVs are generally operated wirelessly for obvious practical reasons, and this is what
distinguishes them from remotely operated vehicles (ROVs). Wireless telemetry in the
ocean over any significant range is a difficult task to accomplish. The usual suspect for a
carrying data signals, electromagnetic radiation, is rapidly attenuated in seawater. Thus,
most systems based on light or radio waves are only practical for ranges on the order of
tens of meters (see results in [6–8]). While such systems have some specific niche uses
(such as “tetherless” ROVs and “data mule” systems), it is unlikely that groups of AUVs
will be deployed so densely in the foreseeable future.

Therefore, undersea communication over any significant range is widely accepted to
be only practical using an acoustic carrier [9]. The quality of acoustic communications
is often poor (low baud rates with high latency) due a number of physical realities of
acoustic waves discussed in Section 1.2.1. This has led to a significant push to provide
increased autonomy capabilities on AUVs to compensate for the lack of available com-
munication throughput which precludes direct human teleoperation (which is common
in land and air robotics). However, there has been little crossover between underwater
autonomy and acoustic communications, with the former community generally treating
the physical link as a “black box” that sends bytes from one point to another.

This thesis argues that improved communication can be gained from acting on
knowledge gained by improved awareness of the physical acoustic link and higher

10

0 200 400 600 800 1000 1200

0

10

20

30

40

50

60

70

80

90

100

Range (m)

D
ep

th
 (

m
)

AUV 1

AUV 2

Bottom Loss

Surface Effects (Bubbles, reflection from waves)

Biological Scattering &
 Noise

Relaxation Absorption
(Viscosity, Magnesium
Sulfate, Boron)

Multipath

Internal Waves
Scattering

Ambient Noise
Refraction

Doppler

Spreading
(Geometric) Loss

Figure 1.1: Sketch of the relevant oceanographic effects on the performance of acoustic
links.

network layers by the AUV’s decision making software. Here, “improving communi-
cations” is defined as increasing the unit information throughput per unit power ratio.
Before getting into detail about the contributions that support this assertions, it is in-
structive to examine the historical record of work in both of the disciplines this thesis
aims to knit together: underwater acoustic telemetry and vehicle autonomy.

1.2 Historical Background

1.2.1 Physical acoustic links

Underwater acousticians and signal processing researchers have characterized many of
the detrimental effects of the ocean acoustic environment on successful transmission of
datagrams; the difficulty of obtaining high rate acoustic transmissions due to the ocean
environment andhow this impacts acoustic networking is summarizedbymany research-
ers such as Baggeroer [10], Kilfoyle [11], Preisig [12], Stojanovic [13], Chitre [14], and Par-
tan [15].

A summary of these limiting factors (sketched in Fig. 1.1) includes:

11

• Low bandwidth: due to physical and oceanographic processes (primarily viscous
absorption and chemical relaxation from magnesium sulfate and boric acid [16]),
the ocean is a low pass filter for acoustic waves.

• Slow propagation speeds: the speed of sound (which depends on the ocean pres-
sure, temperature, and salinity) is about 1490 m/s at a temperature of 10◦ C, salin-
ity of 35, and depth of 100 meters [17]. Compared to the speed of light in a vacuum
(3.0 · 108 m/s), sound in the ocean travels five orders of magnitude slower.

• Multipath: multiple delayed copies of the signal reaches the receiver primarily due
to interface (surface / bottom) reflections and significant refraction from the strat-
ified ocean.

• Doppler effects: due to relative platform motion (typically on the non-negligible
order of 0.1% of the speed of sound) the received signal is typically shifted in fre-
quency (which is a narrowband approximation as the Doppler shift is a function
of the emitted frequency). Also, due to refraction and waves (both sea surface and
internal), different paths have different Doppler shifts, which leads to a varying
Doppler shift in the received impulse response as a function of arrival delay. Fi-
nally, due to fluctuations in multiple paths with similar delays (such as caused by
focusing fromsea surfacewaves [18]), the received signal shows a frequency spread.

• Signal-to-noise ratio (SNR): As is inherent in the name, the SNR is determined by
the source level (which is limited by available power and transducer technology)
reduced by the transmission loss (a combination geometrical spreading, absorp-
tion, and refraction) and the noise level (anthropogenic, biological, physical).

All of these effects combine to make the design of wireless acoustic links challeng-
ing. The broad arch of the underwater communications signal processing community has
been from reasonably reliable but inefficient incoherent modulation schemes to phase
coherentmodulation. Coherentmodulation schemes require significant effort to remove
intersymbol interference (ISI) from the aforementioned channel effects, but achievemore
efficient use of the available bandwidth.

Incoherent techniques, such as frequency shift keying, simply measure the energy in
a given frequency range to determine the received symbol. By adding pseudo-random
hopping sequences to allow longer channel clearing times, multipath effects are reduced
(at least in channels with short enough decay times), and by making the frequency bin
for each symbol wide enough, Doppler effects are mitigated. However, this technique is

12

Data acquisition Data sharing

Dive 1 Offload Dive 2

Data acquisition

Data acquisition

Data sharing

Data acquisition

Persistent Mission

Sp
ac

e
(#

 v
eh

ic
le

s)

Time

Paradigm shift:
parallelism of AUV operations

Figure 1.2: Tradeoff betweennumber of vehicles and time required to complete amission.
With an effectivewireless communications network, parallelization of vehicle operations
has the potential to more efficient as well as being quicker.

an inefficient use of already highly limited bandwidth.
Approaches that attempt to improve on this inefficiency quickly run into the funda-

mental time-frequency tradeoff combined with the time and frequency spreading nature
of the acoustic channel. Coherent single carriermodulation is Doppler resistant butmust
compensate for ISI from multipath due to the short (in time) symbol size. On the other
hand, many groups are looking at using multiple carrier (e.g. OFDM [19]) which is inher-
ently less susceptible to multipath, but must compensate for ISI from Doppler (synchro-
nization) caused by the narrow (in frequency) subcarrier width.

Regardless of the signaling approach taken, the theoretical (and practical, if time and
frequency spreading effects can be sufficiently removed) limit on throughput will always
be bounded by the bandwidth and the SNR, as shown by the famous Shannon-Hartley
theorem.

1.2.2 Underwater vehicle autonomy
Autonomous decision making concerning navigation of underwater robots is still a na-
scent field. The challenges and costs of designing, controlling, and fielding vehicles has
consumed much of the research effort in underwater robotics thus far. Missions are
largely pre-programmed surveys, possibly with basic runtime redirection from a human
operator in light of an event. After the mission completes, the data are offloaded and
analyzed. Then the robot is reprogrammed and deployed again. This paradigm shift is

13

illustrated in Fig. 1.2.
As a result of increased commercialization of vehicles (and thus improved robustness

and somewhat reduced costs), it is becoming more practical to field clusters of robots
at once. This opens up the possibility of reduced spatial/temporal aliasing of sampling
for oceanographic work, and collaborative missions for reduced mission time for time-
critical applications such as mine countermeasures or target detection. Along with this
shift towards increasedparallelismof operations comes a requirement for improved com-
munications performance. Essentially by definition, robotic collaboration requires com-
munication.

The limited communications available due to the effects outlined in Section 1.2.1 have
led to advances in autonomous decision making, such as the Interval Programming (IvP)
Helm. Such systems have only had limited success in removing the need for human inter-
action, as years of artificial intelligence (AI) work in non-marine domains has also shown.
Humans are incredibly good at heuristic judgment, while machines are highly effective
at mathematical computation and data storage. Pragmatic AI will leverage the best of
both aspects of a computer/human system, rather than seek to supplant humans with
robots. In the ocean environment, safety and cost considerations lead to the conclusion
that the humans should stay ship (or shore) side. This again leads to the need for effective
wireless networking.

Thus far, the need for networking for real marine robotic systems has led to a num-
ber of ad-hoc projects that serve specific goals (primarily the monitoring of one vehicle’s
state during a pre-planned mission). Carryovers from terrestrial networking (an incred-
ibly widely studied problem since the advent of the global Internet) do not work well in
the marine domain because of two main factors (illustrated in Fig. 1.3):

• Very low throughput - traditional packet designs such as the Internet Protocol suite
(IP) do not function efficiently or effectively. Furthermore, the assumption of total
throughput is generally invalid (TCP breaks down). Vehicles have more data to
share than will ever be able to be transmitted acoustically.

• High latency - Challenges for MAC, routing, and guaranteed delivery.

Several researchers report on fielded networks of AUVs, each with its own advances
and limitations:

• Persistent LittoralUnderseaNetworking (PLUSNet) [20]: ThePLUSNet project demon-
strated transfer of three message types (in the Compact Control Language (CCL)

14

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

La
te

n
cy

 (
se

co
n

d
s)

Throughput (bits/second)

WHOI Acoustic Micro-Modem
(assuming unrealistic 0% packet loss)

Earth - Mars Rover

52K Dialup Modem

Cable Internet

802.11 G Wireless

1GBs Copper

FH-FSK (incoherent)

PSK (coherent)

Figure 1.3: Log-log comparison of a widely used acoustic modem (the WHOI Micro-
Modem) with various other terrestrial and extraterrestrial wireless and wired physical
links. The underwater acoustic link (even with newer advances in modulation) is the
most throughput constrained and has the highest latency, save for inter-planetary links.

[21]) between a mixed network of AUVs, buoys and moored nodes. However, the
networking code was not especially robust, and no tractable mechanism for send-
ing messages outside of the three predefined hard-coded types was available. Fur-
thermore, the entire system was tied to one acoustic modem (the WHOI Micro-
Modem). To a large degree, the experiences from PLUSNet led to the development
of Goby-Acomms (Chapter 2).

• SeaWeb [22, 23]: SeaWeb demonstrated selective automated repeat-request (ARQ)
which improves upon basic ARQ, especially on high-latency links. A large network
of mostly stationary nodes was used, and routing based on neighbor sensing was
performed, though the details in the papers are sparse. In this case, solely the Tele-
dyne Benthos modem was used. Little information is suggested about data presen-
tation (source coding).

15

Application

Platform

Presentation

Session

Transport

Network

Data Link

Physical

O
SI

 N
et

w
or

k
La

ye
rs

Goby-Acomms (Chapter 2)

State Observation Source
Coding (Chapter 3)

Depth Adaptation for increased signal
(Chapter 4)

Figure 1.4: Outline of this thesis’ contributions in the context of the Open Systems Initia-
tive (OSI) network layers [24]. While potentially misleading (at least some cross-layering
is necessary for efficiency), the OSI model provides a common starting point for discus-
sion of networks. The so-called “platform” layer is an innovation for robotics work and
represents the participation of an entire vehicle (e.g. movement) in the network.

1.3 Contributions

As shown in Fig. 1.4, the contributions in this thesis come together to forman incomplete,
but nonetheless valuable networking system for fielded AUVs. All of the chapters contain
work performed or demonstrated using AUVs operated under the “Unified C2” paradigm,
much of which was developed by the author. See Appendix A for technical details on this
operation setup.

Starting from closest to the hardware, the Goby-Acomms library, a networking suite
specifically designed formarine linkswith high latency and low throughput, is presented.
Next, two techniques are presented (and others are suggested) for improving communi-
cations by making use of the vehicle’s intelligence; they are split into non-disruptive (no
negative effect on themission objectives) and disruptive (requiresmovement of the vehi-
cle that may be orthogonal to the overall mission objectives). A summary of the methods
discussed here is given in Table 1.1. These advances are complementary to advances in
signal processing and acoustic modem design, and can be thought of comprising the ap-
plication and platform layers of the network, respectively.

16

1.3.1 Goby-Acomms: Rethinking network protocol design for the
underwater environment

It may be tempting to believe that the design of such a protocol suite is a solved problem;
after all, the ubiquitous Internet Protocol Suite (which includes the Transmission Con-
trol Protocol (TCP) and the User Datagram Protocol (UDP) built upon the Internet Proto-
col (IP)) has successfully demonstrated its success. However the IP suite was specifically
designed for links that achieve total throughput and are typically significantly under-
utilized with reasonably low latencies (order of milliseconds or less), such as Ethernet.
In contrast, typical underwater links, such as those built using acoustic modems, rarely
achieve total throughput in real situations and are thus run at full capacity. Furthermore,
they have high latencies (order of seconds or more). Thus, the design decisions made for
the IP suite do not work for marine links and in some cases are counterproductive.

The Goby-Acomms suite presented in Chapter 2 provides four key advances (listed
in order from closest to the application to closest to the physical link) intended to ad-
dress the limits of traditional networking systems in light of the extreme bandwidth and
latency constraints of underwater links:

1. The Dynamic Compact Control Language (DCCL) is a marshalling (or synony-
mously serialization) scheme that creates highly compressed small messages suit-
able for sending over links with very low maximum transmission units (order of
10s to 100s of bytes) such as typical underwater acoustic modems. DCCL provides
greater efficiency (i.e. smaller messages) than existing marine (CCL, Inter-Module
Communication) andnon-marine (Google Protobuf, ASN.1, boost::serialization, etc.)
techniques by pre-sharing all structural information and bounding message fields
to minimum and maximum values (which then create messages of any bit size, not
limited by integer multiples of octets such as int16, int32, etc.). The DCCL structure
language is independent of a given programming language and provides compile-
time type safety and syntax checking, both ofwhich are important for fielding com-
plex robotic systems. Finally, DCCL is extensible to allow user-provided source en-
coders for any given field or message type, which enabled the work in Chapter 3 to
be easily demonstrated and used on real, fielded vehicles.

2. The transport layer of Goby-Acommsprovides timedynamic priority queuing (Goby-
Queue). In our experience, acoustic links on fielded vehicles have been typically
run at over-capacity; that is, there aremore data to send thanwill ever be send over

17

the link. Thus, the data that are to be sent must be chosen in some fashion. Histor-
ically, priority queues are widely used to send more valuable data first. However,
different types of data also have different time sensitivities, which Goby-Queue rec-
ognizes via the use of a (clock time based) time-to-live parameter. Finally, the de-
mand for a given type of data can increase over time since last receiving a message
of that type. Goby-Queue extends the traditional priority queue concept to balance
these various demands and send the most valuable data under this set of metrics.

3. Acousticmodems such as theWHOIMicro-Modemdonot provide any shared access
of the acoustic channel. Coordinating shared access can be accomplished by as-
signing slots of time in which each vehicle can transmit, which is the time-division
multiple access (TDMA) flavor ofmediumaccess control (MAC). TheGoby-Acomms
acoustic MAC (AMAC) extends the basic TDMA idea to include passive (i.e. no
data overhead) auto-discovery of vehicles in a small, equally time-shared network.
Thus, AMAC simplifies the amount of pre-deployment configuration required to
configure small networks of AUVs.

4. The Goby ModemDriver provides an abstract interface for acoustic modems (and
other “slow link” devices, such as satellite modems), as there is no standard for
interfacing to such devices. Many acoustic modems provide functionality beyond
the strict definition of a modem (which is defined as sending data from one point
to another). Examples of these extra features include navigation (long base line
or LBL, ultra-short base line or USBL) and ranging measurements (“pings”). Goby
ModemDriver allows an application intent only on transmitting data to operate on
any implemented modem without concerning itself with the details of that device.
On the other hand, if the application needs to use some of the extra features, it can
do so via a set of well-defined extensions.

1.3.2 Non-disruptive Techniques

Some methods that do not require potentially unacceptable changes to the mission in-
clude selectingmodemparameters basedonpropagationmodels anduse of entropy source
coding, such arithmetic coding.

Rather thanmoving the vehicle as suggested in the next section and detailed in chap-
ter 4, the vehicle can select an optimal bit-rate, transmit power or frequency band. Given
that the acoustic absorption per unit distance increases with frequency, whereas the am-

18

Table 1.1: Techniques to improve acoustic communications available to an artificially
intelligent AUV

Description Disruptive Improvement Requires Advantages Disadvantages
Move to close
range with
receiver (“data
muling”)

yes higher SNR or
reduced
multipath

receiver
position

large gains extremely
disruptive

Change depth
to expected
beneficial
position
(Chapter 4)

yes higher SNR or
reduced
multipath

receiver
position,
propagation
model

potentially
large gains
(e.g. SOFAR
channel)

quite
disruptive

Stop to
transmit or
receive

yes less Doppler,
lower noise

source
transmit time,
self-noise
model

minimally
disruptive

synchronization
with
transmitter

Frequency
selection

no higher SNR receiver
position,
propagation
model,
broadband or
multi-channel
hardware

extra hardware

Transmit
power
selection

no lower power receiver
position,
propagation
model

easy to
implement

accurate
modeling
difficult,
cannot use
Class D
amplifiers

Entropy-based
source
encoding
(Chapter 3)

no increased
information
per bit

data model complementary
to other
techniques

data modeling
time
consuming or
difficult

bient noise level generally decreases with frequency, a maximum in the expected signal-
to-noise ratio exists varies as a function of carrier frequency as shown in [25]. Thus, a
vehicle aware of the range to its communicating partner can select the available carrier
frequency that is expected to be closest to thismaximumSNR. Similarly, the power can be
adjusted to reach an expected acceptable threshold for a given modulation scheme and
bit rate. Due to the realities of designing broadband transducers, verywide bandmodems
required to make this technique feasible are not presently available. However, a vehicle
equipped with two transducers with different bands could select between the two based
on the range to the receiver.

19

Autonomous modeling to improve source coding

A second way of non-disruptively improving acoustic communications is via source cod-
ing or compression of the vehicle’s data. This thesis shows that the vehicle’s intelligence
can be used to make significant strides in source coding of telemetered data. Physical
models of source data can be compared to the measured data to provide small delta mes-
sages to existing entropy encoders, such as arithmetic coding. The resulting encoded
message is substantially smaller due to the resulting increase in information content.
This technique is non-disruptive and can be complementary to the disruptive techniques.
Chapter 3 presents such a system built on the Goby-Acomms library, and is thus suitable
for real deployments.

The concept developed in chapter 3 provides a shared (between sender and receiver)
decoupled physicalmodel and an arithmetic entropy encoder, which encodes the innova-
tions between the model and the measured data. This concept is applicable to numerous
data sources on a AUV, and since the two components (model and encoder) are isolated,
the work on the encoder need not be duplicated for future applications of this technique.

Several potential applications of this concept include:

• Scalar sensor data, such as from conductivity-temperature-depth (CTD), turbidity,
pH, oxygen, or pollutants (e.g. hydrocarbons) instrumentation. These measure-
ments can be compared to a shared dynamic environmental forecasting model and
efficiently encoded using an entropy encoder.

• Estimated positions of an unknown moving object (such as the bearing and range
to a sonar target) combined with a model of the target’s dynamics.

• In a similar concept to the unknown target, but for a known vehicle, the position of
the sending AUV (the output of its navigation system) can be compared to a shared
model of the AUV’s motion.

The third of these, telemetry of a time series of an AUV’s position, is the application
explored in chapter 3. In this case, two dynamics models are developed, a computation-
ally inexpensive fixed-speed motion model that is applicable to a large class of torpedo-
shaped AUVs, and a more general purpose Kalman Filter model that introduces vehicle
maneuvers via process noise to preserve generality to a large set of vehicles. These two
models are compared to the measurements and the differences (“deltas”) produced are
then provided to a modified integer arithmetic encoder to encode. This technique was

20

used on a two widely different vehicle types using simulation on experimental data as
well as in-situ testing using Goby-Acomms. In all cases, compression ratios (relative to
using standard 32-bit integers) exceeding 85% were realized using this technique.

Even in the case where only the newest position of the vehicle is desired (that is, a
historical back fill of “missed” positions due to link dropouts is unneeded), this technique
provides improved compression for highly lossy links (up to those exceeding about 65%
packet loss).

1.3.3 Disruptive Techniques

Since, by definition, AUVs are mobile, the possibility exists for motion (or lack thereof)
to effect a change in the physical communications situation. In general, the movement
requiredwould be partially orthogonal to themovement goals of the overarchingmission
(e.g. environmental sampling, hazard detection), hence the use of the term “disruptive.”

The disruptive technique diagrammed in chapter 4 aims to improve communication
performance by placing the AUV in a position where the acoustic channel is more fa-
vorable for telemetry, such as by increasing the expected signal-to-noise ratio (SNR) for
use with an incoherent modulation scheme (such as frequency-hopping frequency shift
keying).

In order to accomplish this, the vehicle must model the acoustic channel. Existing
acoustic models are not designed for “online” use by an autonomous embedded com-
puting system, having been developed for human-based “offline” use, typically using
powerful computational hardware. To make such models usable in this new context,
the Generic Robotic Acoustic Modeling (GRAM) concept was developed. GRAM provides
an abstract remote-procedure call (RPC) interface to legacy (but still valuable) acoustic
modeling codes; as well, it provides an incremental update mechanism the reduces the
overhead involved with each invocation of the acoustic model code.

GRAM is then used in conjunction with the existing BELLHOP code from [26] to pro-
vide forecasts of the predicted acoustic transmission loss between an AUV and its re-
ceiver. The inputs to the model include sound speed data calculated frommeasurements
on-board the AUV. Using the results of the model, an autonomy behavior developed for
this work produces a function of utility for the vehicle over all reachable depths. This
behavior is then solved using the existing IvP Helm multi-objective decision engine pre-
sented in [27]. Thus, the specific contributions of this chapter to the thesis are the GRAM
concept and implementation (“online” acoustic modeling by a robotic agent), the depth-

21

adaptive autonomous behavior (BHV AcommsDepth and the derived BHV MaxSNRDepth),
and the environmental-feedback framework (see Fig. 4.1) that utilizes these components
in a fielded AUV.

Another technique that is not explored in detail in this thesis involves slowing or
stopping the vehicle to mitigate self-noise and/or Doppler effects. Certain modulation
schemes, such as orthogonal frequency division multiplexing (OFDM), are highly sensi-
tive to Doppler shifts. Since vehicle speeds (order of 100 m/s) are not negligible com-
pared to the speed of sound in sea water (order of 103 m/s), normal vehicle motion can
be disruptive to successful communications. Whether this technique is useful or not de-
pends on the autonomy system understanding the requirements of the acoustic modem;
it makes no sense to stop the vehicle if the modem’s modulation is immune to the rele-
vant frequency shifts. A second reason to arrest the motion of the vehicle is just prior to
receipt of a telegram to reduce the vehicle’s self noise. Zimmerman, et al [28] found that
the self-noise of a typical mid-size AUV (the Bluefin Odyssey IIb) was 20 to 50 dB higher
than the ocean background noise levels in the 10Hz to 10kHz range; the upper end of
this band is commonly used for AUV communication. Most of this noise is motion re-
lated (propeller and turbulence), suggesting that much of this noise could be removed by
stopping the vehicle temporarily to receive communications. However, such a scheme
requires knowledge of incoming transmissions, which can be pre-arranged (e.g. fixed
time division multiple access (TDMA) medium access control (MAC)) or negotiated (e.g.
request-to-send/clear-to-send style MAC schemes).

Both of these techniques have the obvious disadvantage of taking time and power
away from the core mission for the purpose of communications. However, many mis-
sions (especially detection of mines or submarines) are inherently useless without timely
reports of collected data. Thus, when using these disruptive techniques some form of
multi-objective optimization needs to be used. Otherwise, there is a risk of the mission
collapsing to the degenerate case where all of the mission time is spent communicating
useless data.

22

2 Goby-Acomms: A modular acoustic
networking framework for short-range marine

vehicle communications

2.1 Introduction

For successful collaboration of autonomous underwater vehicles (AUVs) in tasks ranging
from the scientific (e.g. oceanographic sensing; see [29]) to commercial andmilitary (e.g.
harbor surveillance; see [30]), transmission of datagrams is essential to propagate state
and sensor data. However, the only practical long range communications link, one car-
ried by acoustics, has extremely low throughput and high latencies due to the physics
governing propagation of sound in the ocean (primarily little available bandwidth, low
speed, and multipath due to boundary interactions). For an overview of these challenges
see [14] and [12].

Another significant reality caused by the acoustic link’s low data rates is that total
throughput is rarely or never a possibility. Ideally all collaborating vehicles and the top-
side human operator would have the entire data set of all vehicles in the network in order
tomake the bestmission decisions. Instead, only aminiscule subset of the data generated
by an AUV can be relayed acoustically. This leads to a significant prioritization problem;
some of this queuing can be automated by the Goby dynamic priority queuing module
(queue, see section 2.3).

The final significant challenge for underwater telemetry addressed by Goby is the lack
of standardization or even significant commonality between different acoustic modems.
In order to allow communication that appears seamless to the application in a variety of
hardware environments, the Goby interface to the link layer (modemdriver, see section
2.5) is extensible and polymorphic, allowing Goby to communicate over any device that

23

can send bytes from point A to point B. At the same time, the application can still use
hardware-specific features as desired. In collaboration with the modemdriver, Goby pro-
vides basic time division multiple access (TDMA) medium access control (MAC) with a
novel peer autodiscovery mechanism (section 2.4).

Networking is a well studied problem in the terrestial domain; a prime example is the
Internet Protocol (IP) Suite, which is comprised of TCP andUDP. However, the limitations
to throughput and latency in an underwater acoustic network suggest we should perform
careful analysis before applying terrestial networking solutions to the marine environ-
ment. Specifically, we suggest that certain tradeoffs of efficiency for abstraction that are
desirable on high throughput, low latency links involving thousands of computers are
not desirable for the low throughput, high latency acoustic links involving at most tens
of autonomous underwater vehicles (AUVs).

A common form of networking abstraction is the concept of “layers” (together, the
layers form a network “stack”). The Open System Interconnection Reference Model (OSI
Model) presented in [31] provides a framework for this type of abstraction. In the OSI
Model, each layer is abstracted from the previous layer; that is, higher levels do not need
to concern themselves with the implementation details of lower levels. This abstraction
allows for complicated systems to be broken into more manageable pieces and is likely
a contributer to the success of the internet. However, such layering comes with trade-
offs. Higher layers duplicate header information (such as addressing) and error checking
that may be already implemented on one or more of the lower layers. Hence, with goby-
acomms, in order to produce shorter messages, we chose to maintain the general concept
of networking layers, but with more explicit and implicit interactions between layers.
Due to the success and widespread knowledge of the IP suite, it will be used as a compar-
ison to goby-acomms where possible to elucidate design decisions.

The layers (ormodules) of goby-acomms are summarized in Table 2.1 with an approx-
imation of the corresponding layer(s) of OSI Model, and illustrated generally in Fig. 2.1.
While each layer is dependent on one or more of the other layers, any layer could be
replaced as long as the replacement fulfills the necessary interface requirements. This
modularity of goby-acomms should improve its flexibility for use in a variety of future
acoustic networks, as needs change and new research comes to light. For example, a fu-
ture project that just needs encoding could use dccl alone. Or an acoustic networkwith an
improved buffering system could replace queuewhile making use of the remaining layers
of goby-acomms.

24

Table 2.1: Comparison of goby-acomms layers with those of the OSI Model

OSI Model layer IP Suite layer goby-acomms layer Provides
Application Provided by the IP user Provided by the goby-

acomms user.
Configuration and data.

Presentation Provided by the IP user dccl a Encoding and decoding.
Session Provided by the IP user Not used. Sessions are

passive.
Transport TCP or UDP queue b Priority buffering,

concatentation of
multiple DCCL messages,
and optional guarantee of
receipt.

Network IP Not provided, but could
be added by user into the
dccl header.

Data Link e.g. Ethernet driver amac c Division of time into slots
for multiple vehicles over
the half-duplex link.

modemdriver d Configuration of,
interaction with, and
abstraction of the
physical layer.

Physical e.g. Ethernet e.g. WHOI Micro-Modem Transmission and receipt
of messages.

a section 2.2
b section 2.3
c section 2.4
d section 2.5

2.1.1 A note about Goby versions 1 and 2

Goby grew out of a MOOS project (see section 2.6.1) to become a standalone C++ suite
of libraries which was called version 1 (Goby1). After numerous field trials and feedback
from external collaborators, a significant overhaul and complete rewrite ofmuch of Goby
was completed in light of this knowledge. This became know as Goby version 2 (Goby2).
Unless otherwise specified, this chapter refers to the current state of the art, Goby2, but
in a number of places the design history of the project is mentioned to explain certain
decisions. Often the history of a design choice is critical to understanding its rationale.
Successful engineering of real systems is an iterative, incremental process, and the intel-
lectual contribution of this work rests on the ultimate outcome of a several year history
of making mistakes or subpar choices, learning from them, and improving the work.

The overall goals of Goby2 versus Goby1 are to

25

Modem Hardware

goby-acomms user

goby-acomms

QueueManager

DriverBase

MMDriver

DCCLCodec

«executable»

Acomms Application

«executable»

Modem Firmware

«file»

DCCL Protobuf (.proto)

MACManager

«module»

dccl

«module»

queue

«module»

modemdriver

«module»

amac

Figure 2.1: Unified Modeling Language (UML) component model of the goby-acomms li-
brary. Dependencies are indicated with a dotted arrow pointing from an object to its
dependency. The interface class to each library is given as a line terminated by a semi-
circle (e.g. DCCLCodec). UML is presented in [32].

1. improve extensibility by third-party authors. Release 1 was primarily focused on
a specific marine vehicle middleware (the MOOS project), and did not offer many
expansion opportunities except the ability to define one’s own DCCL messages.

2. promote the development of a system that provides high correctness assurance as
far before deployment as possible, since ship time is highly valuable and vehicles
are costly. The communications system is, almost by definition, an essential part
of collaborative vehicle missions, and thus it cannot fail.

Some details about Goby1 are given in the appendix section B.1.

26

amacqueue WHOI Micro-Modem FirmwaremodemdriverApplication dccl

push_message()

cycle init ($CCCYC)

data request ($CADRQ)

encoded data

send data ($CCTXD)

acknowledgement ($CAACK)

initiate transmission(message)

data_request(message)

requested data

(type = ACK): receive(message)

pop_messageack

encode()

Figure 2.2: The UML sequence diagram for sending a message using all the goby-acomms
components.

2.2 DCCL: data marshalling (or source coding)
The Dynamic Compact Control Language (DCCL) is comprised of two parts designed to
make creating very small datagrams straightforward and reliable: a structure language
and anencoding library. The languageprovides awayof representing “methodless classes”
or “dumb data objects” that are similar to what can be represented in a C struct, but with
the addition of meta-data that provides information allowing optimized encoding and
strict upper bounding of the message size.

2.2.1 Motivation

DCCL fulfills the role of data presentation by providing a framework for defining object-
based messages and a commmon framework for source encoding and decoding them.
Furthermore, each DCCL message is intended to be extended by the user to provide the
equivalent of the Internet Protocol’s (IP) header information to allow for multiple hop
routing. It does not make sense to use IP on acoustic links, largely because the size of
the IP header (minimum 20 bytes) is the same order of magnitude of themaximum trans-
mission unit (MTU) of common acoustic modems. For example, the WHOI Micro-Modem
uses frames of 32 to 256 bytes. Basagni et al. [33] show that for a representative link

27

with a bit-error rate of 10−4 and bit rate of 200 bits per second (bps), obtainingmaximum
throughput efficiency of a multi-hop network requires packet sizes of 500 bytes or less.
Thus, it seems reasonable to assume that the minimum IP header will comprise at least
5% of an acoustic modem packet satisfying the 500 bytes or less constraint. In the case of
theMicro-Modem, this could as much as 62.5% overhead. Given the very low throughput
of these links to begin with, this is an unacceptable amount of the message to be used for
potentially unneeded information. Once out of the highly restricted domain of acoustic
links, it is straightforward and likely desirable to wrap DCCL messages as a payload on IP
networks.

In addition to minimizing header size, the limited throughput constraint of acoustic
communications suggests that compressing message payloads as much as possible is a
useful goal. Due to the high error rates caused by the acoustic channel combined with
high latencies (order of seconds to minutes), guaranteeing receipt of multiple frames can
often take an unacceptable amount of time for AUV collaboration. Thus, all of goby-
acomms deals with data frames smaller than or equal to the size of the hardware layer’s
frame size, and does not perform automatic fragmentation. This requires that the ap-
plication layer produce data that are useful or at least potentially useful as standalone
frames. Thus, for the Dynamic Compact Control Language, the user must strictly specify
and name the fields that a given message can take. Furthermore, all numeric fields must
have tight bounds that represent the realistic set of values that field will take. For exam-
ple, it is inefficient to use a 32-bit integer to represent the operation depth which might
vary at most from 0-11021 meters on Earth and thus fit in 14 bits or less.

2.2.2 Design overview

DCCL is comprised of two components: 1) a structure language based on Google Protocol
Buffers (protobuf) with which to define messages (described in section 2.2.3); and 2) a
module in the goby-acomms C++ library (dccl, detailed in section 2.2.4) that validates the
DCCL extensions of protobuf and implements consistent encoding and decoding of each
message.

In order to produce messages as small as possible, DCCL offers these features:

• Defined bounded field types with customizable ranges. For example, an integer
with minimum value of 0 and maximum value of 5000 takes 13 bits instead of the
32 bits often used for the integer type, regardless of whether the full integer type

28

is needed.

• Dissolved byte boundaries (unalignedmessages): fields in themessage can be an ar-
bitrary number of bits. Octets (bytes) are only used in the final message produced.
There is no delimiter between fields in the encoded bitstream; each encoder is re-
quired to produce the exact number of bits consumed by the corresponding de-
coder.

• Delta-difference encoding of correlated data (e.g. CTD instrument data): rather
then sending the full value for each sample in a message, each value is differenced
from both a pre-shared key and the first sample within the message. This feature
is described in more detail in section 2.6.5.

We also wanted to remove some of the complexity and potential sources of human
error involved in binary encoding and bit arithmetic. To make DCCL straightforward, we
made several design choices:

• All bounds on types can be specified as any number, such as powers of ten, rather
than restricting the message designer to powers of two. This leads to a small inef-
ficiency since the message is encoded by powers of two, but this drawback is bal-
anced by the value of simplicity since the human mind is much more comfortable
with powers of ten than powers of two.

• Protobuf is the basis of the markup language that defines the structure of a DCCL
message. Protobuf is widely used within Google and is an open source project with
excellent documentation and quality.

• Encoding and decoding for basic types are predefined and handled automatically
by the DCCL C++ library (dccl), meaning that in the vast majority of the cases no
new code needs to be written to create or redefine a DCCL message. Writing code
on cruises is always a risky endeavor, andminimizing that risk is important tomax-
imizing use of ship time. However, flexibility to define custom algorithms to assist
with encoding is provided for the fairly rare case when the basic encoding does not
satisfy the needs of a particular message.

2.2.3 DCCL Structure Language
The DCCL structure language (defined in Table 2.2) is based on an extension of the Google
Protocol Buffers (“protobuf”) language (see [34]). Protobuf was chosen to replace XML,

29

Table 2.2: Definition of the DCCL Structure Language

Message Extensionsa

Extension Name Extension
Type Explanation Goby1 equivalentb

(dccl.msg).id int32 Unique identifying
integer for this message

<id>

(dccl.msg).max bytes uint32 Enforced upper bound
for the encoded message

<size>

Field Extensionsc

Extension Name Extension
Type

Applicable
Fields Explanation Goby1 equivalent

(dccl.field).codec string all Codec to use for this field
(omit for default)

N/A

(dccl.field).omit bool all Do not include field in
encoded message
(default = false)

N/A

(dccl.field).precision int32 double,
float Decimal digits to

preserve.
<precision>

(dccl.field).min double
(u)intNd,
double,
float

Minimum value that this
field can contain
(inclusive)

<min>

(dccl.field).max double
(u)intN,
double,
float

Maximum value value
that this field can
contain (inclusive)

<max>

(dccl.field).max length uint32 string,
bytes Maximum length (in

bytes) that can be
encoded

<max length>

(dccl.field).max repeat uint32 all (re-
peated) Maximum number of

repeated values.
<array length>

a Extensions of google.protobuf.MessageOptions
b See section B.1 for legacy Goby1 XML tag definitions.
c Extensions of google.protobuf.FieldOptions
d (u)intN refers to any of the integer types: int32, int64, uint32, uint64, sint32, sint64, fixed32, fixed64,
sfixed32, sfixed64

30

whichwas used in DCCL1, because it provides static (compile-time) type safety and syntax
checking. Developing systems for AUVs involves integrating large codebases from mul-
tiple research centers, and without a high degree of compile-time correctness assurance,
costly ship time will be wasted tracking down avoidable software bugs. Since DCCL1 was
defined in XML (see appendix section B.1), all correctness checking was done at runtime,
deferring detection of syntactical and type errors.

Furthermore, Protobuf messages (and thus their derivatives, DCCL messages) use a
compiler that produces native C++ classes, allowing for high efficiency which is critical
for embedded systems. Due to the fundamental tradeoff between power and longevity
(as detailed in [35]), AUVs can only support low performance (but low power) hardware,
such as ARM based computers. C++ provides an excellent balance between programming
ease and runtime efficiency.

Finally, Protobuf provides class introspection, which allows DCCL to operate on ar-
bitrary user-provided messages, which can be compiled into the application or loaded
dynamically either through shared libraries or runtime compilation of the DCCLmessage
definition.

An example of the syntax of the structure language is given in Fig. 2.3. Also in that
figure is the encoded size of the message.

Message Design

Whendesigning aDCCLmessage, a few considerationsmust bemade. Eachmessage needs
to be given a identification (ID) number unique within the DCCL network that this mes-
sage is intended to live by assigning a value to the option (dccl.msg).id. By default,
DCCL provides a variable integer encoder for the ID that uses one byte for IDs in the range
[0, 128) and two bytes for [128, 32768). Sometimes messages may have limited scope or
may be mutually exclusive, in which case duplicate IDs may be assigned. Like any other
field, this DCCL ID codec can be redefined by the user. For example, a restricted network
where only eight message types are needed could use a 3 bit ID field. The value of being
able to redefine the header based on the network size is illustrated in Fig. 2.4.

Furthermore, the overallmaximumsize of themessageneeds to bedetermined (option
(dccl.msg).max bytes). This may be a constraint imposed by the hardware layer that
this message is intended to traverse. In the case of the WHOI Micro-Modem, this should
match the frame size of the intended data rate to be used (32 bytes for rate 0, 64 bytes
for rate 2, and 256 bytes for rates 3 and 5). The size of the message is given by the sum

31

import "goby/acomms/protobuf/dccl_option_extensions.proto";

message CTDMessage
{
 option (dccl.msg).id = 102;
 option (dccl.msg).max_bytes = 64;

 required int32 destination = 1 [(dccl.field).max=31,
 (dccl.field).min=0,
 (dccl.field).in_head=true];

 required uint64 time = 2 [(dccl.field).codec="_time"];

 repeated int32 depth = 3 [(dccl.field).max=1000,
 (dccl.field).min=0,
 (dccl.field).max_repeat=10];

 repeated int32 temperature = 4 [(dccl.field).max=40,
 (dccl.field).min=0,
 (dccl.field).max_repeat=10];

 repeated double salinity = 5 [(dccl.field).max=40,
 (dccl.field).min=25,
 (dccl.field).precision=2,
 (dccl.field).max_repeat=10];
}

8
5

17

 required int32 100

 (dccl.field).min=0,
 (dccl.field).max_repeat=10];

60

 repeated double
 (dccl.field).min=25,110

H
ea

d
er

B
od

y
(e

n
cr

yp
te

d
)

Figure 2.3: Definition of a DCCL message for sending ten samples from a Conductivity-
Temperature-Depth (CTD) sensor. On the left is the size of each encoded field in bits;
the whole message is 280 bits (35 bytes) including required bit padding on the header
and body. For comparison, the default Protobuf encoding uses 81 bytes to encode this
message with a representative set of values.

32

10
0 10

2 10
4 10

6 10
8

10

100
101

102
103

104
10

5
0

10

20

30

40

50

60

70

80

number of endpoints in network (N)

number of DCCL message types used (M)

h
ea

d
er

 s
iz

e
(b

it
s)

10

20

30

40

50

60

70

Figure 2.4: Size of a customized DCCL header (containing a type identifier (DCCL ID),
source address, and destination address) for varying network sizes N and number of
message types M used. In comparison, IP uses a fixed 64 bits total for the source and
destination addresses and does not provide any type identification (equivalent on this
plot to N = 232 = 109.6, M = 0). Since AUV networks typically reside near the origin
on this plot, it is valuable to have the ability to target a given network and thus minimize
the header size.

of the user defined fields, plus the DCCL ID field. The field sizes are calculated using the
expressions given in the ”Size” column of Table 2.3. These sizes are calculated at runtime
with dccl, so it is rarely necessary to calculate these by hand. However, these expressions
give a sense of howmuch space a given field will typically take, which is important when
considering how to type and bound the data.

2.2.4 Algorithms and Implementation

Along with the message structure defined in section 2.2.3, DCCL provides a set of con-
sistent encoding and decoding tools in the C++ dccl library. The tools provided by dccl
include:

• Calculation of message field sizes and comparison to the mandated maximum size

33

(max_bytes). Messages exceeding this size are rejected and thedesignermust choose
to remove and/or reduce fields or increase the message max_bytes.

• Encoding of DCCL messages using the expressions given in Table 2.3. The user
passes an instantiation of a Protobuf message and receives an encoded string of
bytes back.

• Decoding of DCCL messages using the reciprocal of the expressions used for encod-
ing.

2.2.5 Encryption

dccl provides pre-shared key encryption of the body portion of the message using the
Advanced Encryption Standard (AES or Rijndael) [36]. AES is a National Institute of Stan-
dards and Technology (NIST) certified cipher for securely encrypting data. It has been
certified by the National Security Agency (NSA) for use encrypting top secret data.

dccl uses a SHA-256 hash of a user provided passphrase to form the secret key for
the AES cipher (see [37] for the specification of SHA-256). In order to further secure the
message, an initialization vector (IV) is used with the AES cipher. The IV used for DCCL
is the most significant 128 bits of a SHA-256 hash of the header of the message. It is
a requirement of the DCCL message designer that the message header contain a nonce
(such as the time of day) so that it provides the continually changing value required of
an IV. This ensures that the ciphertext created from the same data encrypted with the
same secret key will only look the same in the future on a given day on the exact second
it was created. The open source Crypto++ library available at [38] is used to perform the
cryptography tasks.

2.2.6 Comparison to prior work

In the marine community, two contributions provide a similar framework to DCCL: the
Compact Control Language (CCL) and Inter-Module Communication (IMC). Furthermore,
other application domains have developed approaches to a similar problem. These in-
clude various forms of Text Encoding, Abstract Syntax Notation One (ASN.1), and Google
Protocol Buffers (whose encoding library DCCL does not use).

34

Table 2.3: Formulas for encoding the DCCL types.

Protobuf
Type Size (bits) Encodea

bool
(required) 1 xenc =

{
1 if x is true
0 if x is false

bool
(optional) 2 xenc =


2 if x is true
1 if x is false
0 if x is undefined

enum
(required) dlog2(

∑
εi)e xenc = i

enum
(optional) dlog2(1 +

∑
εi)e xenc =

{
i+ 1 if x ∈ {εi}
0 otherwise

string 8 +
min(length,max length) ·8

xenc = length+
∑min(length,max length)

n=0 s(n) · 28(n+1)

(u)intN
(required) dlog2(xmax − xmin + 1)e xenc =

{
x− xmin if x ∈ [xmin, xmax]

0 otherwise
(u)intN
(optional) dlog2(xmax − xmin + 2)e xenc =

{
x− xmin + 1 if x ∈ [xmin, xmax]

0 otherwise
double,
float
(required)

dlog2((xmax − xmin) ·
10prec + 1)e

xenc ={
nint((x− xmin) · 10prec) if x ∈ [xmin, xmax]

0 otherwise
double,
float
(optional)

dlog2((xmax − xmin) ·
10prec + 2)e

xenc ={
nint((x− xmin) · 10prec) + 1 if x ∈ [xmin, xmax]

0 otherwise
bytes max length · 8 xenc = x
· x is the original (and decoded) value; xenc is the encoded value.
· xmin, xmax, max length, prec are the value of the (dccl.field).min, (dccl.field).max,
(dccl.field).max length, and (dccl.field).precision options, respectively. εi is the ith child of the
enum definition (where i = 0, 1, 2, . . .), not the value assigned to the enum.
· nint(x) means round x to the nearest integer.
· s(n) is the ASCII value of the nth character of the string.

a if data are not provided or they are out of range (e.g. x > max), they are encoded as zero (xenc = 0)
and decoded as not present.

35

Compact Control Language

dccl owes inspiration and part of the name to the Compact Control Language (CCL) devel-
oped at WHOI by Roger Stokey and others for the REMUS series of AUVs. An overview of
CCL is available in [39], and the specification is given in [21]. In our experience, before
DCCL, CCL was the de facto standard datamarshalling scheme for acoustic networks based
on the WHOI Micro-Modem.

DCCL is intended to build on the ideas developed in CCL but with several notable im-
provements. DCCL provides the ability for messages to adapt quickly to changing needs
of the researchers without changing software code (i.e. dynamic). CCL messages are hard
coded in software while DCCLmessages are configured using Protobuf. Furthermore, CCL
has no mechanism to including network level header information required for routing.
DCCL provides a user-extensible header for such tasks, without increasing the overhead
when such information is not required.

Also, significantly smaller messages are created with DCCL than with CCL since the
former uses unaligned fields, while the latter, with the exception of a few custom fields
(e.g. latitude and longitude), requires thatmessage fields fit into an evennumber of bytes.
Thus, if a value needs eleven bits to be encoded, CCL uses two bytes (sixteen bits), whereas
DCCL uses the exact number of bits (eleven in this case). DCCL also offers several features
that CCL does not, including encryption, delta-differencing, and data parsing abilities.

To the best of the authors’ knowledge (which is supported by Chitre, et al. in [14]), CCL
is the only previous effort to provide an open structure for defining messages to be sent
through an underwater acoustic network. Other attempts have been ad-hoc encoding for
a specific project. In order not to trample on Stokey’s work and maximize interoperabil-
ity, we have made DCCL optionally compatible with a CCL network, giving DCCL the CCL
initial byte flag of 0x20 (decimal 32). This allows vehicles using CCL and DCCL to interop-
erate, assuming all nodes have appropriate encoders for both message languages. When
interoperability is not necessary, this byte is omitted, saving message header space.

Inter-Module Communication (IMC)

IMC (see [40]) uses XML with XSLT transformations into the native language code (e.g.
C++) that gives a similar language-neutral data object (but with compile-time type safety)
to DCCL2. However, IMC uses the standard system primitive types (e.g. 32- and 64-bit
integers) and does not allow arbitrary bounding or user-defined codecs.

36

Text Encoding

Two approaches to encoding that have proven useful in other applications for compress-
ing textual data are dictionary coders (e.g. LZW [41]) and entropy coders (e.g. Huffman
coding [42]). Both of these are successful on sparse data, such as human readable text.
Their utility for the types of messages encountered commonly in marine robotics is lim-
ited, however. These messages tend to be short and full of numeric values, whose infor-
mation entropy is much greater than that of human generated text. However, careful
application of entropy coders to non-text data can produce significant gains, as explored
in chapter 3.

Furthermore, the overhead cost incurred by these text encoders means that the com-
pressed message may not be more efficient than the original message until a sizable
amount of data (perhaps several kilobytes) has been encoded. This exceeds the size of
individual frames in the WHOI Micro-Modem, meaning that in messages would have be
split across frames and reassembled. Given the low throughput and high error rate of the
acoustic channel, it is impractical to attempt to send a message that is more than sev-
eral frames before being decodable. Furthermore, the resulting message from these text
encoders is variable length, as the compressibility depends on the input data. This can
cause further difficulties transporting these data across the acoustic network.

Given these considerations, we decided that currently available text encoders would
not an acceptable solution to the problem at hand, i.e. creating short messages for acous-
tic communications.

Abstract Syntax Notation One

Abstract Syntax Notation One (ASN.1) is amature andwidely used standard for abstractly
representing data structures (or messages) in a human-readable textual form. It also
specifies a variety of rules for encoding data using the ASN.1 structures. In both these
areas, ASN.1 is similar to DCCL: DCCL also provides a structure language (based on XML
in this case), and a set of encoding rules. In fact, the rules used by DCCL are very similar
to the ASN.1 unaligned Packed Encoding Rules (PER). For a good treatment of ASN.1, see
Larmouth’s book [43].

Given the severe restrictions on message size due to the acoustic modem hardware,
existing ASN.1 structures are unlikely to be useful, unless the designers were originally
careful in specifying bounds on numerical types (e.g. INTEGER) and minimizing use of
string types (e.g. UTF8STRING). Thus, for simplicity, the authors prefer the protobuf

37

specification given in Table 2.2 and currently used by DCCL.
Support for ASN.1 may become a desirable goal in the future to take advantage of the

knowledge base and experience of this well accepted standard. However, we will likely
have to choose a tightly reduced subset of the ASN.1 specification to meet the restric-
tive demands of the underwater acoustic channel, possibly rendering any gains of being
standards-compliant moot.

Google Protocol Buffers

While DCCL only uses Google Protocol Buffers (Protobuf) as a starting point for its lan-
guage definition, Protobuf also provides a binary encoding. The encoding is reasonably
compact, but does not take into account the origin of each field’s data, which allows DCCL
to provide a more compact encoding. The DCCL encoding of the message given in Fig.
2.3 is 56% more compact than the Protobuf built-in encoding because the DCCL message
designer can incorporate information about the fields’ physical origins (e.g. salinity is
bounded between 25 and 40 in the world’s oceans).

DCCL Summary

The design of DCCL can be summarized in a few key points:

• It is worth spending significant human and CPU time designing highly compressed
messages since acoustic links are often operated at capacity (“total throughput is
rarely achievable on real AUV acoustic networks”).

• DCCL provides aminimal header size (in theory as small as 0 bytes) because acoustic
modems have small MTUs (order of 10s to 100s of bytes).

• DCCL allows variable length encoders, but enforces a known upper bound on mes-
sage size to allow a designer to target a given link-layer packet size.

2.3 queue: Dynamic priority based buffering

2.3.1 Motivation

Field experience has taught us that in a network of AUVs, desired throughput almost
always exceeds the available channel capacity. Based on the available capacity, the en-
gineers and scientists topside prefer to see as much data as possible. The upper limit on

38

desired throughput would perhaps be a real-time feed of all sensor data, but this can eas-
ily be order of megabits per second or higher (especially if video is involved). Maximum
data throughput of available commercialmodems, such as theWHOIMicro-Modem, is or-
der kilobits per second ormuch lower in realistic environments. Given that this spread is
unlikely to close due to the physical limitations of the acoustic carrier, users will always
have be selective about which data are sent over the network.

One solution to this problem is to fix (before launch) a small subset of data that will be
transmitted acoustically. Approaches to acoustic networking before goby-acomms such as
the approaches in [44] and [45] use this solution, typically only sending a vehicle status
andmaybe a single sensor data type that is most relevant to the experiment at hand. This
technique is generally suboptimal, given the designer must account for the worst case
communications scenario or risk filling the sending buffers faster than messages can be
transmitted over the channel. Due to the highly variable communications environment
experienced using acoustics in the ocean, this minimax approach will under-utilize the
available capacity.

To better utilize the channel, we need a solution that dynamically scales with the
moment-to-moment available capacity. When we have poor throughput, we want to
send highly valuable messages. These may correspond to status messages or time sen-
sitive mission specific messages such as target or event detection alerts. When we have
good throughput, we also want to send less critical, but still useful data. queue provides
a prioritized set of buffers with time varying values to effect this desired behavior. Each
DCCL message type is assigned a buffer. When the Medium Access Control requests data
from queue, a priority contest is performed between all the buffers that containmessages.
The winning buffer provides data from either its front or back, based on the user’s desire
for a first-in / first-out (FIFO) or first-in / last-out (FILO) queue respectively.

2.3.2 Prior work

Priority Queues

Priority queues are a widely available container type inmodern programming languages.
(For example, C++, Java, andPythonall provide implementation in their standard libraries).
In a priority queue, messages are added with some priority value. When data are re-
quested from the queue, the highest priority data are given first. queue provides a dy-
namic priority queue of (ordinary) double-ended queues (or “deques”). The dynamic part

39

Dynamic Priority Queue

D
e

q
u

e
 f
o

r
 T

y
p

e
 1

D
e

q
u

e
 f
o

r
 T

y
p

e
 2

D
e

q
u

e
 f
o

r
 T

y
p

e
 3

Back

Front

DCCL Object of Type 1

DCCL Object of Type 1

DCCL Object of Type 1

DCCL Object of Type 1

DCCL Object of Type 1

DCCL Object of Type 1

Back

Front

DCCL Object of Type 2

DCCL Object of Type 2

Back

Front

DCCL Object of Type 3

DCCL Object of Type 3

DCCL Object of Type 3

Figure 2.5: Data structure of queue for three declared DCCL types. All objects within a
deque are of the sameDCCL type and eachdeque is dynamically prioritized using Equation
2.1. Whether a deque is accessed from the back or front is configurable for each DCCL
type.

is how queue differs from ordinary priority queues. Rather than having a fixed priority,
entries in queue have a priority that varies in time. The structure of this dynamic priority
queue of deques is outlined through an example in Fig. 2.5.

2.3.3 Implementation
Each buffer (one buffer for each DCCL type1) is given a base value (Vbase) and a time-to-live
(ttl) that create the priority (P (t)) at any given time (t):

P (t) = Vbase
(t− tlast)

ttl
(2.1)

where tlast is the time of the last time an object was sent from this buffer.
This means for every buffer, the user has control over two variables (Vbase and ttl).

Vbase is intended to capture how important the message type is in general. Higher base
values mean the message is of higher importance. However, with only the Vbase, higher
value messages would always supercede lower value messages. AUV operators know,
however, thatmessages of some types becomemore valuable if one has not been received
in a long period of time, where “long” is defined by the preferences of the operators and
the goals of the mission. For example, the value of a vehicle’s status message grows in
time as the operators become increasingly concerned with the health and location of the
vehicle. The ttl parameter works to incorporate this notion of time varying value.

As the name suggests, the ttl governs the number of seconds the message lives from
creation until it is destroyed by queue. But more importantly, the ttl also factors into the

1as uniquely defined by (dccl.msg).id

40

Table 2.4: Example DCCL types for queue

type id Vbase ttl example
1 1 1000 position report
2 2 2000 event message
3 1 3000 sensor (CTD) message

priority calculation. More time sensitive messages (those with lower ttl values) grow in
priority faster. The reason that the ttl parameter is chosen to be the same as the priority
time constant is simplicity. Managing complexity of configuration is one of the largest
challenges facing field robotics. By grouping these two concepts together, only a single
value (with a concrete meaning) needs to be configured for a givenmessage queue’s time
sensitivity. When a vehicle can have dozens of message types (and communications is
one of dozens of subsystems), reducing configuration needs reduces complexity.

So with these two parameters, the user can capture both overall value (i.e. Vbase) and
latency tolerance (ttl) of the message buffer. An example of how queuingmanifests itself
for different spacing of the Medium Access Control cycles is given in Fig. 2.6.

Anotherway to think of this dynamic priority buffering is in analogy to the economics
of supply and demand. DCCL messages are analogous to perishable goods (such as food).
The message sender has certain supply of each type of message. The receiver demands
messages at a fixed price based on the type of good (Vbase) that grows as time passes since
the last “shipment” (successful transmission). The “perishability” of goods is reflected in
the ttl. The sender uses Equation 2.1 to maximize his “profit” (assuming linear2 laws).

2.3.4 Performance evaluation

In order to evaluate the performance of queue, a marketplace for data types was estab-
lished where the receiver’s demand for data is governed by three parameters: a base de-
mandDb, a growing demand after some time without data of that type (Ds, for scarcity),
and a decreasing demand based on the age of the data (De for value erosion). This hy-
pothetical marketplace is intended to simulate the needs of an AUV topside operator or
collaborating autonomous vehicle. The “score” (Si) upon receipt of a givenDCCLmessage
i of type j is then given by

Si = Dj
b +Dj

s −Di
e (2.2)

2other functional forms (e.g. exponential) were tested but the author could not find any substantial
benefit versus linear, so linear was chosen for simplicity.

41

Table 2.5: Configuration of the Goby Dynamic Priority Queues

Message configuration
Name Type Explanation
ack bool Acknowledgment required for this message

type.
blackout time uint32 Absolute minimum time (seconds) between

transmissions of this type.
max queue uint32 Size of the queue (in messages).
newest first bool true=first-in-last-out (FILO),

false=first-in-first-out (FIFO).
ttl int32 time-to-live in seconds (also governs time

sensitivity).
value base double Base value of this message type.

Field roles a

Role Name Extension Type Explanation
TIMESTAMP double or uint64 Tags this DCCL field as source of time.
SOURCE ID (u)intN Tags this DCCL field as containing the source

address.
DESTINATION ID (u)intN Tags this DCCL field as containing the

destination address.
a Allows the message designer to designate any field in the DCCL message with the ap-
propriate type as a given role in the queuing and addressing of this message. This is
in lieu of a traditional header (such as IP uses) and thus allows the DCCL “header” to
conform to the specifics of the network: see Fig. 2.4.

42

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
0

0.05

0.1

0.15

0.2

time (seconds)

Dynamic Priorities: Evenly spaced transmissions

1 1 1

1

1 1

1

1 1

2

2

2

2 2

2

2 2

3 3

1; V
base

: 1; ttl: 1000

2; V
base

: 2; ttl: 2000

3; V
base

: 1; ttl: 3000

p
ri
o

ri
ty

(a) TDMA Cycles are evenly spaced (period of 100 seconds). Types 1 and 2 alternate until 3 grows enough (long time since last tlast)

100 150 200 250 350 450 550 750 950
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (seconds)

Dynamic Priorities: Varying Transmission Schedule

1 1

1

1

1

2

2

2

2

1; V
base

: 1; ttl: 1000

2; V
base

: 2; ttl: 2000

3; V
base

: 1; ttl: 3000

p
ri
o

ri
ty

(b) TDMA Cycles are unevenly spaced (increasing period of 50, 100, and then 200 seconds). 3 never gets to send in this scenario.

Figure 2.6: Comparison of message priority selection for the three different example types given in Table 2.4 using queue. Types
1 and 2 are equally valuable (since 1 is more time sensitive with its lower ttl and 2 is more valuable overall with a higher Vbase).
3 is the least valuable. While clearly dependent on the spacing of transmissions, queue ensures a mix of all types of messages
are sent, weighting the valuable ones more.

43

Table 2.6: Data marketplace parameters used for performance evaluation

parameter value
Db Vbase

τe ttl

τs See Fig. 2.7 & Fig. 2.8

where the scarcity parameter is given as

Dj
s =

t− tjlast
τ js

(2.3)

and

Di
e =

t− ticreate
τ je

(2.4)

The time constants τ js and τ je govern the rate of demand growth and rate of message
depreciation, respectively. The value t is the current time, tjlast is the last time a message
was sent from queue j, and ticreate is the creation time of the message i.

Assuming that each queue is empty with Bernoulli probability Pempty, and that all
queues have fresh data, the total score forN = 100messages sent with evenly spaced in-
terval τ = 100s is shown in Fig. 2.7 for the queue algorithm and two comparison queuing
schemes: a standard priority queue which always picks the queue with the highest Vbase

and a time-sensitive priority queue that picks the queue with the lowest ttl amongst all
full queues. The queue algorithm performs best when the queues are full nearly all the
time, as the need for this type of queuing decreases when the link is no longer over-
capacity. However, in real operations, Pempty is near zero for many of the queues as the
vehicle is generating far more data than could ever traverse an acoustic link.

As shown in Fig. 2.8, when the scarcity time constant τs is increased substantially
(thus reducing the demand for different types of data based on the last time they were
received), the standard Vbase priority queue performs better in this market. However,
for types of data such as vehicle status reports, event reports (target contact and track
reports), and health reports, the value of these data relatively decreases the more that
are received in a short time frame as the reports are essentially the same, suggesting the
“market” for AUV data is better represented by the one used for the results in Fig. 2.7.

44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
30

40

50

60

70

80

90

100

110

Base value priority queue

Time sensitivity priority queue

Goby−Queue

P
empty

Sc
or

e
re

la
ti

ve
 t

o
G

ob
y−

Q
u

eu
e

(%
)

Figure 2.7: Relative performance of queuing techniques where τs = τ/10 and the other
marketplace parameters are given in Table 2.6 with the queues from Table 2.4. In this
case, the rate of growth in demand for a given type is an order of magnitude greater than
the ratemessages are sent (period τ). Thus, messages of a type that hasn’t be received re-
cently are significantly favored over types that have recently been received. In this case,
especially when the network is over-capacity (Pempty ' 0), the Goby queue technique
outperforms the two variants of a standard priority queue.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

70

80

90

100

110

120

130

140

P
empty

Sc
or

e
re

la
ti

ve
 t

o
G

ob
y−

Q
u

eu
e

(%
)

Base value priority queue
Time sensitivity priority queue
Goby−Queue

Figure 2.8: Relative performance of queuing techniques where τs = 10τ (and other pa-
rameters as in Table 2.6). That is, the growth of demand for a given type is slow relative
to the rate (1/τ) at which messages are sent. In this case, a regular priority queue out-
performs the queue algorithm.

45

2.3.5 Message stitching
While goby-acomms does not provide splitting and subsequent restitching of hardware
layer frames to allow transmission of large DCCL messages3, it does provide the opposite.
queuewill stitch small DCCLmessages together to form a larger hardware layer frame. For
example, goby-acomms will not break a 256 byte DCCL message into parts to fit a 32 byte
WHOIMicro-Modem frame, but itwill stitch 2 16 byte DCCLmessages to fit a 32 byteWHOI
Micro-Modem frame. This stitching is simply concatenation which works since the DCCL
field decodersmust consume exactly the same number of bits that the encoder produced.

The reasoning behind this is acoustic telemetry is so error prone that each received
hardware frame should be useful in its own right. The size of hardware frames are chosen
as a decent compromise between size and acceptable frame error rates. Hence, we feel
providing abstraction of multiple frames per DCCL message would lead to unacceptable
error rates (or unacceptable delays waiting for successful receipt and acknowledgement).
However, providing facilities to fully utilize the entire hardware frame when the DCCL
messages are small is useful and efficient as it maximizes the ratio of data to overhead
(various headers and physical layer synchronization).

2.4 amac: Medium Access Control

2.4.1 Motivation
The goby-acomms acoustic Medium Access Control module is intended to provide a ro-
bust and easily usable MAC layer. MAC is perhaps the most widely studied question in
acoustic networking; Partan does a good job summarizing the various options [15]. amac
focuses on providing collision free communications with acceptable utilization of the
available bandwidth under the following assumptions:

• All nodes are within broadcast range of one another for much of the time. (i.e.,
there are no hidden nodes).

• The hardware layer can support time division multiple access (TDMA).

These assumptions may seem rather strong, but in our experience they are practical
for numerous present day AUV applications. goby-acomms supports two variants of the
TDMA MAC scheme: centralized and decentralized. As the names suggest, Centralized

3for example, TCP provides such a message splitting feature

46

TDMA involves control of the entire cycle from a singlemaster node, whereas each node’s
respective slot is controlled by that node in Decentralized TDMA.

2.4.2 Centralized TDMA (Polling)
Centralized TDMA involves amaster node (usually aboard the ResearchVessel or on land)
which initiates every transmission for the entire communcations cycle (i.e. “polls” each
node for data). Thus, the other nodes are not required to maintain synchronized clocks
as the timing is all performed on the master node.

This style of MAC has been widely used for small AUV operations using the WHOI
Micro-Modem. Its principal advantages are that it has 1) no requirement for synchro-
nized clocks, 2) full control over the communications cycle at runtime (assuming the
master is accessible to the vehicle operators, as is usually the case); and 3) a master who
can acknowledge “broadcast” messages.

However, centralized TDMA has a number of substantial disadvantages. In order for
a third-party master to initiate a transmission, an acoustic packet must be sent for this
initialization. This additional “cycle initialization” packet, like any acoustic message, has
a high chance of being lost (after which the data are never sent because the sending node
did not receive a cycle initialization message), consumes power, and lengthens the time
of the communications slot. See Fig. 2.9 for the various parts of the communication cycle
with (for Centralized TDMA) and without (for Decentralized TDMA) the cycle initializa-
tion message. The additional time required for each slot of Centralized TDMA is

τci + rmax/c (2.5)

where τci is the length (in seconds) of the cycle initalization packet (about one second for
the WHOI Micro-Modem), rmax is the maximum range of the network (typically of order
1000s of meters), and c is the compressional speed of sound (nominally 1500 m/s).

2.4.3 Decentralized TDMA with passive auto-discovery
Decentralized TDMA removes the cycle initialization packet and thus reduces the length
of each slot and the chance of errors. However, it introduces the constraint of synchro-
nized clocks4 for all nodes, which can be somewhat tricky to maintain underwater. See

4the accuracy of the clock synchronization can be low relative to other timing needs such as bi-static
sonar. Generally, accuracy better than 0.1 seconds is acceptable; higher inaccuracies can be handled by
increasing the guard time on both sides of each slot.

47

Cycle Initialization (Poll)

Propagation

Message

Propagation

Acknowledge

Propagation

(a) Centralized TDMA

Message

Propagation

Acknowledge

Propagation

(b) Decentralized TDMA

Figure 2.9: Comparison of the time needed for a single slot for the two types of TDMA
supported by goby-acomms amac. Eq. 2.5 gives the additional length of time required by
the Centralized variant.

Eustice et al. [46] for an example of maintaining synchronization for navigation and com-
munication.

Decentralized TDMA gives each vehicle a single slot in which it transmits. Each ve-
hicle initiates its own transmission at the start of its slot. Collisions are avoided by each
vehicle following the same rules about slot placement within the time window (based on
the time of day). All slots are ordered by ascending acoustic MAC address (or “modem
identification number”), which is an unsigned integer unique for each network.

During the runtime of the network, it is often desirable to add or remove nodes. Since
the MAC is spread throughout the nodes, there is no easy way to change the cycle during
runtime. amac supports passive auto-discovery (and subsequent expiration) of nodes to
provide a solution to this problem. This auto-discovery is passive because it requires no
control messaging beyond the normal communications between nodes.

Vehicles are discovered by shifting a blank slot in each cycle based on their knowledge
of the world and the time of day. If a new vehicle is heard from during the blank, it
is added to the listening vehicle’s knowledge of the world and hence their cycle. In the
simplified situation (which is really a worst case scenario) discovery is defined by a single
vehicle transmitting during a cycle and all the others silent (the current slot is not equal
to each vehicle’s acoustic MAC address).

The auto-discoveryworks in amanner analogous to excitation of electrons in an atom.
The blank slot is inserted somewhere in the middle of the cycle (“ground state”). The
ground state is moved around pseudorandomly (but in the same place for a given known

48

3 sends

1 sends 2 sends 3 sends

1 sends 2 sends 3 sends

3 sends

1 sends

2 sends

2 sends

1 sends 1 sends 1 sends

Vehicle 1 Vehicle 2 Vehicle 3

blank

“ground

 state”

blank

“ground

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

Figure 2.10: Graphical example of auto discovery for three nodes launched at the same
time. Each circle represents the vehicle’s cycle at each time step (represented by hori-
zontal rows) based on the vehicle’s current knowledge of the world. In the first row, all
vehicles only know of themselves and put the blank slot in the last slot; thus, all com-
munications collide and no discoveries are made. In the second row, vehicle 1’s blank is
moved (by pseudo-chance, see equation 2.6) to the penultimate (first) slot, so vehicles 2
and 3 discover 1. Then, in the third row vehicles 2 and 3 are discovered by the others
because vehicle 3 moves its blank slot. By the fourth row all vehicles have discovered
the others and continue to transmit without collision following the cycle diagrammed on
this row.

49

time vehicle 1 vehicle 2 result
0 send send collision
15 blank blank nothing
30 blank send success: 1 discovers 2
45 cycle wait blank nothing
60 cycle wait send success
75 cycle wait blank nothing
90 send blank success: 2 discovers 1
105 listen for 2 cycle wait nothing
120 blank cycle wait nothing
135 send listen for 1 success
150 listen for 2 send success
165 blank blank nothing
180 send listen for 1 success
195 blank blank nothing
210 listen for 2 send success

Table 2.7: Example initialization for the Decentralized TDMA with autodiscovery. By 135
seconds, both vehicles have discovered each other and are synchronized. Thus, no more
collisions will occur. This scenario assumes that both vehicles always have some data to
send during their slot.

“world” of vehicles) so that any possible MAC address in the cycle will be eventually dis-
covered. However, depending on the “temperature” (determined by the coolness param-
eterC) the blank slot may be “excited” and moved to the end (to the ultimate slot). How
often this parameter is moved is pseudorandomly determined from the time of day and
the current known world state (as evidenced by the sum of the acoustic MAC addresses
of all known nodes). The higher the coolness parameter C , the less likely the blank slot
will be “excited” from its normal position to the end of the cycle. Assuming all collisions
are destructive to the data received, no vehicles would ever be discovered without this
movement of the blank slot. By moving the blank slot, we improve the chances that two
vehicles with dissimilar views of the world will eventually discover each other. Mathe-
matically, this placement of the blank spot in the cycle can be expressed as

iblank =

 imax if btUTC/
∑

i τ(i)c (mod C) =∑i a(i) (mod C)
ibase otherwise

(2.6)

ibase = imax − btUTC/
∑

i τ(i)c (mod imax)−1 (2.7)

where iblank is the position of the blank slot in the cycle, tUTC is the number of seconds
since midnight Coordinated Universal Time (UTC) of the current day, τ(i) is the length
of the ith slot,C is the “coolness” parameter, and a(i) is the acoustic MAC address of the
node in the ith slot. Put in words, the blank slot is moved from its normal place in the

50

cycle (position ibase) to the excited position (imax) when the number of cycles since the
start of the day is congruent modulo C with the known world (sum of MAC addresses).
Therefore, the higher C is, the less often these two values are congruent, and the less
often the blank slot is “excited”. The nominal (base) position of the empty slot ibase is
rotated through the non-end positions of the cycle so that the non-excited vehicle cycles
can discover all the different excited vehicle MAC addresses over time.

2.4.4 Performance evaluation

The meaning of the coolness parameter may be qualitatively intuitive, but it is worth
quantitatively examining its effect on the performance of amac. First, a Monte Carlo sim-
ulation of randomly chosen networks (from three to six vehicles in size) drawn from the
space of all seven bit MAC addresses was performed and the results plotted in Fig. 2.11.
The collision probability represents the likelihood of collision during the amac learning
phase (after which all vehicles have the same TDMA cycle and the chance of collision
goes to zero). Fig. 2.11a shows the collision probability for these varying network sizes
as a function of the coolness factor C for a network where all theoretical collisions actu-
ally occur (pcollide = 1). Real networks will not always have collisions as transmissions
may be lost due to range, vehicles may choose not to transmit, or a sufficient amount
of header data to perform discovery may survive the collision due to asymmetric travel
times. Thus, in Figs. 2.11b and 2.11c, the same metric was plotted but for pcollide = 0.75

and pcollide = 0.5, respectively. When the probability of collision goes down, this reduces
the optimal coolness parameter value for a given expected network size.

Next, a full simulation of the discovery process was created, using pcollide = 1 and a
number of vehicles all entering the network simultaneously. This is the worst case sce-
nario, as all the vehicles have different TDMA cycle states at once. All permutations of
a network containing five MAC addresses were simulated. Again, a variety of small net-
works were examined for a range of coolness factors. The line graph in Fig. 2.12 shows
the mean discovery duration (the time to reach a zero collision state) in multiples of the
slot duration (τ = τ(i) for all i) when such a discovery succeeded. The bar graph shows
the percentage of permutations that failed for a given coolness factor. Thus, lower cool-
ness factors generally reach a solution faster, if such a solution can be reached. Higher
coolness factors lead to slower network discovery, but with increasing chance of success.
Thus, a reasonable engineering value for C would be one more than the expected maxi-
mum size of the network.

51

2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coolness factor

C
ol

li
si

on
 p

ro
ba

bi
li

ty

3
4
5
6

Network size

(a) pcollide = 1

2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

Coolness factor

C
ol

li
si

on
 p

ro
ba

bi
li

ty

3
4
5
6

Network size

(b) pcollide = 0.75

2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

Coolness factor

C
ol

li
si

on
 p

ro
ba

bi
li

ty

3
4
5
6

Network size

(c) pcollide = 0.5

Figure 2.11: These plots show the mean collision probability for a given cycle during the
discovery (learning) phase of amac, for a range of probabilities of a given transmission
colliding (pcollide).

52

2 3 4 5 6
0

5

10

15

20

25

Coolness factor

M
ea

n
 t

im
e

to
 r

ea
ch

 z
er

o
co

ll
is

io
n

 s
ta

te
 (

m
u

lt
ip

le
s

of
 s

lo
t

d
u

ra
ti

on
)

2

3

4

5

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
ge

 p
er

m
u

ta
ti

o
n

s
th

at
 n

ev
er

 r
es

o
lv

e

Network size

Figure 2.12: Full simulation of network discovery time for amac using passive autodiscov-
ery. Line graph: mean discovery time in multiples of τ . Bar graph: percentage of MAC
address permutations that fail to ever reach full discovery amongst all nodes.

2.5 modemdriver: Acoustic modem driver

2.5.1 Motivation

In goby-acomms, the physical layer is generally assumed to be an acoustic modem, as
the tradeoffs made between efficiency and abstraction are intentionally highly biased to-
wards efficiency in goby-acomms because of the very low throughput acoustic channel.
However, the remainder of goby-acomms is agnostic to the choice of acoustic modem, or
even that the physical layer is acoustic at all; other very low throughput channels (e.g.
satellite) also work with the design paradigms of goby-acomms. modemdriver is respon-
sible for communicating with the specific firmware of the acoustic modem of choice and
abstracting that interface for the rest of goby-acomms.

No standard exists for the interfaces to acoustic modems, and it is unlikely one will
arise in the near future. Even with a common interface, modems will likely continue to
have useful special features (such as navigation and ranging functionality) that exist out-
side realm of the core functionality of a modem, which is to send data. Thus, in order to

53

make use of the rest of Goby (especially DCCL) on a variety of AUVs using different hard-
ware, the link layer interface (ModemDriver) waswrittenwith a standard object-oriented
design: a base class that provides an interface to the higher layers of Goby, and an increas-
ing suite of derived classes to implement this interface for a specific piece of hardware.
A beneficial side effect of this design is the ability to write drivers for a variety of non-
acoustic links that have similar characteristics to acoustic links (low throughput), such
as satellite communications or a faster-than-realtime underwater autonomy simulator,
such as the MOOS-IvP “uField Toolbox” from [47].

The key to the success of this design is simplicity. A single function call initiates
a transmission using the ModemTransmission class, which is typically a data telegram
(type == DATA). Symmetrically, a single signal (again containing an instantiation of the
ModemTransmission) is emitteduponasynchronous receipt of data. However, theModem-
Transmission can be extended (even outside the Goby project) to support any number of
additional data structures relating to an alternative type of transmission (e.g. long base-
line (LBL) pings such as the WHOI Micro-Modem’s type == NARROWBAND_LBL). If the ap-
plication is aware that is using a specific piece of hardware, all these extensions become
visible. If not, the application can still use the core functionality (data transmission). This
design allows the system designer to choose abstraction when desirable or have full con-
trol of amodem’s functionality as needed. See Fig. 2.13 for a diagram illustrating the core
and extended functionality for several acoustic and other “slow” links.

This simplicity makes the task of writing a new driver easier. Rather than deal with
a plethora of functionality (the superset of all supported modems would have been an
alternative design), the new driver author must only deal with sending and receiving
data. Once that is finalized, new functionality can be added as needed.

2.5.2 DriverBase: Abstract Acoustic Modem Driver

DriverBase provides an virtual interface to a genericmodem (or any system that can trans-
mit datagrams). The only requirement is that the modem supports transmission of fixed
size datagrams with optional acknowledgment of themessage receipt (variable size data-
grams can be used tomimic fixed sizes). If themodemdoes not provide acknowledgment,
this functionality must be built into the extension of DriverBase. The requirement is vi-
sualized by the DATA and ACK transmission types shown in Fig. 2.13.

DriverBase provides:

54

Data
Acknowledgment

Base Driver

Generic

Specific

Satellite Communications

WHOI Micro-Modem

MOOS UField Simulator

LBL
Ping
Mini-data

PingPoll

Figure 2.13: Diagram of base generic ModemDriver functionality versus extended
modem-specific features for an acoustic modem (the WHOI Micro-Modem), a satellite
link, and a faster-than-realtime virtual “modem”(the uField simulator). The application
using ModemDriver can operate on either the generic level (if it only needs data and ac-
knowledgment functionality) without knowing the details of the given hardware or on
the specific level to take advantage of special features of a given modem.

• a class that reads serial port or TCP data into a buffer for use by the DriverBase
derived class.

• methods to set all six callbacks provided by the derived class (receive, transmit re-
sult, data request, raw incoming message, raw outgoing message). Typically queue
handles the receive, and data request callbacks. The raw messaging callbacks are
optionally provided for the application layer to perform debugging directly on the
modem, if desired.

• four virtual functions: for starting, stopping, and running the driver, and for initi-
ating the transmission of a message.

2.5.3 MMDriver: WHOI Micro-Modem Driver
TheMMDriver extends the DriverBase for theWHOIMicro-Modem acoustic modem. The
WHOIMicro-Modemuses a serial RS-232 interface and anNMEA-0183 sentence structure.

The following features of the WHOI Micro-Modem are implemented, which comprise
the majority of the Micro-Modem functionality:

• Frequency Hopping Frequency Shift Keying (FH-FSK) (rate 0) data transmission
(type == DATA, type == ACK). See Fig. 2.14 for a sequence diagram of the Goby
MMDriver using the Micro-Modem for this transmission type.

55

• Phase Shift Keying (PSK) (rates 1,2,3,4,5) data transmission (type == DATA, type
== ACK).

• Narrowband transponder LBL ping
(type == MICROMODEM NARROWBAND LBL RANGING).

• REMUS transponder LBL ping (type == MICROMODEM REMUS LBL RANGING).

• User mini-packet 13 bit data transmission (type == MICROMODEM MINI DATA).

• Two way ping (type == MICROMODEM TWO WAY PING). Fig. 2.15 illustrates this
transmission type.

Prior Work: iMicroModem

Given the number of users of theWHOIMicro-Modem,we believe that a number of special
purpose “ad-hoc” Micro-Modem drivers have been written, but the details of which are
not reported in the literature. Grund’s iMicroModem is one of these that we have had a
chance to work with since it was theMicro-Modem driver used with theMOOS automony
architecture that preceeded goby-acomms. The MOOS is discussed in section 2.6.1.

MMDriver borrows a number of ideas from iMicroModem in terms of dealing with the
specifics of theWHOIMicro-Modem firmware. Themajor difference is thatMMDriver im-
plements the interface provided by DriverBase and thus does not have to replicate any of
the work done by DriverBase. This makes MMDriver shorter and simpler as it only con-
tains details specific to the WHOI Micro-Modem. DriverBase handles the communication
(RS-232 serial in this case), logging, and interface to the rest of goby-acomms.

This is standard object-oriented design, but it is mentioned here since such a design is
critical for supporting multiple types of acoustic modems. Given that no standard exists
for underwater acoustic telemetry, it appears the need to support various types of hard-
ware through an abstracted generic interface will exist for some time. MMDriver with
DriverBase provides that for the WHOI Micro-Modem.

2.6 Goby1 Field Case Studies

2.6.1 MOOS-IvP Autonomy system and middleware

goby-acomms was developed with and tested with the MOOS-IvP autonomy architec-
ture [27]. MOOS-IvP is used on marine robots for autonomy level control. We use MOOS-

56

WHOI Micro-Modem Firmware
1modemdriver1

WHOI Micro-Modem Firmware
2 modemdriver2

initiate_transmission()

$CCCYC

modified transmission

requested data

FSK Mini (CYC)

$CACYC

$CATXP

$CATXF

$CADRQ

$CCTXD (with buffered data)

$CATXP

$CATXF

FSK (Data)

CAXST

Key:

Always present (required usage)
Often present (typical usage)

Occasionally present (advanced or special usage)

CAXST

Application or other
Goby Modules

Application or other
Goby Modules

$CARXP

$CACYC

$CARXP

$CARXD

$CACST

$CACST

signal_data_request if ModemTransmission::frame_size() < 1

signal_modify_transmission

signal_transmit_result (includes both CAXST) type == DATA: signal_receive (if available, includes both CACST)

FSK Mini (ACK)
$CATXP

$CATXF

CAXST

signal_transmit_result

$CARXP

$CAACK

$CACST

type == ACK: signal_receive

[[ModemTransmission]]
src: 1
dest: 2
rate: 0
type: DATA
max_num_frames: 1
max_frame_bytes: 32
ack_requested: true
frame: "55555555555555555555555555555555"
[micromodem.protobuf.transmit_stat] {
...
number_frames_expected: 1
number_frames_sent: 1
packet_type: FSK_MINI
number_bytes: 0
}
[micromodem.protobuf.transmit_stat] {
...
number_frames_sent: 1
packet_type: FSK
number_bytes: 32

}

[[ModemTransmission]]
src: 2
dest: 1
time: 1316033117000000
time_source: MODEM_TIME
type: ACK
acked_frame: 0
[micromodem.protobuf.receive_stat] {
mode: RECEIVE_GOOD
...
}

[[ModemTransmission]]
src: 1
dest: 2
rate: 0
type: DATA
ack_requested: true

[[ModemTransmission]]
src: 1
dest: 2
rate: 0
type: DATA
ack_requested: true
max_num_frames: 1
max_frame_bytes: 32
frame: "55555555555555555555555555555555"

[[ModemTransmission]]
src: 1
dest: 2
time: 1316033112000000
time_source: MODEM_TIME
type: DATA
ack_requested: true
frame: "55555555555555555555555555555555"
[micromodem.protobuf.receive_stat] {
mode: RECEIVE_GOOD
clock_mode: NO_SYNC_TO_PPS_AND_CCCLK_GOOD
mfd_peak: 2165
mfd_power: 21
...
packet_type: FSK_MINI
number_frames: 1
number_bad_frames: 0
snr_rss: -1
snr_in: -1
...

}
[micromodem.protobuf.receive_stat] {
mode: RECEIVE_GOOD
...
packet_type: FSK
...
}

[[ModemTransmission]]
[micromodem.protobuf.transmit_stat] {
...
clock_mode: NO_SYNC_TO_PPS_AND_CCCLK_GOOD
mode: TRANSMIT_SUCCESSFUL
probe_length: 40
bandwidth: 4000
carrier_freq: 25120
rate: 0
source: 2
dest: 1
...
packet_type: FSK_MINI
number_bytes: 0

}

$CATXD

Figure 2.14: UML sequence diagram of the process of sending a unicast message with acknowledgment using Goby over the
WHOI Micro-Modem at FH-FSK rate 0. The Goby driver abstracts numerous Micro-Modem NMEA-0183 messages into a single
extensible transmission object (goby::acomms::protobuf::ModemTransmission). The example messages on the left and
right would be produced and consumed respectively by the Goby Queuemodule or a suitable replacement.

57

WHOI Micro-Modem Firmware
1modemdriver1

WHOI Micro-Modem Firmware
2 modemdriver2

initiate_transmission

$CCMPC

modified transmission

$CATXP

Key:

Always present (required usage)
Often present (typical usage)

Occasionally present (advanced or special usage)

CAXST

Application or other
Goby Modules

Application or other
Goby Modules

$CARXP

$CAMPA

$CACST

signal_modify_transmission

signal_transmit_result

type == MICROMODEM_TWO_WAY_PING: signal_receive

$CATXP

$CATXF

CAXST

signal_transmit_result

$CARXP

$CAMPR

[[ModemTransmission]]
src: 1
dest: 2
type: MICROMODEM_TWO_WAY_PING
[micromodem.protobuf.transmit_stat] {
date: "20110914"
time: "204459.0000"
clock_mode: NO_SYNC_TO_PPS_AND_CCCLK_GOOD
mode: TRANSMIT_SUCCESSFUL
probe_length: 40
bandwidth: 4000
carrier_freq: 25120
...
}

[[ModemTransmission]]
src: 1
dest: 2
time: 1316033101000000
time_source: MODEM_TIME
type: MICROMODEM_TWO_WAY_PING
[micromodem.protobuf.ranging_reply] {
one_way_travel_time: 0.2501
}
[micromodem.protobuf.receive_stat] {
mode: RECEIVE_GOOD
...
packet_type: FSK_MINI
...
data_quality_factor: 250
doppler: 0
stddev_noise: -1
carrier_freq: 25120
bandwidth: 4000
version: 0
}

[[ModemTransmission]]
src: 1
dest: 2
type: MICROMODEM_TWO_WAY_PING

[[ModemTransmission]]
src: 1
dest: 2
time: 1316033099000000
time_source: MODEM_TIME
type: MICROMODEM_TWO_WAY_PING
[micromodem.protobuf.receive_stat] {
...
packet_type: FSK_MINI
number_frames: 1
number_bad_frames: 0
...
data_quality_factor: 249
doppler: 0
stddev_noise: -1
carrier_freq: 25120
bandwidth: 4000
version: 0
}

[[ModemTransmission]]
[micromodem.protobuf.transmit_stat] {
date: "20110914"
time: "204500.0000"
clock_mode: NO_SYNC_TO_PPS_AND_CCCLK_GOOD
mode: TRANSMIT_SUCCESSFUL
probe_length: 40
bandwidth: 4000
carrier_freq: 25120
rate: 2
source: 2
dest: 1
ack_requested: true
number_frames_expected: 1
number_frames_sent: 1
packet_type: FSK_MINI
number_bytes: 0
}

$CAMPC

FSK-Mini (Ping)

FSK-Mini (Ping)

type == MICROMODEM_TWO_WAY_PING: signal_receive

Figure 2.15: Sequence diagram for a two-way time-of-flight (“ping”) measurement using the Goby MMDriver and the WHOI
Micro-Modem. Goby can support such a special feature (outside the realm of data transmission) without requiring that all
modems have it.

58

IvP in an abstracted manner such as that different vehicle types from different manu-
facturers appear the same to the autonomy system and communications network. This
model of operations is called Unified Command and Control. The design of Unified Com-
mand Control as well as further details of all these trials except GLINT10 can be found
in [48], as well as in Appendix A. The results presented here are using goby-acomms via
pAcommsHandler, an interface process between MOOS-IvP and goby-acomms. The ex-
periments referenced are summarized in Table 2.8. Since each experiment has different
assets, different environmental conditions, and different objectives, it is difficult tomake
clear comparisons in performance from one sea trial to another. Thus, what follows is a
series of case studies highlighting the development and testing of goby-acomms. For
successful sea trials with AUVs, two goals are perhaps the most important: saving ex-
perimenters’ time and improving safety of the vehicles. Any improvement in operations
that touches upon these goals improves the productiveness of the experiment. These are
often hard to quantify, but these case studies try to emphasize what goby-acomms has
done on both of these fronts.

2.6.2 GLINT08

The three GLINT experiments (2008-2010) were designed to develop and test systems for
multi-static active tracking of moving targets. For the 2008 experiment the first part of
goby-acomms, the code which later became queue, was developed. We were using three
CCL messages to communicate three types of data from the AUV: status (position and
speed of the vehicle), contact (possible detection), and track (fused contacts) reports. The
status reports were always generated so that we could monitor the health and activity of
the vehicles. When an acoustic source was detected, contact reports were generated by
the signal processing and then track reports from the tracker. At this point using a basic
priority queue (before queue) we would only receive the higher priority track reports and
contact reports and no status reports. This was because the number of contact and track
reports exceeded the available throughput of the acoustic channel. This was unaccept-
able because we knew where the targets were, but no longer received updates as to the
position of our AUV. Thus, we needed a way for messages with a lower base value (such
as the status message) to occasionally becomemore valuable than those with higher base
values (such as the contact and track messages). To solve this problem, queue’s dynamic
priority queues, as described in section 2.3, were created.

With queue, the messages received were proportional to the base value (time sensi-

59

Table 2.8: Summary of field trials.

Name Summary Assets (vehicles all have WHOI
Micro-Modem)

Experiment
Datuma

GLINT08 Interoperability of marine
vehicles for passive acoustic
target detection

1 Bluefin 21 AUV, 1 NURC OEX
AUV, 1 OceanServer Iver2 AUV, 2
Robotic Marine Kayaks, 1 WHOI
Comm Buoy, 2 Ship-deployed
WHOI Micro-Modems

42.5◦N,
10.08333◦E

SWAMSI09 Detection and tracking of seabed
objects using bistatic acoustics.

2 Bluefin 21 AUVs, 1 WHOI Comm
Buoy

30.045◦N,
85.726◦W

GLINT09 Interoperability of marine
vehicles for multi-static acoustic
target target tracking

1 NURC OEX AUV, 1 OceanServer
Iver2 AUV, 2 Robotic Marine
Kayaks, 2 Ship-deployed WHOI
Micro-Modems

42.47◦N,
10.9◦E

CHAMPLAIN09 Thermocline gradient following. 1 OceanServer Iver2 AUV, 1
Ship-deployed WHOI
Micro-Modem.

42.2511◦N,
73.3612◦W

GLINT10 Interoperability of marine
vehicles for passive and active
acoustic target tracking.
Collaborative acoustic
communications and
environmental sampling.

1 Bluefin 21 AUV, 1 WHOI Comm
Buoy, 2 NURC OEX AUVs, 2
Ship-deployed WHOI
Micro-Modems.

42.47◦N,
10.9◦E

a The experiment datum is a location in the southwest corner of the operation region from which all
vehicle positions are referenced using the Universal Transverse Mercator projection with the WGS 84
ellipsoid [49].

tivity, via the time-to-live (ttl) was introduced later). During a tracking event, track and
contact messages were highest priority, but status messages were still occasionally sent.

2.6.3 SWAMSI09

SWAMSI09 was another acoustic sensing experiment, this time for sea floor mine-like
targets. CCL hadnomessages for reporting contacts for this type of target. For this reason
and the others given in section 2.2.6, we determined that CCL was no longer sufficient for
our needs and developed DCCL and the corresponding encoding library, dccl.

The ease of defining and redefining DCCL messages allows for rapid prototyping of
new experimental ideas during the field trial, rather than being rigidly confined to pre-
viously defined messages. We wrote five new messages on the experiment to greatly
expand the flexibility of vehicle to topside, and vehicle to vehicle communications capa-

60

bility.
We used two AUVs to execute a variety of bistatic acoustic configurations for tracking

of proud and buried seabed targets. Both AUVs traversed a circular pattern around the
potential target, maintaining a constant bistatic angle (see Fig. 2.16a). Entering into this
collaboration and maintaining the correct angle required handshaking and data transfer
between both vehicles. We were able to command the vehicles into this collaborative
state with LAMSS DEPLOY, and the LAMSS STATUS message (with additional fields added
to support this experiment) was passed between vehicles to maintain the correct posi-
tioning autonomously.

2.6.4 GLINT09

For the previous two experiments, we were using iMicroModem (section 2.5.3) as the
driver for the WHOI Micro-Modem. Concerns about the robustness and extensibility of
that software led to the development of modemdriver. While the features provided by
modemdriver for theWHOIMicro-Modemdid not varymuch from iMicroModem,we saved
significant time debugging.

Furthermore, we expanded our usage of dccl. DCCL messaging made another collab-
orative experiment possible. We had a mobile acoustic gateway (an autonomous surface
craft with a WHOI Micro-Modem) available to stream high rate environmental and other
data messages. By virtue of the surface craft staying near the AUV (made possible by the
AUV’s LAMSS STATUS message), the AUV had a short acoustic propagation path to the
surface craft. From there, the surface craft relayed data to the operators via IEEE 802.11
wireless ethernet. Also, the depth of the modem was controlled by a winch that the sur-
face vehicle could command autonomously. Using the WINCH CONTROLmessage, the AUV
commanded the surface craft a depth at which to set themodem to improve communica-
tions. The AUVwas performing a bistatic acoustic detection of amid-water columndepth
target. The source, mounted on a buoy, was autonomously turned on and off by the AUV
using the SOURCE ACTIVATION message. The AUV, which was towing an acoustic array,
was the receiver. None of this multi-robot collaboration would have been possible with-
out the ability to define new messages quickly and with a high degree of confidence in
their syntactical correctness provided by dccl.

61

(a) During SWAMSI09, the two AUVs “Macrura” and “Unicorn” perform a synchronous circular pattern
with a constant angle of separation. However, due to the sporatic updates from the acoustic modem, it
is hard to visualize the performance of the vehicles in executing this maneuver at runtime.

(b) A snapshot of the runtime visualization of the AUV “Unicorn” performing a sinusoidal depth excur-
sion while performing a pentagon shape. While full, updates are delayed, the LAMSS STATUS FILLIN
and LAMSS CTD messages give a detailed history of the vehicle’s track when the communication envi-
ronment permits.

Figure 2.16: Comparison of the Google Earth interface for Ocean Vehicles (GEOV) [48] vi-
sualization available to the vehicle operator during runtime using data transmitted via
goby-acomms early in its design at SWAMSI09 (a) and in the form goby-acomms is pre-
sented in this paper during GLINT10 (b). Vertical lines indicate acoustic position updates
via the LAMSS STATUS message and horizontal lines connect these updates.

62

Table 2.9: Formulas for delta difference encoding the DCCL <float> type.

DCCL Type Encodea

<float>
(key) xkey =

{
nint((x− xmin) · 10prec) + 1 if x ∈ [xmin, xmax]

0 otherwise
<float>
(delta) x∆ =

{
nint((x+∆max − xkey) · 10prec) + 1 if x− xkey ∈ [−∆max,∆max]

0 otherwise
· xmin, xmax, prec, ∆max are the contents of the <min>, <max>, <precision>, and
<max delta> tags, respectively.
· nint(x) means round x to the nearest integer.
· The key value xkey is the same as the normal<float> type encoding given in Table 2.3.

2.6.5 CHAMPLAIN09

The third case study is the CHAMPLAIN09 adaptive environmental experiment. In this
experiment, a small AUV outfitted with a Conductivity-Temperature-Depth (CTD) instru-
ment was deployed to study the thermocline structure of Lake Champlain. The AUV was
commanded, using a updated LAMSS DEPLOYmessage, on the task of adaptively surveying
the thermocline. The vehicle accomplished this task by performing series of sinusoidal
(“yoyo”) depth maneuvers and streamed its samples back using the delta-difference en-
coded LAMSS CTD message. In this manner, the environmental data was made available
in near realtime (i.e. delayed by no more than a few minutes) to the AUV operator.

Thekey feature used for thiswork and later inGLINT10wasGoby1’s delta-differencing,
originally applied only to CTDmessages and later added as a general feature to dccl. Delta-
difference encoding can be applied to <float> DCCL fields (and <int> since they are
derived from <float>). It gives an even more compact way to losslessly encode cor-
related data. In this case, due to the AUVs finite speed and continuity of salinity and
temperature values, CTD values are correlated in time. By estimating upper and lower
bounds on this correlation, data can be compressed further than DCCL normally allows
by sending the first sample in its entirety (still bounded by the usual DCCL <max> and
<min> “global key”) and sending the remaining samples in a frame by their difference
to this first sample. The bound on the maximum that this difference can be (∆max) must
be given in <max delta> tag, using physical knowledge of the data to be sampled. See
Table 2.9 for the corresponding formulas for the field size and encoded values. Diagram-
matically, the process is explained in Fig. 2.17 and an example of the data available to the
operator during runtime is shown in Fig. 2.18.

For example, perhaps it is known a priori by means of historical data or a ship CTD

63

Data (T, S, D)

Global Key
 (<min>, <max>)

DCCL Header

Packet Key

Delta Frame

Delta Frame

Delta Frame

...

_

_

Data

Global Key

+

DCCL <repeat> Message

Encode

Decode

First sample of packet
Remaing samples

+

Figure 2.17: Schematic of encoding and decoding a DCCL message using delta-difference
encoding. The DCCL header is diagrammed in detail in Fig. B.1.

cast that the maximum temperature gradient in a given area is 0.05◦C/m and the dive
rate of our glider is 0.2m/s. We also know that the water in the operation region does
not exceed (10, 30)◦C . Furthermore, we feel that tenths of a degree Celcius is sufficient
precision. Finally, we want to sample the thermistor on our CTD at 1 Hz and we are using
a 256 byte WHOI Micro-Modem frame. Putting this all together, we use for temperature
(in ◦C) a DCCL <float> with a <min> of 10, a <max> of 30, a <precision> of 1. The
<max delta>must be calculated iteratively (such as using theNewton-Raphsonmethod),
as making a smaller <max delta> creates a smaller message, increasing the number of
samples that can be fit in a frame. This increases the window of sampling for a given
frame, thus increasing the <max delta>. That is, the optimum∆max for given bounds is
the solution closest to equality to

lkey + ldelta(∆max) · (∆max/rmax ∗ fs − 1) <= lframe (2.8)

where lframe is the total message frame size, lkey and ldelta(∆max) are the sizes for key
and delta frames given in Table 2.9, rmax is the maximum expected rate of change of the
physical parameter being encoded, and fs is the sampling frequency. For this example
l = 2048 bits, rmax = 0.05◦C/m · 0.2m/s = 0.01◦C/s, fs = 1Hz, and lkey = 8 bits,
so solving for the smallest ∆max (which provides the largest number of samples in the
frame) is 3.1◦C , providing 310 samples per frame. This is a 21% improvement over the
256 (l/lkey) samples that would fit if the message was not delta-difference encoded.

∆max is a function of the size of the frame (lframe), so lframe can also a parameter
for optimization based on the expected maximum rate of change (rmax) of the physical
parameters to be sent if the physical layer supports a variety of frame sizes.

This delta-differencingwas removed inGoby2with the additionof user-defined codecs.

64

10.96

10.97

10.98

42.48

42.5

42.52
−80

−60

−40

−20

0

LongitudeLatitude

z
 (

m
)

(a) Temperature variation with depth and
position

14 16 18 20 22 24 26

0

10

20

30

40

50

60

70

80

Temperature (deg C)

D
e

p
th

 (
m

)

(b) Temperature-Depth profile

Figure 2.18: Temperature data from the GLINT10 experiment a CTD instrument mounted
on AUVUnicorn available at runtime via goby-acomms using delta-differenced encoding.

Instead, as a user of Goby2, a similar concept was defined using an entropy coder of delta-
differenced samples. This idea is explored in detail in chapter 3. The Goby2 version can be
thought of as a generalization to arbitrary probability distributions of the concept used
during this experiment.

2.6.6 GLINT10

All the features and implementation of goby-acomms version 1 were in place for the
GLINT10 sea trial. The DCCL messages and corresponding Vbase and ttl used for dynamic
priority queuing are given in Table 2.10.

The key new items for GLINT10 were

• Expansion of delta-difference encoding mentioned in Section 2.6.5 to support any
arbitrary <float> field, not just those from a CTD instrument. This enabled the
new “back-fill” LAMSS STATUS FILLIN message which keeps a history of vehicle
positions regularly sampled (in this case twice per minute). These were queued
with a low Vbase of 0.4 relative to the other messages (see Table 2.10). Thus, in
cases of low throughput due to unfavorable environmental conditions other data
messages would be sent. However, when the throughput went up the queued up
LAMSS STATUS FILLINmessageswould be sent, giving the topside operators a some-
what delayed but still relevant history of the vehicle’s manuevers. When develop-
ing complex adaptive autonomy, this is critical for debugging and understanding

65

Table 2.10: Summary of DCCL Messages used in the GLINT10 Experiment

Message Name Category
DCCL
size
(bytes) a

Estimated
Equiv-
alent
CCL Size
(bytes) b

ttl c Vbase
c Description

LAMSS DEPLOY Command 31 40 300 1000 Underwater vehicle
command message.

LAMSS PROSECUTE Command 31 40 300 1000 Underwater vehicle
command message:
prosecute detected
target.

ACOUSTIC MOOS POKE Command 32 31 300 10000 Underwater
debugging / safety
message.

LAMSS STATUS Data / Col-
laboration 27 35 300 1.5 Vehicle Status

message (position,
speed, Euler angles,
autonomy state)

LAMSS STATUS FILLIN Data 29 52 1800 0.4 Vehicle Status
message historical
“back-fill”
(delta-difference
encoded).

LAMSS CONTACT Data 29 34 600 2 Passive acoustic
contact report
message.

LAMSS TRACK Data 29 34 300 4 Passive acoustic track
report message.

LAMSS BTR Data 64 63 7200 1 Beam-Time Record
Data from a towed
passive acoustic
array.

LAMSS CTD Data 256 496 1800 1 Salinity, temperature,
depth data from a
CTD instrument
(delta-difference
encoded).

a For DCCL: see section 2.2.
b Since CCL does not implement these messages, these size estimates are based on the closest available
message in the existed CCL message set.

c For Priority queuing: see section 2.3.

the vehicles’ performance. Furthermore, all LAMSS CTD messages were also de-
coded as status messages since they contain the three dimensional location of the

66

DCCL

Queue

AMAC

TCPStoreDriver

Route

G
ob

y
2

Research Vessel

MMDriver

Mooring/AUV

Satellite TCP (with SQLite store-and-forward)
Subnet: 020

WHOI Micro-Modem
Subnet: 000

Iridium Satellite
Subnet: 010

Shore

TCPStoreDriver IridiumDriver

Waveglider

IridiumDriver MMDriver

Figure 2.19: Structure diagram of the Goby components for the Tiger12 cruise to form
a seamless link from the Research vessel to the Tiger mooring (and intermediate nodes)
over a collection of different link types (satellite-TCP, satellite-Iridium “call”, acoustic
Micro-Modem).

vehicle at the time of the sample.

• The auto-discovery decentralized TDMA MAC described in section 2.4 was tested
using two vehicles, one gateway buoy and one ship deployed WHOI Micro-Modem.
Due to the lack of a cycle initialization packet that could be lost, transmissions from
ranges of up to 4 kmwere successfully made. Using the standard centralized TDMA
that we have used for the previous experiments, we saw transmissions up to 2 km.
It is difficult to quantify in-water performance of MAC schemes without a robust
understanding of the environmental effects on propogation.

2.7 Goby2 Field Trials

Since Goby2 is new, it has only been involved in three field trials (plus many hours of
simulation and hardware-in-the-loop testing), compared to over a dozen or more that
the authors are aware of that used Goby1:

• CAPTURE11 (August 2011): Chief scientist: C.Murphy (WHOI). Nodes: 2OceanServer
Iver2 AUVs (R. Eustice, University of Michigan), 1 WHOI SeaBED AUV (H. Singh,
WHOI), 1 unmanned surface vehicle (F. Hover, MIT), and two research vessels, all
equipped with an acoustic WHOI Micro-Modem. This experiment (using hardware
and software assets from four different laboratories) successfully demonstrated
multi-hop transmission of rich (e.g. imagery) datasets using C. Murphy’s CAPTURE
protocol. CAPTURE used Goby2 DCCL and ModemDriver, showing its extensibility

67

in the hands of several other research groups that do not collaborate on a daily
basis. The design and results of CAPTURE are detailed in [50].

• Cyborg12 (May 2012): Chief scientist: A. Balasuriya (MIT). Nodes: 1 Bluefin 9” AUV,
1 WHOI Micro-Modem shallow water buoy, 1 research vessel, all equipped with an
acousticMicro-Modem. This trialwas an engineering test in the process of develop-
ing a collaborative network of human experts andAUVs formine countermeasures.

• Tiger12 (June 2012): Chief scientist: L. Freitag (WHOI). Nodes: 1 Tiger sonar moor-
ing (prototype for an AUV), 1 Liquid Robotics WaveGlider, 1 research vessel. This
cruise was a test of using Goby2 over a heterogenous mix of physical links for the
purpose of sending control messages from the research vessel to the Tigermooring
and statusmessages in the opposite direction. The research vesselwas out of acous-
tic range of the mooring, so the waveglider was used as a forwarding router be-
tween the acoustic (sub-sea) and Iridium subnets. Since Iridium does not well sup-
port calls directly to mobile nodes, a shore station was used as a store-and-forward
intermediate. All messages were logged here and retrieved at the next opportunity
by the research vessel. This system provided reliable end-to-end transmission of
DCCLmessages for several days of continuous operation. While DCCL was designed
initially for acoustic networks, it is equally useful for satellite links because of the
similar characteristics (low throughput and very high cost per bit). Fig. 2.19 shows
the network setup of this experiment with its three different types of links.

These trials have made us confident that we were successful in the primary design
themes (see section 2.1.1) of third-party extensibility and field reliability. Furthermore,
only one of these (Cyborg12) would have even been possible with Goby1.

2.8 Conclusion
goby-acomms provides an acoustic networking suite that combines high usability at sea
with techniques intended to make the most out of the very low throughput provided by
acoustic telemetry. It is comprised of four modules that could be interchanged with a
suitable replacement as research advances in a particular areas:

• dccl: provides encoding and decoding. The major contribution from DCCL is the
ability to create custom objects that can be serialized to very short messages, with
an emphasis on message size efficiency over features and abstraction.

68

• queue: deals with the common problem in acoustic networks of having too many
messages. queue provides a way to prioritize messages based both on the time sen-
sitivity and the overall value of the message.

• amac: implements a simple TDMA schemewith auto-discovery requiring no control
messages to be sent and thus not using any bandwidth that might be better used
for mission data.

• modemdriver: provides an abstract interface for an acoustic (or other low-bandwidth
carrier) modem and an implementation of this interface for various transport de-
vices or systems: the widely used WHOI Micro-Modem, the MOOS “uField” simula-
tion environment, UDP/IP, and a store-and-forward server based on ZeroMQ and
TCP.

goby-acomms emphasizes robustness through object-oriented design to provide a
communications architecture that can support real field operationswithunderwater robots.
The hope is that goby-acomms, or at least some of the ideas within, can move the field
of collaborative underwater robotics and artificial intelligence forward. goby-acomms is
freely available with the Goby Underwater Autonomy Project from http://launchpad.
net/goby. The Goby libraries are licensed under the GNU Lesser General Public License
(LGPL) and gladly accepts contributions from members of the marine acoustic network-
ing and robotics community.

Portions of this chapter are c©2010 IEEE. Reprinted, with permission, from T. Schneider and H. Schmidt,

“The Dynamic Compact Control Language: A compact marshalling scheme for acoustic communications,”

OCEANS 2010 IEEE - Sydney, 24-27 May 2010.

Portions of this chapter are c©2012 International Federation of Automatic Control (IFAC). Reprinted, with

permission, from T. Schneider and H. Schmidt, “Goby-Acomms version 2: extensible marshalling, queuing,

and link layer interfacing for acoustic telemetry,” 9th IFAC Conference on Manoeuvring and Control of Marine

Craft, 19-21 Spetember 2012.

69

http://launchpad.net/goby
http://launchpad.net/goby

70

3 Non-disruptive Technique: autonomous
modeling to improve source coding

3.1 Introduction

3.1.1 Motivation

Users of mobile marine platforms such as autonomous underwater vehicles (AUVs) and
unmanned surface vehicles (USVs) are one of the major beneficiaries of improved acous-
tic communication capabilities, since the need to move often precludes the use of fiber
optic communication tethers. These vehicles are also becoming increasingly “intelli-
gent”; they are outfitted with substantial computational ability and are capable of ful-
filling complex mission components or entire missions autonomously; for examples, see
[4, 51, 52].

For many types of AUV missions it is required or desirable for the vehicle (here, the
sender) to transmit accurate and frequent vehicle positionmeasurements to collaborating
vehicles or a human operator (the receiver). For example, oceanographicmissions require
the position where sensor samples were taken, and collaborative target detection tasks
require a history of positions to avoid unnecessary redundant coverage, or facilitate coor-
dinated control manuevers such as formation flying. Furthermore, as vehicle navigation
decisions become increasingly automated, human operators desire increased assurance
that their highly expensive vehicles are operating correctly and away from hazards.

This need for vehicle position knowledge can often consume much or all of the avail-
able acoustic link’s throughput in fielded vehicles. In this chapter, a system is devised
that uses a matched state observer on the sender and receiver to reduce the position vec-
tor to a vector of differences from themodeled state. The probability distribution of these
differences is modeled a priori or adaptively built from prior statistics. The resulting dis-
tribution is coupled with an arithmetic entropy encoder to provide highly compressed

71

position vectors.

3.1.2 Related Work

Much work has been done on understanding the physical channel for acoustic telemetry;
see [53] for a review of the last decade. While the focus has been on error-free channel
coding and transmission of datagrams, little has been published in themarine domain on
source coding of underwatermeasurements as evidenced by [54] and a dearth of coverage
of source coding in the major underwater networking review papers [14, 55].

One exception is Murphy’s work [50, 56], in which he uses transform compression
(e.g. the discrete wavelet transform) to source encode imagery and historical time se-
ries of scalar data. While not specifically addressed, one could apply this technique to
source encode vehicle state vectors. However, the transform codes provide at best an ap-
proximation of the original signal until the entire sequence is received. Furthermore, the
performance of the transformcompressor improveswith longer sequences of data. These
limitations make this technique less suitable when near-realtime telemetry of accurate
vehicle positions is required, and more suitable for less time-sensitive transmission of
previously collected data (such as scientific scalar instrumentation data as Murphy uses
in his examples).

Outside the marine domain resides the closest related work, by Koegel and Mauve
[57]. They investigate the information content of amoving urban or highway land vehicle
trajectory (defined as a time series of vehicle positions). In this domain, the throughput
is much less limited, but the desired number of trajectories to transmit is high. Thus,
the ratio of trajectory number to available throughput is similar to the marine domain
wherewe have a small number of trajectories, but a very low throughput link. Koegel and
Mauve suggest the use of a Kalman filter for this problem but do not further investigate
it, as is done in this chapter.

Others have looked at techniques to losslessly encode very large sets of trajectories
from terrestrial GPS data, such as the linearization and clustering approach from [58] and
the road-network algorithm in [59]. Many of these techniques are focused on the problem
of efficiently storing and transmitting full datasets “offline”. In the marine domain, it is
typically far easier to offload previously collected datasets after vehicle recovery or over
electromagnetic wireless links after the vehicle surfaces. Thus, this chapter focuses on a
technique intended to telemeter realtime or near-realtime data (“online”), which is the
more pressing problem for underwater systems due to the highly constrained acoustic

72

link.
Finally, the multi-vehicle control field has been looking at the problem of coopera-

tive localization (CL). In cooperative localization, a group of robots shares some subset
of their sensor data or internal state estimates so that each robot eventually has an esti-
mate of the pose (position and orientation) of all the other collaborating robots. Some of
the robots may specifically be tasked to maneuver to decrease the overall estimate error.
Typically, cooperative localization researchers are not especially concerned with the ex-
tremely low-bandwidth constraints that we find in underwater communication links, but
there are a few exceptions worth noting here. Trawny, et al. [60] uses a highly quantized
(as few as one bit per time step) Kalman filter dubbed the Iteratively-Quantized Extended
Kalman filter (IQEKF), which they show in simulation to provide acceptable performance
relative to a real valued Kalman filter. Nerurkar and Roumeliotis [61] then extend the
idea to incorporate asynchronous communications (where one node cannot necessarily
talk bi-directionally to another). Bahr [62], and later Fallon, et al. [63] address the prob-
lem of CL on AUVs. They use a surface craft (with an accurate GPS fix) to improve the
dead-reckoning ability of underwater vehicles (which are GPS-denied). All of these ap-
proaches group localization and control into a single problem. Thus, while this may lead
to a overall more efficient solution, it is potentially less robust and is difficult to deploy
on the heterogeneous networks that exist in real sea robotics (gliders, AUVs, surface ve-
hicles: all potentially from different designers). This chapter shows a system for robustly
transmitting well-defined (predetermined precision, e.g. 1 meter) quantizations of the
vehicle’s state at a known sampling rate (e.g. 1/10 Hz), and its accuracy is not contin-
gent on the performance of a given tracking algorithm. This approach is decoupled from
the vehicle’s navigation system through use of a generalized dynamics model, in an anal-
ogous way that the “backseat” autonomy is decoupled from the “frontseat” control in
the Unified Command and Control system (see Appendix A). One of the major challenges
facing practical field robotics is the management of complexity, especially involving het-
erogeneous collections of vehicles. Such a separation means that (some, at least) of the
gains provided in using delta-based technique can be had at the “backseat” level without
intimate knowledge or specification of the low level (“frontseat”) control.

73

x

y

(a) Traditional (“newest when possible”) ap-
proach.

x

y

(b) The technique given in this chapter (“evenly
sampled historical timeseries”)

Figure 3.1: Positions of the sender while performing an elliptical pattern available at the
receiver using two types of position telemetry systems in the case of 70% packet loss.

3.2 Approach

The usual approach of vehicle position telemetry systems is to send the newest available
position (as an independent vector)when the acoustic link becomes available as governed
by the networkmedium access control (MAC). This is the approach used by the field work
done by a variety of groups: Webster, et al. [44], Marques, et al. [64], Rajala, et al. [65],
Kunz, et al. [1], Grund, et al. [20], and in much of our prior work on “Unified Command
and Control”, which is described in Appendix A.

This “newest-when-possible” approach, however, can lead to significant gaps in the
vehicle’s position history as observed by the receiver when the packet loss of the link is
high as sketched in Fig. 3.1a. A different approach (sometimes colloquially referred to
as “backfilling” of positions) is to send an evenly sampled historical timeseries. When
packets are lost, an automated repeat-request (ARQ) mechanism retransmits the packets
until the missing packets are received. Thus, over time, the entire time-series is received
as shown in Fig. 3.1b. Such a “backfilling” system is the goal of the present chapter’s
work.

The goal of this system is to transmit a sampling (at sample period τ) of a time series
of vehicle positions y(t) where

y(t) =


t

x(t)

y(t)

z(t)

 (3.1)

is the Cartesian position of the vehicle with reference to a common known datum, with

74

z given as the negative of the vehicle’s depth1.
Position measurements are transmitted as one of two types of messages:

• Full transmissions: The vector yf which includes the time and full position of the
vehicle relative to the experiment datum where

yf =


tf

x(tf)

y(tf)

z(tf)

 (3.2)

This message is used once at the start of each mission to synchronize the states of
the sender and receiver. tf represents the time of the mission start.

• Delta transmissions:

dy[n] =


dx[n]

dy[n]

dz[n]

 (3.3)

where n = 0, 1, 2, 3, This delta transmission is sent continuously following a
full transmission or prior delta transmissions until the vehicle was removed from
operation for greater than τ seconds, afterwhich a full transmission is sent to reini-
tialize the receiver’s state. Determining the values of dy via state observation is
described in Section 3.3. The sample number n does not need to be transmitted, as-
suming the lower layers of the network stack can provide in-order receipt of mes-
sages without duplicate packets. In this case, the decoder simply increments n on
each message received. This can be easily accomplished with automatic repeat re-
quest (ARQ) with a single alternating bit to discard duplicates. The sampled y(t)
can be reconstructed at time n = n0 using

y(tf + n0τ) =

 tf + n0τ

ŷprior[n0] + dy[n0]

 (3.4)

where ŷprior[n] is the prior estimate of the state observer extrapolated to discrete
time step n.
Fig. 3.2 illustrates the process of generating these delta transmissions.

1For the purpose of this work, the transformation used from geodetic (latitude, longitude) to Carte-
sian (local) coordinates does not matter. One could use, for example, the Universal Transverse Mercator
transformationwith theWGS’84 ellipsoid [49] or theNorth-East-Down transformation of an earth-centered
earth-fixed frame; see [66].

75

Mission path
Actual path
Sent point
Sent difference

y

x

(dx
0
,dy

0
)

datum
(0,0)

(a) Generation of differences (dx anddy) between
the vehicle’s actual position and the extrapolated
position (generated on both sender and receiver
using tracked positions previously transmitted).
Two techniques for this process are explained in
Section 3.3.

P
dx

dx

dx
0

(b) Example of the probability distribution used
to represent the error between the actual and
extrapolated positions. These distributions are
built up in Section 3.4.

0 1
0

0
-2-dx

min

-1-2 1 2

dx
0

dx
min

dx:

symbol:

dx
max

-1-dx
min

-dx
min

1-dx
min

2-dx
min

dx
max

-dx
minOOR

EOF

(c) Arithmetic coding symbol intervals (each dx
is mapped to a symbol with 1-meter precision).

Figure 3.2: Overview illustration for the delta transmissions showing the mapping of ve-
hicle position (a) to a given probabilistic model (b) used to generate the symbol intervals
required for arithmetic coding (c).

3.3 State Observation

A state observer is typically used in control systems tomodel the internal state of a system
often in order to apply feedback to stabilize the system. Here, a state observer is used in a
different way. A model of the system (in this case a vehicle in three-dimensional motion)
is observed by both the sender and receiver of the communications link using a reduced
set of the data, namely only the previously telemetered y[n]. The difference between this
reduced model and the (presumably more accurate) output of the vehicle’s navigation
system (whichmay incorporate other state observers and filters) is taken. This difference
(which can be thought of as an error) is the value used to transmit. This operation is
visualized in Fig. 3.2a.

76

Two state observers were used in this work: a deterministic (“fixed speed”) model
and a stochastic model based on the Kalman filter.

3.3.1 Fixed speed observer
The fixed speed model is useful for AUVs that drive at a roughly constant speed in the
xy-plane while underway, which includes most of the torpedo-shaped vehicles such as
the Bluefin and REMUS vehicles. This model uses the prior two transmitted positions to
determine yawΨ where

Ψ = tan−1 y[n− 1]− y[n− 2]

x[n− 1]− x[n− 2]
(3.5)

The vehicle’s last position is extrapolated using this heading at the fixed speed s, and
this is used as a reference for the difference (or error) to the actual vehicle position to be
transmitted, such thatdx[n]

dy[n]

 =

x[n]− (x[n− 1] + τ |v| cosΨ)

y[n]− (y[n− 1] + τ |v| sinΨ)

 (3.6)

For depth, since manueuvers are less predictable, the last difference is used:

dz[n] = z[n]− (z[n− 1]− z[n− 2]) (3.7)

The simplicity of thismodelmeans that it is computationally inexpensive thus adding
negligible overhead to the limited resources on the vehicle. However, it is not applicable
for AUVs that can change their speeds substantially while underway. For this, a general
purpose model was developed, using the Kalman filter.

3.3.2 Kalman filter observer
Assumptions

To keep the model as general as possible for a moving vehicle, the following assumptions
were made:

• Motion along each Cartesian dimension is independent of the other dimensions.

• The acceleration increment
dẍ[n] =

∫
τ

...
xdt (3.8)

77

is a normally distributed white noise process in all dimensions with σ = σj (in the
target tracking literature this is referred to as the Wiener-sequence acceleration
model [67]).

These assumptions are somewhat unrealistic (e.g. motion in x and y are rarely indepen-
dent), but serve to capture the dynamics of the vehicle sufficiently for the given task
without introducing significant computational overhead or loss of generality.

State space model

Given these assumptions, a linear state space x[n] is defined as

x[n] =


y[n]
ẏ[n]
ÿ[n]

 (3.9)

where

y[n] =


x(tf + nτ)

y(tf + nτ)

z(tf + nτ)

 (3.10)

The dynamics of the vehicle in discrete time are thus given by

x[n+ 1] = Ax[n] + Gdẍ[n] (3.11)

with state transition model

A =


I3 τ I3 τ2

2
I3

03 I3 τ I3
03 03 I3

 (3.12)

where process noise w[n] is normally distributed

w[n] = Gdẍ[n] ∼ N (0,Q) (3.13)

Given the Wiener-sequence acceleration model chosen above, the noise covariance Q is
given as

Q = σ2
jGGT (3.14)

where
G =

[
τ2

2
τ2

2
τ2

2
τ τ τ 1 1 1

]T
(3.15)

78

Kalman filter

The Kalman filter [68] is a recursive Bayesian estimator for linear systems with normally
distributed noise assumptions. In the marine robotics domain, Kalman filters have been
typically used for two purposes: 1) tracking of unknown targets based on noisy and infre-
quent (often sonar) measurements as in [69, 70]; and 2) estimation of the vehicle’s navi-
gation solution from a variety of noisy sensors such as gyroscopes, inertial measurement
units, pressure sensors and acoustic sensors (long baseline, Doppler velocity logging, al-
timeters), such as presented in [71–73].

For this work, the Kalman filter is used to predict the state of the system based on a
reduced set of measurements {y[n− 1], y[n− 2], . . .}, namely those measurements that
have already been successfully transmitted to the receiver. In a sense, this is similar to
the target tracking problem, except that the “target” (the sender) is an AUV controlled
by the user of the system. This “target” is tracking itself using only the knowledge that
the receiver (who is also tracking the AUV) has. The goal, as previously mentioned, is to
efficiently communicate a more accurate state vector with as few bits as possible. The
error between the prediction and the measured state of the system (which is typically a
more accurate prediction from the sender’s navigation system, which may employ vari-
ous stochastic filters as well) forms the delta transmission vector dy[n], also called the
“innovation” or measurement residual.

The algorithm presented in this work can be described as a three-step process:

1. Both sender and receiver and predict the next state vector x̂prior[n] and a priori esti-
mate covariance Pprior[n] where

x̂prior[n] = Ax̂post[n− 1] (3.16)
Pprior[n] = APpost[n− 1]AT + Q (3.17)

2. The sender encodes (Section 3.4) and transmits the delta vector

dy[n] = y[n]− Hx̂prior[n] (3.18)

using the mapping of estimate to measurement state vectors given by

H =
[
I3 03 03

]
(3.19)

This delta vector is then received and decoded by the receiver. At this point, the
“true” position of the vehicle can be recovered using (3.4).

79

3. Both ends update the filter state vector x̂post[n] and estimate covariance Ppost[n]

with their respective posteriors

x̂post[n] = x̂prior[n] + K[n]dy[n] (3.20)
Ppost[n] = (I− K[n]H)Pprior[n] (3.21)

using the innovation in combination with the Kalman gain

K[n] = Pprior[n]HTS[n]−1 (3.22)

where
S[n] = HPprior[n]HT + R (3.23)

3.4 Arithmetic coding
In the previous section amethodwas discussed for producing aminimal set of (presumed
independent) delta values to transmit. A source encoder can now be chosen to compress
these differences.

In this work, arithmetic coding was chosen over various alternatives because of two
main advantages:

• Assuming an accurate model, it produces a nearly optimal encoded bitset.

• Themodeling process is separate from the coder design. This allows a single imple-
mentation of an arithmetic coder to function on many distinct sources of data. It
also allows for variousmodels to be evaluated on the source data without redesign-
ing the coder.

The main drawback is that arithmetic coding has a reasonably high computational
cost. This is generally not a concern for the underwater vehicle domain since available
computing resources typically far outpace the throughput of the acoustic channel.

3.4.1 Generating a source model
The next step in this process is identifying a suitable model. The full transmissions (3.2)
are encoded using a uniform probability distribution, since the vehicle could reasonably
be redeployed anywhere in the operation region. The process of mapping the source
delta data from Section 3.3 is sketched in Fig. 3.2b.

80

0

0.01

0.02

0.03

Fixed Speed/Gaussian (σ = sτ)

0

0.2

0.4
p(

dx
)

dx (meters)

 Fixed Speed/Adaptive

0

0.05

0.1

Kalman Filter/Gaussian (σ 2 = diag(P

prior
))

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.2

0.4

dx (meters)

 Kalman Filter/Adaptive

Figure 3.3: The probability distributions (given in (3.26-3.28)) used to arithmetically en-
code dx and dy in this work. Thesemodels were used to produce the experimental results
given in Fig. 3.6. Not shown is the uniform distribution given in (3.24).

A priori, it seems logical that the probability distribution governing the delta values
dy[n]would be zeromean, since any pattern the vehiclemakeswill have an equal number
of negative and positive position differences. For example, see the hexagon in Fig. 3.2a.
The negative dx on the east side will be offset by the positive dx on the west side. The
shape of the distribution is unclear, however, and depends substantially on the maneu-
vering choices the vehiclemakes (tight circleswould lead to high error using the dynamic
model given in (3.6), straight lines would be low error). Thus, the following distributions
were compared (all the non-uniform distributions are shown in Fig. 3.3):

81

• Uniform (similar for p[dy] and p[dz]):

p[dx] =


1

dxmax−dxmin−1
dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(3.24)

where the limits

dymin =


dxmin

dymin

dzmin

 ,dymax =


dxmax

dymax

dzmax

 (3.25)

must be determined a priori based on the tolerance for unencodable symbols if the
state observer difference exceeds these bounds. In a real system a symbol can be
reserved for out-of-range values and the encoder reset to send a new “full transmis-
sion” (3.2) when this occurs. The tighter the bounds, however, the less probability
mass that is “wasted” on encoding values that will never or rarely occur.

• Normal, with variance σ2 = (sτ)2:

p[dx] =

N (0, σ2) dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(3.26)

The standard deviation sτ was chosen so that all possible manuevers including the
“worst case” scenario have about 95% of the probability mass. The “worst case” is
where the vehiclemakes a 180◦ turn immediately after thepreceeding transmission
so that dx[n] = 2sτ . This means that σ = sτ since

Φ(µ+ 2.0σ)− Φ(µ− 2.0σ) = 0.95 (3.27)

whereΦ is the cumulative mass function of the normal distribution. This distribu-
tion is used only in conjunction with the fixed speed observer (Section 3.3.1).

• Normal, with variance σ2 = diag(Pprior[n]): that is, the variances of the a priori
estimate covariance from the Kalman filter. This distribution is used only in con-
junction with the Kalman filter observer (Section 3.3.2).

• Adaptive: This model starts processing the dataset with the uniform distribution
given above, and then equally incorporates the statistics of all previously transmit-
ted symbols. Thus, an accurate model of the vehicle’s prior positions is built up to
encode future positions. At any samplem0, the model is

p[dx] =

(Ndx + 1) /f0 dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(3.28)

82

where Ndx is the number of prior transmissions over [dx[0], . . . , dx[m0 − 1]] that
had the value dx, and m = 0 is the start of the experiment. f0 is a normalizing
constant given as

f0 = m0 + dxmax − dxmin (3.29)

The model is updated after encoding and after decoding so that the sender and the
receiver can share the same state.

3.4.2 Implementing the arithmetic coder

To ensure this work can be easily fielded on AUVs in the near future, the arithmetic coder
was implemented in the Dynamic Compact Control Language (DCCL), part of the Goby2
project [74]. The details of the arithmetic coder were based on the widely used integer
implementation by Witten, Neal, and Clearly [75] and further clarified in [76]. While the
integer implementation is used in the code to avoid underflow, overflow, and precision
problems, this thesis uses the floating point notation for clarity. This notation involves
encoding a range from [0, 1) using normalized probability models.

The mapping from delta values to symbol space S (shown in Fig. 3.2c) is given by

S[dx] =


dx− dxmin dx ∈ [dxmin, dxmax)

out-of-range dx 6∈ [dxmin, dxmax)

end-of-file dx ∈ ∅

(3.30)

with two special symbols: end-of-file (EOF) used to indicate the end of encoding, and out-
of-range (OOR) used to indicate any value outside [dxmin, dxmax). An EOF symbol is not
required if the number of messages encoded per packet is arranged between sender and
receiver ahead of time.

The algorithm for arithmetic coding is well known andwill thus not be reprinted here
for brevity’s sake. However, one innovationwas required to conform to theDCCL require-
ment that decoders consume exactly the same number of bits as the encoder produces.
The implementation of an arithmetic coder given in [75] and elsewhere assumes that the
decoder can safely read nonsense bits past the end of the file, until the actual end-of-file
symbol is decoded. This will not work with DCCL since extra bits used in decoding end up
being taken from those required for the next field in the message and thereby corrupt-
ing all following fields. Thus, in the DCCL implementation used here, the decoder tracks
both the upper (current bitset followed by all ones) and lower (current bitset followed

83

0100111000100111100000

enddz startdy startdx start

(a) Example DCCL
bitstream for a single
encoded deltamessage.
The “dy start” and
“dz start” markers are
given for illustration
only; the way DCCL
distinguishes the start
of one field is where
the last field’s decoder
left off.

00000000
11111111

00000000
01111111

01001100
01001111

01001110
01001111

ambiguous

ambiguous

ambiguous

unambiguous

...

(b) Example decoding
dx from this example
bitstream. Both the up-
per and lower bounds
are tracked, consuming
a single bit at a time un-
til the rangeunambigu-
ously identifies a sym-
bol.

Figure 3.4: Example of the arithmetic decoder for DCCL, showing tracking of decoded
ranges to ensure the number of bits consumed by the encoder and the decoder are iden-
tical.

by all zeros) bounds of the current symbol, adding bits one at a time until the symbol is
unambigously decoded. An example of this process is given in Fig. 3.4. Relatedly, the end
of the bitstreammust be encoded exactly so that the decoder does not leave extra bits in
the stream that would corrupt the next field of the message. The authors of [75] always
use two bits to indicate which middle quarter (either [0.25, 0.5) or [0.5, 0.75)) is wholly
contained by the final encoder range. However, when at least one end of the encoder
range is at one of the bounds (low = 0 and/or high = 1), fewer bits may be required. The
exact set of end bits (e) is given by

e =



∅ high = 1, low = 0, no follow bits

0 or 1 high = 1, low = 0, follow bits

1 high = 1, 0 < low < 0.5

0 0.5 < high < 1, low = 0

01 low < 0.25, high ≥ 0.5

10 low < 0.5, high ≥ 0.75

(3.31)

84

plus any follow bits accrued from prior center expansions around [0.25, 0.75). This is
consistent with the (rounded-up) information entropy

dHbitse = −log2(p) =



0 high = 1, low = 0

1 high = 1, 0 < low < 0.5

1 0.5 < high < 1, low = 0

2 low < 0.25, high ≥ 0.5

2 low < 0.5, high ≥ 0.75

(3.32)

for the cases in (3.31).

3.5 Results on experimental data
Here we will examine the performance of the system developed in the previous sections
on transmitting hypothetical messages pulled from two experimental datasets:

• The shallow water GLINT10 experiment in the Tyrrhenian Sea containing in excess
of sixty hours of cumulative dive time with a Bluefin 21” AUV.

• A dive from the Arctic Gakkel Vents expedition (AGAVE07) with a SeaBED AUV per-
forming a survey at 4 km depth. The dive was twenty-one hours in duration.

These two datasets were chosen to contrast significantly different AUV classes per-
forming different missions to demonstrate the broad applicability of this approach. Spe-
cific quantities from the experiments andvalues chosenhere for these examples are given
in Table 3.1.

Finally, this system was implemented and run in the field during the MBAT12 trial
using a Bluefin 21” AUV and the WHOI acoustic Micro-Modem.

3.5.1 GLINT10
The desired transmission in this example is a Cartesian representation of the vehicle’s
position[

x[n] y[n]
]
= UTMWGS84(lon[n], lat[n])− UTMWGS84(lond, latd) (3.33)

and z[n] is the negative of the pressure-derived vehicle depth. UTMWGS84 is the Univer-
sal TransverseMercator transformation using theWGS’84 ellipsoid [49], lon[n], lat[n] are

85

Table 3.1: Experimental Parameters

Parameter GLINT10 AGAVE07 MBAT12
Delta model bounds:
[dymin,dymax)

[-50, 51) m, except Fig. 3.9a

Transmitted x, y, z precision 1 m
Jerk variance σ2

j 10−3, except Fig. 3.9b
Measurement covariance R 25I3
Time between messages (τ) 10 s 10 s 5 s
Number of full transmissions (Nf) 199 34 1
Mean size of full transmission 60 bits 61 bits 55 bits
Number of delta transmissions
(Nd)

24420 7370 660

Size of delta transmission See Fig. 3.6 & Table 3.2
Vehicle xy speed (s) 1.5 m/s 0.2 m/s 1.4 m/s
Water depth (D) 110 m 4140 m 20 m
Experiment datum (latd, lond) 42.45667◦N, 10.875◦E 85.61667◦N, 85.75◦E 42.38◦N, 70.96◦W

the vehicle’s longitude and latitude, and lond, latd are the longitude and latitude of the
experiment datum, a reference used for convenience (unrelated to the UTM zone datum).

Position data

A representative subset of the data used is plotted in Fig. 3.5, and represents one AUV
performing a variety of data collection and adaptive autonomy missions. The details of
the missions are not of interest here, as the goal is to develop a technique for communi-
cating position data regardless of the vehicle’s mission. As can be seen from Fig. 3.5a, the
AUVperformed a variety of polygonal excursions interrupted by straight-linewaypoints.
In depth, both profiling “yoyo” and constant depth maneuvers were used. In Figs. 3.5b
and 3.5d, the Kalman filter state vectors are plotted, as well as the measured position of
the vehicle from the navigation system. The prior estimate deviates the most when the
vehicle manuevers. This is expected since the causal motion model developed in Section
3.3.2 has no way to predict these maneuvers and once they occur they are tracked as ran-
dom changes in the vehicle’s jerk. A more specific motion model would likely improve
the tracking here, but at the cost of loss of general applicability to a variety of vehicles
and mission types. In any case, the required causality of the model will always limit the
performance of this system to some degree.

86

5000

5500

6000

3500

4000

4500

5000

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

x (m)

y (m)

ti
m

e
(U

T
C

 o
n

 2
01

0−
08

−0
9)

(a) Representative x and y positions of AUVUnicorn (show-
ing 14% of the dataset used in the encoder results)

5750 5800 5850 5900
4760

4770

4780

4790

4800

4810

x (m)

y
 (

m
)

x
post

: kalman estimate posterior

x
prior

: kalman estimate prior

y: measurements

^

^

(b) Detail view of measurements compared
to Kalman state vectors x̂post and x̂prior
from time 16:47 to 16:50 as the AUV turns
a corner.

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

−80

−60

−40

−20

0

time (UTC on 2010−08−09)

z
 (

m
)

(c) Depth excursion of the AUV Unicorn over the same data subset as in part (a).

13:20 13:25 13:30

−50

−40

−30

−20

−10

time (UTC on 2010−08−09)

z
(m

)

x
post

: kalman estimate posterior

x
prior

: kalman estimate prior

y: measurements

^

^

(d) Zoom of part (c) showing the Kalman state vectors in z (negative depth). The value transmitted (dz) is
the difference between the measurement and the x̂prior as given in (3.18). As shown here, this difference
is highest following a sharp manuever.

Figure 3.5: Example subset of AUV Unicorn navigation data used for the experimental
analysis from the GLINT10 cruise.

87

Encoder results

Each of the distributions given in Fig. 3.3 was used with the arithmetic coder discussed in
the prior section to encode the dataset. The resulting size of each message was recorded
and the statistics plotted in Fig. 3.6a, along with the uncompressed 32-bit integer as a ref-
erence point. The moments of these results are summarized in Table 3.2. As expected,
the Gaussian model performed better than the uniform distribution since it makes use of
the dynamic models from Section 3.3 where low errors are more probable than high er-
rors (the vehicle in general continues on a similar path of motion). However, both of the
Gaussian distributions overstate the error significantly from the adaptive distribution,
as seen by the difference in standard deviation between the two models in Fig. 3.3. Once
the adaptive distribution was initialized with sufficient data, it easily outperforms the
results using the other distributions. Furthermore, the fixed speed dynamic model using
the adaptive distribution is an improvement of 86% over the widely used Compact Con-
trol Language [39], which uses 61 bits to encode a vehicle position in the “MDAT STATE”
message.

Comparing the twodynamicmodels used, theKalman filter has a significant edgewith
the Gaussian distribution since it produces an uncertainty model (Pprior) as part of the
state estimation process. For the adaptive distribution, however, the fixed speed model
performs slightly better, especially since it has lower standard deviation due to a smaller
number of large (i.e. 16-20 bit) messages.

3.5.2 AGAVE07

As with the GLINT10 dataset, the vehicle’s Cartesian position during AGAVE07 (Fig. 3.7)
was hypothetically transmitted, but this time using the AlvinXY transformation from lat-
itude and longitude to x and y [66]. The size of each delta message was computed for
the same types of models as for the GLINT10 experiment; these results are plotted in
Fig. 3.6b. In general, the results from the two datasets are similar. There are two main
differences: 1) the overall size of the messages generated from the non-uniform distri-
butions are smaller for the AGAVE07 dive than for the GLINT10 trial; and 2) the fixed
speed model outperforms the Kalman filter model on the Gaussian distribution for the
the AGAVE07 dataset.

Both differences are likely due to the difference in vehicle speeds. Since the resolu-
tion transmitted (1 m) and time step (τ = 10 s) were kept constant between experiment

88

 4 5 6 7 8 9 10 12 14 16 18 20 30 40 50 60 70 80 96
10

0

10
1

10
2

10
3

10
4

bits

co
u

n
ts

Fixed Speed/Gaussian (σ = s τ)
Fixed Speed/Adaptive

Kalman Filter/Gaussian (σ2 = diag(Pprior))

Kalman Filter/Adaptive
Kalman Filter/Uniform
32 bit integer

All full transmisison (y
f
)+

+

(a) GLINT10: The data are generated for the models given in Fig. 3.3 each operating on the full dataset from
the Bluefin 21” AUV “Unicorn”.

 3 4 5 6 7 8 9 10 12 14 16 18 20 30 40 50 60 70 80 96
10

0

10
1

10
2

10
3

bits

c
o

u
n

ts

+

(b) AGAVE07: Results from the SeaBED AUV “Jaguar” dive on 2007-07-27 using the same distribution types.

Figure 3.6: Log-log plot of the number of delta messages generated with a given size (in
bits) for each experiment. Twomore data points are provided for comparison: 1) the size
if only full transmissions were used (same as the Goby DCCL default algorithms given in
Table 2.3); and 2) an uncompressed 32-bit integer representation.

datasets, the slower vehicle (“Jaguar” from AGAVE07) will diverge less from the expected
position. The variance of the normal distribution for the fixed speed model is based on
speed. In the case of the AGAVE07 results, this is a narrower distribution, more closely
matching the adaptive model than in the GLINT10 case.

3.5.3 MBAT12

In this experiment, the technique described in this chapter was demonstrated in situ on-
board a Bluefin 21” AUV (the sender) equipped with a WHOI acoustic Micro-Modem [77].
The receiver was a buoy equipped with both a Micro-Modem and a radio link to the re-
search vessel. For comparison, the state of the vehicle was transmitted at each acoustic

89

Table 3.2: Experimental Results

Dynamic Model Distribution Meana Standard deviationa Compression b

GLINT10
Fixed speed Gaussian (σ = sτ) 14.6 0.157 85%
Fixed speed Adaptive 8.68 2.22 91%
Kalman filter Gaussian (σ2 = diag(Pprior[n])) 12.0 1.42 87%
Kalman filter Adaptive 9.76 3.28 90%
Kalman filter Uniform 20.3 0.0821 79%

AGAVE07
Fixed speed Gaussian (σ = sτ) 10.1 0.746 89%
Fixed speed Adaptive 7.11 2.23 93%
Kalman filter Gaussian (σ2 = diag(Pprior[n])) 11.4 0.839 88%
Kalman filter Adaptive 7.45 3.00 92%
Kalman filter Uniform 20.3 0.0814 79%

MBAT12
Kalman filter Gaussian (σ2 = diag(Pprior[n])) 11.1 0.481 88%
a Mean and standard deviation given in bits.
b Relative to a 3 element 32-bit integer representation.

6500

7000

7500

8000

−2400
−2200

−2000
−1800

−5000

−4000

−3000

−2000

−1000

0

x(m)y (m)

z
(m

)

(a) Three-dimensional Cartesian position mea-
surements for the full dataset.

08:38 09:07 09:36 10:04 10:33 11:02 11:31 12:00

−4170

−4160

−4150

−4140

−4130

−4120

−4110

−4100

−4090

−4080

z
(m

)

time (UTC on 2007−07−27)

measurements
kalman estimate posterior
kalman estimate prior

(b) Subset of depth showing the Kalman state vec-
tors.

Figure 3.7: SeaBED “Jaguar” dive used from the AGAVE07 experiment for the results in
Fig. 3.6b.

90

20:45 20:50 20:55 21:00 21:05
−15

−10

−5

0

time (UTC on 2012−11−06)

z
(m

)

state observer compression (this work)

position at each transmission (baseline)

3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 3850
800

850

900

950

1000

1050

1100

1150

1200

x (m)

y
 (

m
)

Figure 3.8: Position of the sender vehicle as seen by the receiver during the MBAT12 field
trial. The state observer compression technique developed in this chapter is compared
to the traditional position sent with each acoustic data transmission. Note that this new
technique removes the aliasing present in the vehicle’s depth excursions.

datagram transmission in addition to the state estimate innovations (with τ = 5s). Fig. 3.8
shows the results from a mission during this experiment, which used the Kalman filter
state observer coupled with the Gaussian distribution for encoding the delta transmis-
sions. Using the lowest data rate available with the phase-shift-keying (PSK) modulation
on the Micro-Modem (“rate 1”), only 12.6% of the available data throughput during this
mission was used to transmit the state observer innovations (including addressing, du-
plicate rejection, and byte padding overhead). Thus, using this technique, it is possible to
consider telemetry of vehicle positions as a reasonably small amount of overhead on the
underwater communications system, rather than its primary purpose as has historically
been the case.

3.6 Robustness

The design of the state observers is intentionally general to reduce the number of param-
eters to be “tweaked” or “tuned” and thus improve the robustness (for a broad range of
maneuvering vehicles). However, there are twomajor parameters to determine that have
values which are not clear a priori: the range of included delta values for the arithmetic
entropy encoder (i.e. [dymin,dymax)) and, when using the Kalman filter estimator, the
process noise (embodied in its variance: σ2

j) which is used to model all vehicle manuev-
ers.

91

15 20 30 40 50 100 200
10

0

10
1

10
2

47.22

17.64
13.55 13.50 13.51 13.57 13.67

dymax (= −dymin)

m
ea

n
 s

iz
e

(b
it

s)

delta transmissions
full transmissions

(a) Performance over various values of the encoding range [dymin,dymax).

10-1 10-2 10-3 10-4 10-5 10-6 10-7
0

10

20

30

40

50

60

58.32

13.44 13.51 14.52
16.27

22.54

55.25

Jerk variance (σj
2)

m
ea

n
 s

iz
e

(b
it

s)

(b) Performance dependence on the variance of the process noise (which is how
vehicle maneuvers are modeled)

Figure 3.9: Using the GLINT10 dataset, the performance (inmean size of messages) of this
system over a range of parameter values. The contributions to the mean size from the
delta and full transmission are shown separately. The values in bold were used for the
rest of the analysis in this chapter and are also given in Table 3.1.

92

The first parameter ([dymin,dymax)) is illustrated in Fig. 3.9a, which shows the trade-
off in choosing these bounds. Too small, and the state observer consistently exceeds the
bounds, and a full transmission must be resent to reinitialize both sender and receiver
states. However, there is also a small price to pay for making them too large, which is
the small amount of probability mass required for each discrete value with the range of
dymin to dymax, taking away mass from all the remaining values, making the more prob-
able values (e.g. 1, 0, -1) slightly more costly to encode. However, this cost is small com-
pared to having to reinitialize the states by sending full transmissions frequently. Thus,
as is clear from Fig. 3.9a, it is preferable to err on the side of too loose bounds than too
tight.

The second parameter (σ2
j) was originally chosen using a subset of the experimental

data from GLINT10 to determine a reasonable order-of-magnitude value (σ2
j = 10−3).

Figure 3.9b shows the overall performance (message size in bits, including full transmis-
sions and delta transmissions) for a wide range of process noise values. This figure shows
that the algorithm is robust over about four order of magnitude from 10−2 to 10−5 (too
low or too high and the filter perpetually fails to track). It is also worth remembering
that the fixed speed tracker does not require this parameterization and is applicable to a
large number of classes of AUVs found in the field today.

Finally, by design, the tradeoff for inaccuracy in determining these parameters is not
accuracy in the received telemetry, but rather cost (in bits) of sending these data. This
means that the receiver is never uncertain about the quality of the data that it has received.

3.7 Performance comparison to traditional approach

As mentioned in Section 3.2, the delta technique developed in this chapter provides an
evenly sampledhistorical timeseries (regardless of packet loss) by retransmittingdropped
packets (using ARQ). Such an evenly sampled history is useful for in-situ analysis of in-
strument data attached to these position messages, or performance evaluation. Since
ship time is highly expensive, it is valuable to do as much data analysis and debugging as
possible while the vehicle is underway (rather than waiting until the end of the mission).

However, there are times when only the latest position of the vehicle is desired. In
this case, does this state observation technique still provide any benefit? Using the exper-
imental results fromMBAT12 (Table 3.2), the simulatedmean cost to send a deltamessage
was plotted against the packet loss (modeled as an independent Bernoulli process) as Fig.

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

1

10
2

10
3

10
4

packet loss (probability)

m
ea

n
 c

os
t

to
 s

en
d

 d
el

ta
 m

es
sa

ge
 (

bi
ts

)

delta (packet = 55 bits)

delta (packet = 105 bits)

delta (packet = 156 bits)

delta (packet = 206 bits)

delta (packet = 256 bits)

full (no retransmit)

(a) Mean cost (in bits) to send a delta message compared to a full mes-
sage system with no retransmits.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

packet loss (probability)

m
ea

n
 e

xc
es

s
la

te
n

cy
 (

m
u

lt
ip

le
s

of
 τ

)

delta (packet = 55 bits)

delta (packet = 105 bits)

delta (packet = 156 bits)

delta (packet = 206 bits)

delta (packet = 256 bits)

(b) Increased latency (over full systemwith no transmits) for a variety
of packet sizes.

Figure 3.10: Performance comparison of traditional “newest when possible” system (full
transmissionwith no retransmits) with the delta state observer technique in the case when
a full historical timeseries is unneeded.

94

3.10a. This metric was computed for a variety of packet sizes, ranging from the full trans-
mission size (55 bits) to 32 bytes (256 bits), a commonly used acoustic modem maximum
transmission unit (MTU). In addition, a curve representing the traditional system using
full transmissions with no retransmission upon loss is provided. Thus, depending on the
packet size, this delta-based technique is cheaper (uses fewer bits on average) than a tra-
ditional full position system up to packet losses of 65% or higher.

On the other hand, the delta system requires that older innovations be correctly re-
ceived before newer innovations can be used (otherwise the sender and receiver state ob-
servers do not share the same state). This leads to increased latency over the full position
system that increasesmonotonically with packet loss. This excess latency is shown in Fig.
3.10b. The tolerance for excess latency versus increased bit cost is mission specific. A hy-
brid system that switches between this delta technique (for lower packet loss links) and a
traditional full system (for higher packet loss links)may be necessary to reach the desired
tradeoff of latency versus throughput for a given mission.

3.8 Conclusion
A technique for transmitting the position vector of an AUV at relatively high rates at
very low cost (in bits) was developed and demonstrated on two experimental data sets
and implemented in the field, leading to mean compression ratios as high as 93%. Such
a system is suitable for use with the currently available acoustic modems that provide
only on the order of 101 to 102 bytes per minute of throughput. This chapter shows that
continuous telemetry of vehicle position is possible while stayingwell within the abilities
of thesemodems, allowing for additionalmission-specificmessaging to take place aswell.

Portions of this chapter are c©2012 IEEE. Reprinted, with permission, from T. Schneider and H. Schmidt,

“Approaches to Improving Acoustic Communications on Autonomous Mobile Marine Platforms,” Underwa-

ter Communications: Channel Modelling & Validation, 12-14 September 2012.

95

96

4 Disruptive Technique: autonomous
navigation approaches to improve the physical

link

4.1 Introduction
Autonomous underwater vehicles (AUVs) are increasingly used in a variety of oceano-
graphic and naval tasks, such as oceanographic surveys, target detection and classifica-
tion, and seafloor imaging. Many of these tasks make use of acoustics as either a remote
sensing tool or as a communications signal carrier. Propagation of acoustic signals are
highly dependent on the acoustic environment: the sea surface, water column, and sea
floor. Thus, accurate understanding of this environment may be exploited for improv-
ing the performance of sonars or acoustic modems, similarly to the optimization strate-
gies used in the past by human platform and sonar operators. Computational acoustic
modeling uses numerical methods for approximately solving the wave equation in real
environments whose parameters are too complex to handle analytically. This chapter
presents the Generic Robotic Acoustic Modeling (GRAM) concept for interfacing the ar-
tificial intelligence captaining the AUV to one or more existing acoustic models, such as
the Acoustics Toolbox [78] or OASES [79] models. We present the use of the GRAM con-
cept and software for two domains: improved acoustic communications in shallow water
and deep sea localization and tracking of a near surface acoustic contact. A schematic of
this concept is given in Fig. 4.1.

4.1.1 MOOS-IvP Autonomy Software
TheMOOS-IvP Autonomy software presented in [27] provides twomain components that
form the underpinnings for this work:

97

» measured salinity, temperature, pressure:
 calculated sound speed

environmental data

modeled acoustics

» transmission loss
» impulse response (delay spread)
» noise

» decide to transmit or not
» move to improve reception

(a) environment-based acoustic model
(Generic Robotic Acoustic Modeling)

modeled communications
communications quality, P(Q)expected direction to contact

actionsactions

(b) application-specific modeling
(communications, target localization)

(c) AI reasoning

» communications quality
» acoustic pressure
» environment (S,T,P)

measured

(d) explore physical space &
data from other agents

successful decoding (Bernoulli)
symbol SNR

Q = {

modeled beamforming

» move to maximize SNR

Figure 4.1: Block diagram overview of the model-based adaptivity framework presented
in this work. The right path focuses on improving acoustic communications (demon-
strated in section 4.3) whereas the left pathmodels sonar performance for a target track-
ing application (section 4.4.2). Both applications (and others) can be run in parallel due to
the RPC design of GRAM (see section 4.2). The dotted arrows represent areas of feedback
not presented in this work that could be exploited for better performance.

98

• MOOS publish/subscribemiddleware: provides interprocess communications (IPC)
overTCP in apublish/subscribemanner via a central “bulletin-board”processwhich
contains a database of the latest sample of each data type. This enables the robotic
software to be split into many discrete subsystems that can be developed and de-
bugged independently.

• The Interval Programming (IvP) Helm multi-objective decision engine: The IvP
Helm provides an interface for a collection of behaviors to produce functions of
utility (which are soft decisions and can bemulti-modal) over one ormore domains
(usually heading, speed, and depth of the AUV). At a set frequency (typically one
Hertz), the IvP Helm solves all the behaviors’ functions for a single hard decision
that is passed to the vehicle control system to execute. Unlike traditional behavior-
based control such as that championed by Brooks [80], the IvP Helm behaviors have
state and therefore can run models and act on collected data, as is done in the be-
haviors presented in this work.

MOOS-IvP has been used extensively in marine vehicle autonomy research, such as
cooperative search tasks [30, 81, 82] and adaptive oceanographic sensing [83, 84].

4.1.2 Computational Acoustic Models

This work builds on several computational models that use differing techniques for ap-
proximately solving the wave equation in complex ocean environments. The theoreti-
cal treatment of the underlying approximations used for all these models is discussed in
depth in [85]:

• Acoustics Toolbox: a collection of computationalmodels and related tools. The two
that are integrated into GRAM are:

– BELLHOP [26]: a model that generates ray trajectories, transmission loss (us-
ing Gaussian beam tracing), and eigenray travel time outputs using the ray-
basedhigh-frequency approximationof acoustic propagation. This is themodel
used for the case studies in this work due to the rapid computation of ray trac-
ing over other approaches. On embedded systems such as AUVs, fast compu-
tation is often more important than high fidelity due to power constraints
and available computational resources. See Fig. 4.3 for an illustration of how
much power can be saved by having a low duty cycle on the modeling system.

99

– KRAKEN [86]: a normal modes based model. KRAKEN treats the ocean waveg-
uide as a summation of modes and is thus best suited for more accurate mod-
eling of somewhat lower frequency (fewer modes) problems than BELLHOP is
suited for.

• OASES: a model that relies on wavenumber integration to solve problems involv-
ing propagation in one or more horizontally stratified layers, making it especially
suited for seismo-acoustics problems.

Other acoustic models can be incorporated into the framework presented in section
4.2. The Acoustics Toolbox and OASES were chosen for their maturity, open source avail-
ability, and performance (both arewritten in Fortran, which is compiled to the platform’s
native machine code).

4.2 GRAM: Low power in-situ Generalized Acoustic
Modeling

TheGeneric Robotic AcousticModel (GRAM)provides a set of tools implemented inC++ for
performing in-situmodeling of the acoustic environment for use by autonomous decision
making (such as the IvP Helm used in the experimental studies in sections 4.3 and 4.4.2).
A graphical structure diagram of GRAM is provided in Fig. 4.2, showing also the sug-
gested division of hardware systems based on the realtime and performance (and thereby
power) requirements. GRAM is designed with several considerations that make it more
suited for running on underwater embedded robotic systems than directly calling the
underlying acoustic modeling code:

• asynchronous remote procedure call (RPC) design

• runtime reconfigurable

• abstracted interface

4.2.1 RPC design

GRAM is designed such that each “consumer” (an application or module that needs the
result of an acoustic model) makes asynchronous requests independently of the other

100

iGRAM Application (C++)

BHV_MaxSNRDepth BHV_AcommsDepth

pHelmIvP Communications Subsystem

Sensor Subsystem

“Frontseat” interface

GRAM Library (C++)

GRAM ResponseGRAM Request

High performance CPU(s)
 “Model Farm”

 “Backseat”: MOOS-IvP

“Frontseat”: Low level control, navigation, and sensing
Vehicle manufacturer specific

» Reads Environmental data updates

» Writes GRAM Request / Reads GRAM Response

» Does Acoustic Commuications specific modeling

» Produces multimodal utility function over depth

» Reads Environmental data updates

» Writes GRAM Request / Reads GRAM Response

» Does noise modeling

» Produces multimodal utility function over depth

» Short horizon O(1 second) decision engine

» Solves multiple objective functions over entire
speed, heading, depth domains for scalar desired action

» Reads GRAM Request and calls GRAM Library

» Writes GRAM Response from GRAM Library

» Translates GRAM Request into model-specific language

» Calls requested model

» Translates model output into GRAM Response

BELLHOP Ray Tracing Model KRAKEN Normal Modes Model

OASES Wavenumber Integration Model

R
ea

lt
im

e
C

on
st

ra
in

t

so
ft

fi
rm

h
ar

d

P
ow

er
 &

 P
er

fo
rm

an
ce

h
ig

h
m

ed
iu

m
lo

w

Figure 4.2: A structure diagram of an autonomous underwater vehicle using the GRAM
tools and the MOOS-IvP autonomy middleware. See [87] for an overview of the
“frontseat”-“backseat” paradigm (Oliveira, et al. also use a similar separation of hard-
ware in [88]). The present work adds a third physical computing layer, the model farm,
which can be thought of a one step further removed in terms of realtime requirements
from the “backseat”. While this separation is not required, it can be used to save power,
as illustrated in Fig. 4.3.

101

10
−2

10
− 1

10
0

2

4

6

8

10

Model Farm Duty Cycle

P
ow

er
 (

W
at

ts
)

Combined

Split (GRAM)

Figure 4.3: Comparison of computer board power usage for split low-power CPU (the
“backseat”) and high-performance CPU (“model farm”) versus combined on a single high-
performance board. Low-power board shown is the Eurotech Titan (Intel 520 MHz
PXA270 XScale processor) [89]; high-performance board is the Advantech PCM-3363 (In-
tel 1.8 GHz Atom D525 Dual Core processor) [90]. The duty cycle is the fraction of time
the acoustic models are being run, with the assumption themodel farm can be shut off in
the split case the rest of the time. Except when the models are being run near constantly,
the split system (illustrated in Fig. 4.2) saves power, which is especially useful in longer
slower missions where hotel power usage dominates propulsion power usage [35].

consumers. Each request is processed by the GRAM tools and a response is sent back con-
taining the results of the model calculation. The requests and responses can be transmit-
ted over a transport of choice (e.g. TCP, sharedmemory, RS-232); in the results presented
in this chapter we use the MOOSmiddleware TCP-based transport. This design allows for
the separation of soft realtime modeling computations from other firm or hard realtime
systems (“backseat” autonomous decision making and “frontseat” low-level control and
actuation), as consumers can continue to work using their most recent available data un-
til the new model calculation is complete. This separation also allows for the hardware
performing the modeling to be put into a low power state, saving significant amounts
of energy when the required duty cycle of the modeling farm is somewhat less than one
hundred percent. See Fig. 4.3 for a comparison of power usage for a split model/realtime
system (such as diagrammed in Fig. 4.2) versus a more traditional single CPU board de-
sign. The specifics of the mission and dynamics of the environment can change the re-
quired duty cycle dramatically.

102

4.2.2 Runtime reconfigurable

Each request for amodel calculation can contain any or all of the parameters of the acous-
tic environment. This allows for meshing fixed parameter values with real time updates
of the environment available from on-board sensors (e.g. Conductivity-Temperature-
Depth (CTD) sensor) and/or transmitted from a remote source (e.g. another AUV, satel-
lite, surface craft).

4.2.3 Abstracted interface

GRAM uses an extensible object-oriented representation of the acoustic environment
(written in a language-neutral Protocol Buffers representation [34]), which is translated
into the specific input format required by the desired acousticmodel. Many of thesemod-
els use arcane input formats that are intolerant of syntactical mistakes. Given the costs
of AUVs (hundreds of thousands of US dollars) and the operational costs of AUV experi-
ments (thousands of dollars per day), accepted software quality practices that emphasize
saving programming time and increasing reliability are of utmost concern to AUV re-
searchers. The abstracted GRAM interfaces provides these quality checks that the native
interface to the Acoustics Toolbox and OASES do not:

• compile-time type checking

• compile-time bounds checking on enumeration fields

• run-time bounds checking on numeric fields

4.3 GLINT10 Shallow water experiment

4.3.1 Acoustic Communications

Most autonomous vehicle tasks share a common element: collection of data that are only
useful once they reach a human operator or a collaborating robot. Transmission of such
data can easily be accomplished once the mission is completed and the vehicle is recov-
ered. However, the time sensitivity of the datamay precludewaiting hours or days before
its recovery. Furthermore, offloading data during a mission guards against complete loss
in the event of catastrophic vehicle failures. Finally, collaboration between two or more
robots requires communication during the mission.

103

1500 1510 1520 1530 1540

0

10

20

30

40

50

60

70

80

90

100

sound speed (m/s)

d
ep

th
 (

m
)

08/04

08/06

08/08

08/10

08/12

08/14

Figure 4.4: The 111 sound speed profiles calculated using the Chen/Millero equation [17]
from the temperature, salinity, and pressure data collected by the AUVUnicorn through-
out the GLINT10 experiment starting on 08/04/2010. Profiles were collected by the AUV
performing one ormore “yoyo”maneuvers in depth and are averaged over thirtyminute
windows. Initially the stratification is more pronounced before a storm early in the ex-
periment caused some mixing of surface and bottom waters.

To this end, wireless acoustic communication systems have been developed to allow
for subsea telemetry. Sound is used as a carrier rather than the more traditional radio or
light waves due to the very short electromagnetic skin depth of sea water in all but very
low frequencies (which require large antennas to efficiently generate). Acoustic waves
are far from an ideal digital signal carrier, though. Attenuation due to absorption which
increases with frequency puts a practical upper bound on the usable carrier frequencies
and consequently available bandwidth. Multipath due to surface and bottom reflections
as well as refraction caused by the often highly stratified vertical sound speed profile
leads to intersymbol interference and thereby high packet loss. The low speed of sound
in water (nominally 1500 m/s) leads to non-negligible Doppler effects. Stojanovic [91],
Preisig [12], and Baggeroer [10] cover all these issues and how they influence the design
of an acoustic modem physical layer.

104

Table 4.1: GLINT10 Experiment Parameters

Geometric
Source (Buoy) depth 30 m
Receiver (AUV) depth variable (primarily 0-60 m)
Source (Buoy) speed 0.03 m/s (σ = 0.02 m/s)
Receiver (AUV) speed 1.47 m/s (σ = 0.14 m/s)
Source beam pattern azimuthally omni-directional; polar is 5dB reduced

towards surface and bottom.
Environmental

Sea state (Beaufort) 1-3
Sea floor depth 111 m (σ = 4.7 m)
Signalinga

Source Level 190 dB re 1 µPa at 1 m
Frequency (carrier) 25120 Hz

Bandwidth 4160 Hz
Modulation Frequency-hopping Frequency Shift Keying (FH-FSK)

Frequency hops 7
Symbol bin width 320 Hz
Symbol duration 6.25 ms

Symbol clearing time 6 symbols = 37.5 ms
Error correction coding rate 1/2 convolutional code
Symbols / transmission 576
BHV AcommsDepth

Acoustic model window τa 120 s
Environmental window τe 1800 s
a See [92] for further details on coding and modulation and [93] for the packet specifi-
cation.

105

4.3.2 Experimental Setup
The GLINT10 experiment took place in the shallow water (nominally 110 meters deep)
off Porto Santo Stefano, GR, Italy in the Tyrrhenian Sea within ten kilometers of the ex-
periment datum at 42◦27′24′′ N, 10◦52′30” E. The acoustic environment (see Fig. 4.4) was
marked by a warm surface layer (corresponding to a high speed of sound) followed by a
sharp thermocline and cooler water. From the perspective of this work, the experiment
has two goals:

1. Collect statistics on acoustic modem performance as a function of range and depth
for use in validating the utility of the adaptive behaviors and for developing feed-
back learning for future missions. On previous experiments in a similar environ-
ment, qualitative observations had been made about much improved modem per-
formance at deeper depths. This experiment hopes to validate and quantify this
observation.

2. Demonstrate an adaptive behaviorBHV AcommsDepth for tracking themodeled trans-
mission loss minimum calculated using the sound speed profile obtained by the
AUV using the thermocline detection and tracking behaviors developed as part
of [84].

Both of these were performed using a single AUV (“Unicorn”) and a communications
buoy (“Buoy”) fixed at 30meters depth. Both assets were equipped with theWHOI acous-
tic Micro-Modem in the “C” frequency band using modulation rate “0”: see Table 4.1 for
the corresponding acoustical and modulation parameters. This choice of modem hard-
ware was driven by availability and convenience; the adaptive behaviors in this work
are based on fundamental acoustics that affect the performance of all acoustic modems.
Different modulation schemes and adaptive equalization will cause improved results in
certain environments, but they cannot remedy the underlying signal’s quality. The be-
haviors developed here work to improve the underlying signal which should in turn im-
prove modem performance regardless of the modem chosen. This work is complemen-
tary to that on the physical layer such as [94] and [95], and operates on a level above
the traditional networking “stack” in a new layer called the “platform” layer as shown
in Fig. 4.5. The timescales involved are widely different as well: BHV AcommsDepth aims
to improve communications taking into account environmental changes on the order of
hours whereas physical layer communications work attempts to account for changes on
the order of milliseconds.

106

Application

Platform

Presentation

Session

Transport

Network

Data Link

Physical

En
vi

ro
n

m
en

t
T

im
es

ca
le

 (
se

co
n

d
s)

O
SI

 N
et

w
or

k
La

ye
rs

10-3

103

Figure 4.5: Thework in this section can be thought of as comprising a new layer above the
traditional seven-layer Open Systems Initiative (OSI) networking stack [24]. Another way
of thinking about this compared to other work in the networking system is the timescale
of environmental changes that are focused on; that is, the physical layer is concerned
with symbol-to-symbol variation in the channel (milliseconds), whereas thiswork tackles
hourly or longer scale variation in the environment.

4.3.3 BHV AcommsDepth: Autonomy Behavior for maximizing
acoustic modem performance over vehicle depth

This IvP Helm behavior was written to arbitrate over the depth decision domain with the
goal of improving acoustic communications reception between an AUV and a fixed (or
slowly moving) receiver. It makes use of the modeled acoustics to form a soft decision
based on the expected best communications throughput.

Using the newest available sound speed data BHV AcommsDepth makes a request to
GRAM for a transmission loss calculation for the range window∆r where

∆r = |v0|cos(Θ)τa (4.1)

formed from the vehicle’s current position r0 for a predefined time horizon τa based on
its current instantaneous velocity v0 and angleΘwith respect to the Buoy (whereΘ = 0

is defined as when the AUV’s bow is pointing directly away from the buoy’s position).
This request is made at least every τa seconds so that the modeled region in range-depth
space (with respect to the receiver) always contains the actual region that the vehicle
currently occupies.

107

60 80 100

0

20

40

60

80

100

120

r0 = 0 m

44 46 48

0

20

40

60

80

100

120

r0 = 800 m

30 40 50

0

20

40

60

80

100

120

r0 = 1600 m

d
ep

th
 (

m
)

utility (%)

(a) Three example plots of the BHV AcommsDepth objective
function O(d) (Eq. 4.3) using the ray trace shown in Fig. 4.11,
Θ = 0, Hmax = 108 dB, and remaining parameters as given
in Table 4.1. In the absence of other behaviors, the vehicle’s
decision for depth is marked by an arrow.

0 20 40 60 80 100

0

20

40

60

80

100

120

BHV_AcommsDepth

Depth Avoidance (40m)

Minimum Altitude (20m)

Mean

d
ep

th
 (

m
)

utility (%)

(b) One possible interaction of BHV AcommsDepth with other
behaviors. The objective function for r0 = 800m is shown along
with two other behaviors (one for avoiding a hypothetical ob-
stacle at 40m and a safety behavior to stay 20m off the sea
floor). Again, the decision is given by an arrow.

Figure 4.6: Example BHV AcommsDepth objective functionswithout (a) andwith (b) con-
current depth-domain behaviors.

108

The sound speed is assumedhomogeneous in range (i.e. theNorthings/Eastings plane)
given the infeasibility of sampling all points in the vehicle’s future path. BHV AcommsDepth
then averages the modeled intensity over the range window to calculate the modeled
transmission loss

H(d) = −10 log10

r0+∆r∑
r=r0

∣∣∣∣∣P (d, r)

P0

∣∣∣∣∣
2
 /∆r

 (4.2)

where P (d, r) is the acoustic pressure in AUV depth (d) and range (r), and P0 is the pres-
sure at the source. Using this averaged transmission loss, BHV AcommsDepth seeks to
maximize the expected acoustic signal level via an objective function (O(d)) over AUV
depth

O(d) = max
(
1− H(d)

Hmax

, 0

)
(4.3)

where Hmax is a normalization constant representing the transmission loss threshold
above which the vehicle is assigned no utility to be at that depth. This can either be the
maximumH for a given window (as was used in the GLINT10 trial) or a global maximum
determined based on the received signal statistics. For the data collected during this
experiment, a Hmax of 108 dB would be a reasonable choice as less than 1% of messages
were received at measured transmission losses higher than this. This value was used
in the objective functions plotted in Fig. 4.6. Another more aggressive choice could be
the minimum probability of error decision rule for the binary hypothesis test between
a packet being received successfully or a packet being dropped. Based on the GLINT10
data, this criterion would lead toHmax = 94 dB.

The completed objective function O(d) is then passed to the IvP Helm to solve along
with the other behaviors for the heading and speed domains. An example of how O(d)

interacts with other objective functions that also operate in the depth decision domain
is illustrated in Fig. 4.6b.

4.3.4 Mission profile

This experimentwas designed to test the effectiveness ofmodel-based adaptivity on a sin-
gle AUV without expensive equipment such as an upward-facing Acoustic Doppler Cur-
rent Profiler (ADCP) which could measure sea-surface conditions. The required equip-
ment for this experiment was only a CTD and enough computational power to run the
MOOS-IvP and GRAM combined autonomy and modeling system.

109

Eachmission was runwith a basic straight-line ”racetrack” in the Northings/Eastings
local UTM Cartesian plane. The interesting part of the mission happens in depth, with
the goal that the BHV AcommsDepth would run simultaneously with other behaviors ar-
bitrating over the Northings/Eastings plane (via a chosen desired speed and heading). In
addition, it is expected that other behaviors will be added to influence the chosen depth
of the vehicle, and the multi-objective solver of the IvP Helm resolving these multiple
functions over the vehicle’s utility for a given depth. Each mission followed this plan:

1. Gather a CTD profile by making sinusoidal excursions in depth, starting with close
to the full water column and narrowing down to adapt to the thermocline region
where the most changes in temperature (and by extension sound speed in this en-
vironment) are occuring. This thermocline adaptivity is described in [84].

2. These CTD data are passed to BHV AcommsDepthwhich generates an objective func-
tion for the IvP Helm to solve along with the other behaviors for the heading and
speed domains. The BELLHOP model was used with GRAM for this work due to the
high frequency (25 kHz) of the acoustic carrier. For this experiment, no behaviors
besides BHV AcommsDepth were running that produced an objective function over
depth, so that we could evaluate the performance of BHV AcommsDepth alone.

3. The vehicle moves to the optimal depth determined by BHV AcommsDepth and at
least every τa seconds reruns the GRAM model from step 2) taking into account
changes in heading and speed. Less often (at the environmental interval τe) a reset
to step 1) is made to remeasure the sound speed profile for any changes in the envi-
ronment. τe should bemuch less than the timescale of changes to the environment.
Since the shallow water Mediterranean sound speed profile changes significantly
on the order of one day timescales, τe was chosen to about a two orders of magni-
tude below that, or 1800 seconds.

4.3.5 Results
Modeling and communications statistics

The modeling and statistical results of the GLINT10 experiment are summarized in Fig.
4.7, alongwith Fig. 4.8 which shows themodeled noise level. Fig. 4.7 (a) shows a BELLHOP
ray tracing model for the average sound speed profile of the entire experiment to give a
general overview of the acoustic environment from the perspective of the Buoy as source

110

1500 1520 1540

0

10

20

30

40

50

60

70

80

90

100

110
0 500 1000 1500 2000

0

10

20

30

40

50

60

70

80

90

100

110

 20

25

30

35

40

45

50

55

60

65

70

d
ep

th
 (

m
)

range (m)sound speed (m/s)

tr
an

sm
is

si
on

 lo
ss

 (
d

B
)

(a) Mean sound speed profile (left) used to compute representative
transmission loss model (right). Boxes represent regions plotted in
parts (b), (c), and (d) of this figure.

30 35 40

0

10

20

30

40

50

60

r = [0,400) m

45 50 55

0

10

20

30

40

50

60

r = [400,800) m

50 55 60

0

10

20

30

40

50

60

r = [800,1200) m

50 55 60

0

10

20

30

40

50

60

r = [1200,1600) m

55 60 65

0

10

20

30

40

50

60

r = [1600,2000) m

d
ep

th
 (

m
)

TL (dB)

(b) Mean modeled transmission loss (H) for five range bins (each bin
representing 4.4 minutes (τa) of averaging for a vehicle moving at 1.5
m/s.) The error bars represent the standard deviation σ for theH com-
puted using all the sound speed profiles collected and displayed in Fig.
4.4.

10 20 30

0

10

20

30

40

50

60
10 20 30

0

10

20

30

40

50

60
15 20 25

0

10

20

30

40

50

60
10 20 30

0

10

20

30

40

50

60
10 20 30

0

10

20

30

40

50

60

d
ep

th
 (

m
)

RMS delay spread (ms)

(c)Modeled root-mean-square delay spread from themean sound speed
profile shown in part (a). Due to the 37.5ms of clearing time used by the
incoherent FH-FSKmodulation of themodem, we expect that this delay
spread will have little effect on the successful receipt of datagrams.

d
ep

th
 (

m
)

P(R = good | D = depth)

0 0.5 1

0

10

20

30

40

50

60
0 0.5 1

0

10

20

30

40

50

60
0 0.5 1

0

10

20

30

40

50

60
0 0.5 1

0

10

20

30

40

50

60
0 0.5 1

0

10

20

30

40

50

60

(d) Estimated conditional probability of successful receipt (R=good)
plotted over the conditioning depth. Depths where the AUV was
present less than 1% of the transmissions are excluded.

Figure 4.7: Modeled (using GRAM and BELLHOP) and measured data from the GLINT10 experiment. Note that at longer ranges
(r > 800m), there is a inverse correlation between themodeled transmission loss (b) and the estimated probability of successful
receipt (d), as expected.

111

20 22 24 26 28 30

0

20

40

60

80

100

120

noise from sea surface (dB re 1 μPa)

d
ep

th
 (

m
)

f = 25 kHz

Figure 4.8: Modeled sea surface noise using for Beaufort sea state 2 (observed for most
of the GLINT10 experiment) using [96] and OASES. Note that the noise profile in depth is
nearly constant (about 1 dB of deviation), justifying the use of transmission loss H as a
proxy for SNR in this analysis.

and show the significant downward refraction due to the thermocline from 10 to 30 me-
ters depth. Note that this average erases some of the small scale features present in each
actual profile (taken every τe seconds and plotted in Fig. 4.4) that the vehicle actually
uses for its modeling.

For display purposes, the remaining plots are split into 400 meter range bins where
all data shown within are averaged in range over these bins. Only the upper 60 meters of
the water column are shown as this is where the AUV spent most of its time. Fig. 4.7 (b)
gives the modeled transmission loss (Hn(d)) using the profiles (instantiations) taken by
the vehicle and then averaged in intensity over the instantiations as well as within each
range bin, that is

Hn(d) = −10 log10
(

1

imax

imax∑
i=0

10−H(d,i)/10

)
(4.4)

where H(d, i) is given by equation 4.2 for each instantiation of the sound speed profile
i. In this case ∆r = 400 and r0 = ∆r(n − 1) where n = [1, 5] corresponds to each of
the five displayed range bins. The error bars (standard deviation of the intensity over all
the sound speed profile instantiations) show the sensitivity of various parts of the trans-
mission loss plot to changes in the sound speed profile. The regions of higher standard

112

deviation are caused by causticsmoving location due to small changes in the sound speed
profile. In general, deeper depths have lowerH in this environment.

Fig. 4.7 (c) gives the modeled root-mean-square delay spread τRMS calculated using
the experiment mean sound speed profile (SSP) (Fig. 4.7 (a)) where

τRMS =

√√√√∫∞0 (τ − τ̄)2A(τ)dτ∫∞
0 A(τ)dτ

(4.5)

andA(τ) is the intensity of the arrivals where τ = 0 is the first arrival. In general, deeper
water has a lower delay spread, leading to potentially reduced intersymbol interference.

The experimental data from all the transmissions (N = 3350) sent by the AUV Uni-
corn to the Buoy were used to compare against the modeled data. The data were split
into two groups using a basic division interesting to AUV roboticists: was the message
received correctly (R=good) or not (R=bad)? A message was considered to be received
correctly if it had no errors after decoding (as verified by a cyclic redundancy check in
theWHOIMicro-Modem). Any other problemwith themessagemeant that it was consid-
ered not to be received correctly. A probability distribution of the vehicle’s depth (P (D))
throughout the experiment was estimated from the data using an Epanechnikov kernel
smoothing estimate. Also a conditional probability of depth given that themessageswere
received (P (D|R = good)) was computed in a similar manner. Of greater interest is the
posterior probability (P (R = good|D = d)) which was computed for all depths d using
the prior P (D) and Bayes’ rule:

P (R = good|D = d) =
P (D = d|R = good)P (R = good)

P (D = d)
(4.6)

This posterior was plotted in Fig. 4.7 (d). For ranges greater than 800 meters (range
bins 3-5), the data show a strong depth dependency, with modem performance doubling
from twentymeters to fiftymeters in the farthest range bin. At short ranges (r < 800m),
large percentages (P (R = good|D = depth) > 0.75) of the messages are received which
is likely due to the strong direct arrival (first bottom bounce occurs at r ' 1100 meters)
and generally high signal strength. Aswould be expected given thatmodemperformance
depends on signal strength, this is the inverse of the modeled transmission loss in Fig.
4.7(b), which shows a depth dependency in the same bins (decreasingH with increasing
depth). These data also do not show a strong correlation with the modeled delay spread
τRMS . This may be due to the fact that the real delay spread is significantly influenced by
the sea surface, which was naively modeled using a flat pressure release surface in this

113

0.4 m

0.1 m
14°

Air Cavity (Electronics Housing)

Transducer

z

Figure 4.9: Side view of the payload electronics housing (modeled as an acoustic pressure
release surface) and the modem transducer.

work due to the lack of onboard knowledge about the sea state. Furthermore, the symbol
clearing time of the FH-FSK modulation employed is 37.5 ms, significantly longer than
the delay spreads modeled here (the root-mean-square values are in the 10-20ms range).

Compensation for baffling

Thephysical layout of theAUVUnicorn involves an air-filled electronics housingmounted
directly above the acoustic modem transducer as shown in Fig. 4.9. A priori it seems rea-
sonable that the subsequent (undesired) baffling caused by this housing may have an ef-
fect on the received signal strength. Thus, this effectwasmodeled by treating thehousing
as a pressure-release surface. The model in Fig. 4.7a was rerun, removing the rays that
will not reach the transducer due to scattering by the electronics housing. The difference
from the result without baffling (Fig. 4.7a) and this new result including the electronics
housing is shown as Fig. 4.10.

The result is a significant increase in transmission loss when the AUV is directly un-
der the Buoy and for a “shadow zone” reaching for few hundred meters from the Buoy
at one hundred meters depth. Outside the region, the transmission loss is only mildly
affected by this effect, and thus it is unlikely to play a major role in the performance of
the communications system in this largely horizontal configuration. For deep sea sys-
tems that operate more vertically, however, this configuration could have a significant
negative effect, and thus should be either considered in vehicle design where possible or
incorporated in the vehicle’s adaptation algorithms.

114

range (m)

d
ep

th
 (

m
)

200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100 40

30

20

10

0

bafflin
g loss (d

B
)

(a) Decrease in received signal strength between Fig. 4.7a and the same model including the electronics
housing baffling. Dark regions indicate a larger baffling effect.

0 5 10 15

0

20

40

60

80

100

120
0 1 2 3

0

20

40

60

80

100

120
0 1 2

0

20

40

60

80

100

120
0 1 2 3

0

20

40

60

80

100

120
0 1 2

0

20

40

60

80

100

120

loss from baffling (dB)

d
ep

th
 (

m
)

r = [0,400) m r = [400,800) m r = [800,1200) m r = [1200,1600) m r = [1600,2000) m

(b) The model from (a) with the same averaging bins used in Fig. 4.7.

Figure 4.10: Modeled (BELLHOP) results including the payload electronics housing baf-
fling effect.

AUV Adaptivity

Fig. 4.11 shows the position of the AUV during itsmissions running BHV AcommsDepth on
2010-08-08 overlaidwith a single representative transmission loss ray trace from that day.
The vehicle tracks the modeled downbeaming from 400-1000 meters well and also picks
up the convergence zone off the first bottom bounce from 1400-2000 meters. As can be
seen from the sensitivity analysis in Fig. 4.7(b), the region from 800-1200 has the highest
sensitivity to changes in the sound speed profile. The AUV is responding to modeled
caustics in this region that may or may not be real and are unlikely to be where they are
predicted to be due to differences in the real environment from the model. This suggests
an area of improvement for BHV AcommsDepth: filter its objective function with a low
pass filter with a cutoff inversely proportional to the measured sensitivity. By doing so,
the BHV AcommsDepth would make less certain choices in light of uncertainty, leaving
depth decisions up to behaviors that have more knowledge.

115

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

80

100

Range (m)

D
ep

th
 (

m
)

 20

30

40

50

60

70

Figure 4.11: Depth position of the AUVUnicorn (white circles) with respect to range from
the Buoy overlaid on a representative ray trace from 2010-08-08 08:28:19 UTC.

Applicability to other modulation schemes

The technique developed here (adaptively seeking the SNRmaximum) is applicable to the
FH-FSK modulation scheme since this modulation is resistant to Doppler and multipath
effects by design. However, developers of the acoustic physical link are rapidly moving
towards coherentmodulation schemes, such as phase-shift-keying (PSK) due to the inher-
ent inefficiencies of incoherent modulation. While any link is at least somewhat dictated
by the SNR, this may not be the limiting factor in the case of PSK modems. Rather, the
multipath structure (delay spread, stability of the arrivals, and the ratio of peak impulse
power to themean power) are generallymore significant for PSK systems due to the short
(time-domain) extent of the symbols. Thus, if analysis shows that one of these quantities
provides a better proxy for the overall packet receipt probability, GRAM (with the appro-
priate acoustic model) can model that quantity and BHV AcommsDepth will direct the
vehicle to maneuver with respect to the utility function generated in that case. There-
fore, the concept and system developed here is not specific to acoustic modems whose
performance is SNR limited.

One caveat, however, is that the receiver in a phase-coherent system must compen-
sate for the intersymbol interference caused by multipath at the physical layer. Thus,
since there are numerous approaches to designing equalizers for this task (e.g. chan-
nel estimate based decision feedback equalizers, linear MMSE equalizers, passive time-
reversal equalizers [97]), the resulting limitation of the systemwill likely be dependent on
different aspects of the multipath structure. Of course, a perfect equalizer would be able
to completely remove the multipath effect, and then the modem would be SNR-limited.
Therefore, when applying this disruptive autonomy concept to vehicles equipped with
phase-coherent modems, it is likely to be much more sensitive to the details of the spe-

116

cific modem implementation that is used.

4.4 Acoustic Connectivity in Deep Ocean Environments

In contrast to littoral environments, the bulk of the deep ocean is well isolated from at-
mospheric forcing, reducing the temporal variability on hourly and daily scale to a small
fraction of volume close to the surface. Thus, the features of sound speed profile most
significant to the acoustic environment are extremely stable, most notably the isother-
mal gradient dominating the sound speed profile below the SOFAR channel, controlling
the dominant convergence zone propagation characteristic of deep ocean acoustics.

Another feature of the deep ocean which makes depth adaptation beneficial is the
strong spatial diversity of the ambient noise. Thus, in shallow water, the ambient noise
field tends to be dominated by the local, surface-generated noise. The noise from dis-
tant shipping and atmospheric disturbances will undergo significant attenuation due to
the strong bottom interaction inherent to shallow water propagation. In contrast, the
upward-refracting deep sea sound speed gradient allows noise from distant, natural and
man-made sources of ambient noise to be carried over long distances with limited or no
bottom interaction [85]. In very deep ocean environments in particular, this can result
in an ambient noise field which is highly depth dependent. Thus, at depths above the
critical depth, the ambient noise field has significant contributions from both local sur-
face sources, and distant shipping and storms. Below the critical depth the acoustic field
due to distant sources is evanescent, and the noise field is reduced to that produced by
sourceswithin a horizontal range of approximately half a convergence zone, the so-called
Reliable Acoustic Path (RAP) cone. Consequently a reduction in noise of several dB can be
expected near the bottom in such environments, whichmay be exploited by the platform
autonomy.

Another feature associated with the interplay of signal and noise which may be ex-
ploited is the spatial diversity of the array gain. Thus, the performance of the acoustic
array processing not only depends on the signal-to-noise ratio (SNR), but also on the an-
gular distribution of the signal and noise components. For a deep receiver platform com-
municating with a shallow collaborator, the most reliable acoustic path will follow the
convergence zone path, and the dominant elevation angle at the deep node will depend
on the range: positive for short ranges, and negative for ranges beyond half a conver-
gence zone (approx. 30 km). Similarly, the noise directionality will depend on the hori-

117

Collaborator @ 45 km

Ambient Noise

Range Avg. SPL

Weightt

Weight

Mission Manager

Platform Mode
Mission Constraints
Modem Configuration

SSP

c (m/s)

d
ep

th
 (

m
)

0

2000

4000

1470 1510 1550

d
ep

th
 (

m
)

0

2000

4000

15 20 25

d
ep

th
 (

m
)

vertical angle (θ)
-40 -20 0 20 40

IvP-Helm

Depth Objective
Function

SE ~ SL-TL-NL+AG

0 100
Utility (%)

d
ep

th
 (

m
)

2000

4000

Figure 4.12: Functionality of model-based depth adaptation on a deep submersible for
minimizing signal-noise ratio for maintaining optimal acoustic connectivity with near-
surface acoustic contact. The on-board mission manager process will, based on the cur-
rent environmental and situational information, request from GRAM a forecast of the
estimated transmission loss. This forecast is then combined with estimates of the other
terms in the sonar equation for planning the future depth trajectory, thus improving
connectivity.

zontal source distribution, potentially leading to a strong depth dependence of the array
gain which may be exploited for optimal system performance.

These features of the signal to noise trade-offs are conveniently captured in the clas-
sical sonar equation, which may be modeled by the GRAM infrastructure in combination
with environmental information provided to the undersea platforms via the command
and control infrastructure.

4.4.1 Depth Adaptation for Sonar Equation Optimization
In its simplest form the Passive Sonar Equation relevant to passive acoustic sensing and to
underwater communication takes the form [85]

SE = SL− H− NL+ AG, (4.7)

where SE is the resulting signal excess, SL is the source level, H the transmission loss, NL the
noise level and AG is the array gain, all expressed in dB.

118

Figure 4.12 illustrates howanoptimization of the systemperformance canbe straight-
forwardly achieved in the MOOS-IvP autonomy architecture expanded by the GRAM en-
vironmental acoustic modeling framework.

TheMission Manager processes are responsible for maintaining the situational aware-
ness of the autonomy system. To generate the current environmental picture including
sound speed profile, noise profiles, and noise directionality, dedicated MOOS processes
are fusing environmental information from all available sources, including i) historical
data in on board databases; ii) environmental updates received from the Field Control via
the acoustic communication network; iii) in-situ measurements by environmental sen-
sors; and iv) on-board modeling.

The current environmental estimates resulting from this data fusion are assumed to
be slowly varying and are therefore stored in the MOOSDB for use by the modeling in-
frastructure and the autonomy behaviors. For example, the overall depth-dependence
of the SSP, and the noise level NG and array gain AG, will rarely be available from in-
situ local measurements, and will therefore be fixed at mission start. On the other hand,
occasional updates of the near-surface SSP, the location of local shipping traffic, and lo-
cal noise measurements may be used to update the environmental picture, which is then
published in the appropriate MOOS variables, allowing the platform to adapt to changes
in the ambient noise field etc. For example the OASES model can be used through GRAM
to estimate the current noise directionality, which may subsequently be used to update
the estimate of the array gain for the current geometrical configuration.

In addition, theMissionManager ismaintaining the situational awareness, including nav-
igation information for the platform itself, collaborating platforms, and acoustic con-
tacts, required for the acoustic modeling of the transmission loss, and keeps track of the
current geometry of receiving acoustic arrays and sources on-board the platform, which
is required for the array gain term in the sonar equation.

Based on the currently available environmental and situational picture the autonomy sys-
temcangenerate objective functionswhich optimize the sonar equation (Eq. 4.7), or com-
ponents thereof. For that purpose a dedicated MOOS-IvP behavior, BHV MaxSNRDepth,
has beendeveloped. Thus, as illustrated in Fig. 4.12, itwill first retrieve thedepth-dependence
of the ambient noiseNL from the MOOSDB. Then, it will submit a request to GRAM for a
current estimate of all ray arrivals predicted for the acoustic contact of interest. Using a
local plane-wave representation the behavior it will continuously use this ray expansion
to generate an estimate of the current array response, representing the terms AG − H

119

in the sonar equation. This performance metric is shown in the lower, center plot as
contours versus elevation angle and depth in the water column. The behavior then com-
bines the two depth-functions into one depth objective function, representing the utility
versus depth for the sensing objective. As described earlier, this objective function is
then merged with other depth behavior objective functions by the IvP multi-objective
optimization algorithm.

The reason for choosing variable weighting of the signal and noise components in the
sonar equation is the fact that their reliability can vary significantly. Thus, the average
historical ambient noise profile may have a significant uncertainty, in particular in re-
gions with heavy seasonal shipping or atmospheric conditions. In such cases the weight
of theNL terms should be reduced. Similarly, if the propagation environment is highly
variable, more weight may be applied to the noise profile in choosing the optimal depth.

Although the principle of the depth-adaptation as described above is rather simple,
there are a couple of subtle issues associated with the use of the concept in deep water.

The first is the nature of the caustics characteristic to the deep convergence zone
propagation. As described earlier, caustics also play an important role for depth-adaptation
in shallow water. However, the convergence zone caustics associated with a deep source
or receiver can be modeled with high confidence level due to the extraordinarily stable
nature of the deep sea SSP gradient. Further, in contrast to the shallow water case, the
convergence zone caustics of relevance to deep platforms always have the shadow zone
above the caustic. Therefore, robustness requires that a bias towards depth be built into
the depth objective function. Parameter studies have shown that for realistic variations
of the near surface SSP and realistic depth uncertainty of the acoustic contact, the depth
of the caustic can be predicted with an error of order 50 m. Hence, a low-pass filtering of
the raw depth-objective function with a spatial cutoff frequency of 1/50 m−1 , starting at
the surface, will yield an optimal depth of order 100 m below the predicted caustic, well
into the “safe zone”.

Another issue of particular importance to the deepwater application is the time scales
associated with depth changes. The maximum pitch of an AUV is of order 20◦, which for
a typical platform speed of 1.5 m/s yields a maximum rate of depth change of 0.75 m/s.
Hence, it takes more than 20 minutes required to change the depth by 1 km. In con-
trast, an AUV operating in 100 m deep shallow water can reach any new depth in less
than a couple of minutes. Consequently, the forecasting horizon required for the adap-
tive depth change will have to be significantly larger. On the other hand, the decision

120

to change depth cannot be based on a fixed forecasting horizon. For example, to reach a
certain depth in 30 minutes may require that the platform cross through a shadow zone,
which is obviously detrimental to the acoustic connectivity. Thus, decisions about depth
changes have to be made on the basis of the entire time from the present to the chosen
maximum time horizon. In BHV MaxSNRDepth this is done by forecasting the depth ob-
jective function over a set of ranges up to and including the forecasting horizon. Then,
the depth decision is made based on the following, simple, strategy:

• If the platform is already at or near the optimal depth locally, it will remain there
by choosing a short time forecast as a basis for the adaptation.

• If the local depth is not any longer near the optimal, e.g. when approaching a
range where a convergence zone caustic is forming, the behavior will select as a
target depth the optimal depth at a range within the forecast horizon, which can
be reached with the minimum platform pitch.

The first criteria will ensure that once the platform has reached a stable optimum, it will
track it until a discretely different optimum starts developing somewhere in the section
of the water column allowed for the adaptation. The second criteria will ensure that the
platform is not forced to change depth so fast that it crosses into a shadow zone to reach a
future optimum. In other words, the platformwill try to reach an optimumdepth “ridge”
tangentially. Of course this is all assuming that the contact motion continues at the cur-
rent range rate and heading. Also, the depth control is not made in pitch directly, but in
depth, so whenever significant depth changes are requested, the platform will increase
the pitch to maximum. However, since this process is repeated at the rate of the IvP
Helm updates, typically of order of a second, the depth adaptation will occur smoothly,
as illustrated in the simulation example following.

4.4.2 Deep Sea Simulation Example
For demonstrating the deep ocean performance of the acoustic connectivity optimization
behavior, wewill use thehigh-fidelity simulation environment developed and established
atMIT. This virtual environment provides a virtual ocean environmentwith high-fidelity
simulation of the environmental acoustics, using the GRAM embedded modeling infras-
tructure. In addition to the environmental acoustic modeling, the simulator also incor-
porates hydrodynamic models of both the submersible and sonar arrays, as well as the
ability to simulate the supporting acoustic communication networking. The fidelity of

121

D
ep

th
 (

m
)

Range (km)

505

5000

4000

3000

2000

1000

0

6000
0 10 15 20 30 3525 40

T
ra

n
sm

is
si

on
 L

os
s

(d
b)

45

90

80

70

60

50

40

Figure 4.13: Contours of transmission loss in dB for a moving acoustic source at 200 m
depth in deep water environment, plotted vs depth and the range from from the source.
White markers show the adaptive path of a deep submersible optimizing acoustic con-
nectivity with surface source, constrained by a maximum pitch of 20 degrees.

the simulation environment allows the testing of the exact same autonomy software and
configuration as applied in actual field deployments.

To illustrate the performance of the MOOS-IvP behavior BHV MaxSNRDepth in adapt-
ing to the local acoustic environment, we consider as an example the autonomous acous-
tic connectivity of a deep submersible in a Pacific environmentwith awater depth of 6000
m, with a critical depth of 4000m. The submersible is tasked tomaintain acoustic connec-
tivity with an acoustic contact at 200 m depth, opening range at a rate of 5 m/s (10 kn).
The ambient noise is assumed to be constant to the critical depth, and then decay linearly
by 3 dB/km towards the bottom. The submersible is initially deployed at 5000 m depth,
performing a hexagonal loiter pattern of radius 500 m. No particular array geometry is
considered, and the depth adaptaion simply optimizes the signal-to-noise ratio.

When the contact range exceeds 15 km, the BHV MaxSNRDepth behavior is activated
and determines that a caustic, and associated optimal depth exists at a depth of 3000 m.
The behavior in this case is configured to forecast 2 hours into the future, and determines
that it can reach the caustic at a range of 30 km and a depth of 4000 m and initiates the
depth change since it is not currently at an optimum depth. Because of range estimation
uncertainty and the fact that the behavior uses a conservative contact range estimate, the
submersible reaches the caustic at a range of 23 km, after which the adaptation strategy
will make it track the optimal depth below the caustic, as evidenced by the actual track

122

2000

3500

2500

3000

4000

4500

5000
100100 20 30 40 60 7050 80 90

D
e

p
th

 (
m

)

Utility (%)

(a) Raw objective function showing sharp caus-
tic at 2500 m depth.

2000

3500

2500

3000

4000

4500

100100 20 30 40 60 7050 80 90

D
e

p
th

 (
m

)

Utility (%)

5000

(b) Low-pass filtered corresponding to depth-
uncertainty of caustic of 50 m.

Figure 4.14: Forecasted depth objective function at 43 km range.

shown in the figure bywhite circles. Note that the apparent depth rate of the submersible
does not appear constant during the ascent. This is due to the loiter of the submersible,
leading to variations in the range rate. When the range exceeds 40 km, the maximum
pitch of the submersible does not allow it to continue to track the caustic, and it instead
continues to climb at its maximum pitch.

To illustrate the performance of the low-pass filtering of the depth objective func-
tion, Fig. 4.14 shows the raw depth objective function at 43 km range for the example in
Fig. 4.13. The left plot shows the raw depth objective function for minimizing the signal-
to-noise ratio, while the right plot shows the low-passed filtered objective function with
a maximum 100 m below the depth of the convergence zone caustic.

4.5 Conclusion

In this work, the new Generic Robotic Acoustic Modeling (GRAM) tool was introduced
for successfully utilizing existing acoustic models on embedded processors onboard au-
tonomous underwater vehicles. GRAM was applied to two representative problems: im-
proving communication in an anisotropic shallow water environment, and maintaining
contact with an acoustic target in the deep sea.

In addition to the examples given here, GRAMhas applicability for software-only sim-
ulation of actual sonars aswell as hardware-in-the-loop testing ofmodem systems (where
signals from an existing hardware modem are delayed and convolved with the channel

123

measured by GRAM). These tools are available as part of the open source LAMSS project
(https://launchpad.net/lamss) and access is available upon request.

Portions of this chapter are c©2012 IEEE. Reprinted, with permission, from T. Schneider and H. Schmidt,

“Model-based Adaptive Behavior Framework for Optimal Acoustic Communication and Sensing by Marine

Robots,” IEEE Journal of Oceanic Engineering, in press.

124

https://launchpad.net/lamss

5 Closing remarks

La machine, qui semblait d’abord l’en
écarter, le soumet avec plus de
rigueur encore aux grands
problèmes naturels.1

Antoine de Saint-Exupéry, Terre des
Hommes (1939)

By necessity, contributions from a thesis are typically narrowly focused and some-
times appear to be making a small advance in a subfield of a minor branch of engineer-
ing. Thus, in concluding, it is worth stepping back and examining the broader context
and potential impact of the work presented here. In short, why does this work matter?
Why should anyone care?

Earth’s oceans cover a vast portion of the world’s surface. Sea level rise and the melt-
ing of the Arctic ice and polar glaciers due largely to anthropogenic causes threatens
to change the world we reside in: politically, socially and militarily. Oceans also con-
tain present and potential sources of food and energy, and lifeforms that seem alien to
us land-dwelling humans. Understanding and sensibly harvesting the resources of the
ocean is thus of significant value to humanity. Both of these endeavors are and will con-
tinue to be aided by engineered systems. Robotic systems, as has been shown as well in
space exploration, have the potential to collect far more information per dollar invested
over longer durations than human explorers. These data are useless unless they reach
people, however, and this, in short, is the reason why this work matters. The advances
outlined here, however small, improve the ability of undersea robots to share informa-
tion amongst themselves for more efficient missions, and to their human operators and
scientists for slowly improving the collective knowledge of our species. We can choose

1The machine does not isolate us from the great problems of nature but plunges us more deeply into
them.

125

to our detriment not to act on this knowledge, but we have no hope of making rational
decisions without it.

The open source Goby-Acomms project (Chapter 2) is gaining traction as a de facto
standard amongst the MOOS segment of the underwater robotics community, and in-
creasingly outside it aswell. Effecting internationally recognized standardizationofDCCL,
perhaps in collaboration with open JANUS physical layer, will be a valuable goal in the
next few years. Practical routing and session protocols should be considered and will
hopefully form part of the continued work. It is, after all, far easier to communicate if
everyone speaks the same language. The design of the Goby project is intended to foster
such collaboration: easily accessible source code, documentation, wikis, email lists, and
bug report tracking.

The state observation technique for compression of vehicle positions (Chapter 3),
whichmay be thought of as an extension of DCCL to includemodels present in the vehicle
autonomy system, can and should be extended to telemeter innovations of scientific sen-
sor data frommodeled or prior data sets. Given the realities of the physical link, optimal
compression (even at the cost of significant human effort and time) will pay off. Fielding
vehicles is costly, time-consuming, and even at time dangerous, and it is essential to the
mission to make the most of the available digital wireless throughput.

Taking the value of communications one step further, Chapter 4 shows that it appears
to be possible, and potentially useful (depending on the specifics of the task to be per-
formed) to incorporate improving communications into the autonomous navigation task
of the vehicle(s). Validating these results in the deep sea and other varied environments
will form the basis of the next stage of this work.

126

A Unified Command and Control for
Heterogeneous Marine Sensing Networks

A.1 Introduction

A.1.1 Overview of the Unified C2 architecture

Autonomous marine vehicles are becoming inexpensive enough (e.g. OceanServer’s sub-
$100,000 Iver2 [98]) and mature enough as single platform systems that use of these ve-
hicles in groups is increasingly feasible. Groups of vehicles offer redundancy, specializa-
tion, and improved performance in certain underwater research tasks. However, even
autonomous systems need to be commanded by a human, especially in the process of de-
veloping such systems. The concept of unified command and control (Unified C2) arose
from the authors’ need to deploy and command multiple autonomous underwater vehi-
cles (AUVs) for target detection and environmental sampling. Unified C2, described
in this paper, was developed from experiences during numerous field experiments in-
volving AUVs and autonomous surface craft (ASCs) operated in shallow water (depths
on the order of 100 meters) from 2008 to 2009. Unified C2 is composed of three major
components:

1. Hierarchical configuration that is set before the vehicles are in the water, as de-
scribed in section A.2.

2. Anetwork infrastructure that allows commands for an arbitrary number of vehicles
to be sent by a single operator and data to be received while the vehicles are in the
water, outlined in section A.3.

3. Data visualization by meshing the data with Google Earth satellite imagery and
bathymetry. The process of interfacing the Unified C2 network to Google Earth

127

is discussed in section A.4.

A.1.2 MOOS-IvP autonomy architecture

All the vehicles (and the operator topside computer) in the Unified C2 system run the
MOOS-IvP autonomy architecture [99]. MOOS-IvP is comprised of two components, writ-
ten entirely in the C++ programming language:

1. MOOS, the Mission Oriented Operating Suite, which is a publish-subscribe infras-
tructure for asynchronous interprocess communication between a number of dis-
crete processes or MOOS Modules (collectively, a MOOS Community). Each MOOS
Module communicates only by publishing data to the central data bus (the MOOSDB)
and by receiving data from the MOOSDB for which it had previously subscribed. No
process communicates directly with another process. This allows for rapid proto-
typing by partitioning the vehicle software system into modules that can essen-
tially be developed and debugged individually.1

2. pHelmIvP, the Interval Programming Helm, which is a behavior-based decision en-
gine that commands the low level control by producing a desired heading, speed,
and depth for the vehicle. pHelmIvP allows for an arbitrary number of behaviors to
compete for the vehicle’s action, producing a “best option” by evaluating the entire
objective function of each behavior over the entire (feasible) heading-speed-depth
space, rather than just arbitrating over a single desired heading, speed, and depth
from each behavior.2

Figure A.1 models the subsystems for the topside operator MOOS community and a
sonar AUVMOOS community (“backseat” computer). Each subsystem is composed of one
or more MOOS Modules (designated by a name starting with a lower case ‘p’ or ‘i’) that
communicate through the central data bus (the MOOSDB). The desired actions produced by

1MOOS is like an office where all the employees (MOOS Modules) never talk to each other but post
papers of their work (publish) and copy others’ papers (subscribe) as needed on a central bulletin board
(the MOOSDB).

2pHelmIvP works something like this: two people (behaviors) are trying to pick a movie to watch (by
analogy, choose a heading, speed, and depth). If each tells only their top pick and, as is likely, these do not
match, the best option is to pick one person’s top choice at random, which leaves the other unhappy (50%
utility). However, if both give a ranked list of their choices (objective functions), then a match might be
found slightly down the list that reasonably satisfies both people (say 80%utility). pHelmIvPworks like this
second option; by looking at the entire utility function of all behaviors over the entire space, compromises
can be made and more work gets done.

128

Sonar AUV MOOS (Backseat) Computer

Hydrophone Array

Main Vehicle Computer

(Manufacturer Specific)

WHOI Micro-Modem

«subsystem»

Vehicle Autonomy Control

{components = pHelmIvP}

«subsystem»

Tracking

{components = p1BTracker,

pTrackQuality}

«subsystem»

Front Seat Interface

{components = iHuxley,

iOceanServerComms, or iOEX}

«subsystem»

Communications

{components = pAcommsHandler,

pMOOSBridge}

Environmental Sensor

(e.g. CTD)

«subsystem»

Sonar Interface and Processing

{components = iDAS,

pBearingTrack}

«subsystem»

Environmental Sampling

{components = iCTD, pEnvtGrad}

«executable»

MOOSDB

IEEE 802.11 Wifi

«subsystem»

Navigation

«subsystem»

Low level control

Topside MOOS Computer

WHOI Micro-Modem

«subsystem»

Communications

{components = pAcommsHandler,

pMOOSBridge}

Ship Sensors (e.g. GPS,

Radar)

«executable»

MOOSDB

IEEE 802.11 Wifi

«subsystem»

Command

{components = iCommander}

«subsystem»

Visualization

{components = pMarineViewer,

iMOOS2SQL} GEOV Server (Google

Earth Display)

Figure A.1: Model of the subsystems of the operator topside (ship-based command com-
puter) and a sonar Autonomous Underwater Vehicle (AUV) (e.g. the Bluefin 21 Unicorn).
Each subsystem is comprised of one or more independent MOOS processes that commu-
nicate only through a central data bus (the MOOSDB). While processes do not communi-
cate directly, key implicit dependencies between subsystems are indicated with dotted
arrows.

129

pHelmIvP are passed to the vehicle’s low level control computer (“frontseat” computer,
details of which vary depending on the vehicle and manufacturer) which is responsible
for actuating the commands. Precisely how the “frontseat” carries out the commands de-
pends significantly on the details of the individual vehicle design. For example, a heading
changemight be implemented on one vehicle by tilting a single thruster but implemented
on another vehicle by varying the thrust differential between two thrusters distributed
some distance from the vehicle’s center of gravity. By having this split “frontseat”-“back-
seat” structure, Unified C2 can command potentially very different vehicles via a single
abstracted autonomy architecture (MOOS-IvP).

A.1.3 Field Exercises

All the work involved in developing Unified C2 was motivated by and tested at sev-
eral field trials spanning from 2008 to 2009. These exercises took place in shallow water
(depths on the order of 100 meters) and involved four different types of AUVs and ASCs,
all running the MOOS-IvP autonomy in a frontseat-backseat configuration as discussed
in section A.1.2. These trials are summarized in table A.1 and experiences from themwill
be referenced throughout the remainder of this paper.

A.1.4 Prior Art

Traditionally, underwater vehicles are controlledusingplatformspecific interfaceswhere
the vehicles communicate with the surfaced assets using dedicated wireless ethernet
communication channels. Each mission is configured before the dive is initiated. After
the vehicle is submerged, status and contact reports are transmitted via acousticmodem,
and simple re-deploy commands are sent from the topside C2 console, provided suchma-
neuvers are allowed in the mission script and coded into the acoustic datagrams. The
fixed message set highly limits the ability of the human operator to command the vehi-
cles while submerged. Also, almost uniformly, the command and control infrastructures
have been proprietary and manufacturer-specific. Thus, there is little openly published
literature on these systems.

For example, most REMUS vehicles (manufactured by Hydroid) are controlled within
this paradigm using the REMUS Vehicle Interface Program (VIP) software infrastructure.
Similarly, Bluefin Robotics’ AUVs, apart from the MIT LAMSS fleet, are controlled us-
ing the Bluefin proprietary topside. Although some components of these systems are

130

Table A.1: Summary of field trials during which Unified C2 was developed and tested.
The columnmarkedMessages Used refers to Dynamic Compact Control Languagemessage
names unless specified. The experiment datum is a location in the southwest corner of
the operation region from which all vehicle positions are referenced using the Universal
Transverse Mercator projection with the WGS 84 ellipsoid [49].

Name Dates Summary Vehicles Messages Used Experiment
Datum

CCLNET08 1.19.08 -
2.1.08

First Engineer-
ing test for
GLINT

AUV: 1 NURC OEX.
ASC: 2 Robotic Ma-
rine Kayaks

PlusNet CCL (DCCL not
developed)

44.08892◦N,
9.85054◦E

SQUINT08 5.19.08 -
5.23.08

Second Engi-
neering test for
GLINT

AUV: 1 NURC OEX.
ASC: 2 Robotic Ma-
rine Kayaks

PlusNet CCL (DCCL not
developed)

44.08892◦N,
9.85054◦E

GLINT08 7.22.08 -
8.14.08

Interoperability
of marine vehi-
cles for passive
acoustic target
detection

AUV: 1 NURC
OEX, 1 Bluefin
21 (Unicorn), 1
OceanServer Iver2.
ASC: 3 Robotic
Marine Kayaks

PlusNet CCL (DCCL not
developed),
compressed CTD
messages (precursor
to DCCL)

42.5◦N,
10.08333◦E

SWAMSI09 3.23.09 -
4.5.09

Mine detection
using bistatic
acoustics.

AUV: 2 Bluefin 21
(Unicorn, Macrura)

LAMSS DEPLOY,
LAMSS STATUS,
ACTIVE CONTACT,
ACTIVE TRACK, CTD

30.045◦N,
85.726◦W

GLINT09 6.29.09-
7.21.09

Interoperability
of marine vehi-
cles for passive
acoustic target
detection

AUV: 1 NURC OEX, 1
OceanServer Iver2.
ASC: 2 Robotic Ma-
rine Kayaks

LAMSS DEPLOY,
SURFACE DEPLOY,
LAMSS STATUS,
LAMSS CONTACT,
LAMSS TRACK, CTD

42.47◦N,
10.9◦E

DURIP09 8.19.09 -
9.02.09

Engineering
test for col-
laborative
autonomy and
towed array
improvements

AUV: 2 Bluefin 21
(Unicorn, Macrura).
ASC: 2 Robotic Ma-
rine Kayaks.

LAMSS DEPLOY,
SURFACE DEPLOY,
LAMSS STATUS,
LAMSS CONTACT,
LAMSS TRACK, CTD,
BTR,
ACOUSTIC MOOSPOKE

42.35◦N,
70.95◦W

131

#Communications
#Logging

Global

#Vehicle Autonomy Control

AUV

#Vehicle Autonomy Control

ASC

#Front Seat Interface

Bluefin AUV

#Front Seat Interface

OceanServer AUV

#Front Seat Interface

NURC AUV

#Front Seat Interface

Robotic Marine Kayak

+ship name : string

Topside

+name : string = Bobby

Kayak

+name : string = Dee

Kayak

#Tracking
#Sonar Interface

Sonar AUV

#Environmental Sampling

Environmental AUV

+name : string = OEX

Ocean Explorer

+name : string = Hammerhead

Iver2

+name : string = Unicorn

Bluefin 21

+name : string = Macrura

Bluefin 21

+name2id() : unsigned int
+id2name() : string
+id2type() : string

Cruise +datum lat : double = 42.47
+datum lon : double = 10.9
+safety behaviors

GLINT09

+datum lat : double = 30.045
+datum lon : double = -85.753
+safety behaviors

SWAMSI09

Figure A.2: Hierarchy of classes representing the software configuration of a collection
of Autonomous Surface Craft (ASCs) and Autonomous Underwater Vehicles (AUVs) used
in the field experiments summarized in table A.1. The open arrow indicates a general-
ization of another class. The bottom row of the hierachy represents configuration for an
actual vehicle; the rest of the hierarchy is abstract. By putting configuration as high in
this tree as possible, configuration redundancy is minimized and changes can be propa-
gated easily to all the leaves. Each of these classes represents one or more text files that
are assembled by a text preprocessor before being passed to the MOOS process launch
manager (pAntler).

common, such as the CCL message coding, they are in general completely incompatible,
requiring a separate topside C2 infrastructure for each vehicle type and often for each
vehicle.

In contrast, the payload-centric autonomy and communication infrastructure inte-
grated using MOOS-IvP allows Unified C2 to be applied to controlling a completely het-
erogeneous network of vehicles and fixed nodes, all from a single topside command and
control console on a surface ship or on shore. Furthermore, the Dynamic Compact Con-
trol Language (DCCL) messaging (detailed in section A.3.2) allows for a much richer and
more quickly reconfigurable set of commands to be sent to the vehicleswhile in operation
(i.e. underwater and out of reach of wireless ethernet).

A.2 Hierarchical configuration
MOOS-IvP, like many software systems, requires configuring all the processes with some
initial state. Configuration values range from hardware settings (e.g. serial port names)
to autonomy settings (e.g. behaviors) that govern the vehicles’ initial mission and all pos-

132

sible states that can be commanded during runtime. In a research environment, many
processes expose a gooddeal of initial state to the prelaunch configuration since optimum
defaults are unknown a priori and are the subject of research themselves. This means
there are a large number of prelaunch configuration values, many of which need to be
consistent across vehicles. Furthermore, it is often desirable that changes to the config-
uration be able to be easily propagated throughout the set of vehicles without changing
the value in more than one place. With a single vehicle, a single file defining the con-
figuration is manageable, but as the number of vehicles grows, the authors have found
that making sure that changes propagate is a logistical difficulty. The Communications
subsystem is an example of one that requires a significant amount of consistent config-
uration throughout the network. If encoding/decoding templates (DCCL XML files: see
section A.3.2) are inconsistent between vehicles, the messages may not be decoded prop-
erly.

To address this issue, a hierarchical configuration system was implemented where
each vehicle’s configuration is inherited from a number of parents up the “tree” of the
hierarchy. Figure A.2 diagrams this hierarchy for a number of the vehicles used in the
field exercises tabulated in table A.1. The configuration for each vehicle can be thought
of as a class that inherits configuration much in the same way as public class inher-
itance (which expresses an “is-a” relationship) works in object-oriented programming
languages (such as C++). For example, in Figure A.2, the Ocean Explorer (OEX) is a NURC
AUV which is a Sonar AUV, etc. Any configuration for a Sonar AUV is inherited by all
NURC AUVs which is then in turn inherited by the OEX.

Examples of the subsystems that are typically configured at each level are given in
Figure A.2. Cruises are handled as a class that the Global configuration (i.e., the root of
the tree) depends on. Information contained in each cruise is specific to the operations of
that experiment such as a local datum for geodesic conversions, local obstacles to avoid,
and amapping of the vehicle names to a numeric id number for acoustic communications.

Since MOOS is limited to accepting plain text configuration files with key/value pairs,
this hierarchical configuration structure is implemented through a series of small text
files (that represent each “class” in Figure A.2) that are included to the main configu-
ration file via a text preprocessor (splug), which is very similar to the C Preprocessor
(cpp). The configuration is kept consistent throughout the vehicles by using version con-
trol software (in our case, Subversion) in the same manner that the source code is kept
consistent.

133

This type of configuration was first developed and tested on ASCs at GLINT08 and
then migrated to AUVs by SWAMSI09. The authors have found that ASCs make excellent
testbeds for changes to the Unified C2 architecture as they can be reprogrammedwhile
deployed and are at less risk of loss due to errors in the new system as they do not dive.

A.3 Network

A.3.1 Subsea and surface networking
Reliable communications between underwater and surface nodes in the ocean are at best
an uncertainty. Underwater communications are only practical using an acoustic carrier
due to the rapid attenuation ofmost electromagneticwavelengths in seawater [9]. Acous-
tics are subject to the variations of the physical propagation of sound, are slow (over five
orders of magnitude slower than light), and have little usable bandwidth due to the low
frequencies of the carriers, leading to unpredictability and low throughputwhen sending
messages below the surface. Above-surface wireless ethernet (wifi) affords much higher
bitrates but is subject to antennae line of sight issues, especially with small masted vehi-
cles bouncing in the waves. In the field trials given in table A.1, the authors have found
the range of acoustic communications to often be substantially better (factor of two or
more) than the wifi connection to Bluefin 21 AUVs. However, ship-to-ship or ship-to-
buoy networking over ranges of several kilometers can be reasonably reliable if properly
installed. In the authors’ experience, reliable communications are much more important
to successful field operation of robotic vehicles than fast communications.

Unified C2 networking has evolved from a single-hop underwater network to a
single-hop underwater network with (potentially) multi-hop above-water network. This
allows the operator’s commands to a subsurface node to be forwarded to the nearest
“gateway,” which is either an acoustic modem on the ship, or a buoy or autonomous
surface craft (ASC) with a modem. The last option allows the most flexibility, as the ASC
can transit to improve its range to the underwater vehicle and improve the chance of
reception.

One behavior that works well for cases when high throughput from the underwater
vehicle is needed is to have an ASC trail the AUV by a short distance, making the acoustic
transmission closer to vertical (as well as a shorter distance) and reducing the refraction
(since the water is much more stratified in the vertical than the horizontal) and multiple
reflections (multipath) that destroy acoustic packets. Figure A.3 shows two scenarios

134

Topside
ASCASCASC

AUV

Topside
ASCASCASCASCASCASCASCASC

Topside
ASCASCASCASC

AUVAUV

AUV TopsideASC

«acoustic» DCCL Status«acoustic» DCCL Status

«wifi» DCCL Status (forward)
Duplicate Status is ignored.

«acoustic» DCCL Command

Topside

ASCASCASC

AUV

TopsideTopside

ASCASCASCASCASCASCASCASC

TopsideTopsideTopside

Wi

Acoustic

AUV TopsideASC

«acoustic» DCCL Status

«wifi» DCCL Status (forward)

«wifi» DCCL Command

«acoustic» DCCL Command (forward)

Figure A.3: Transmission coverage diagram (top) and sequence diagram for sending a
command and receiving a status message from the topside to an underwater vehicle (be-
low). On the left the AUV is within range of the topside for both networks but since the
AUV is below the surface only the acoustic message is received. In the second scenario
the AUV is out of communication directly with the topside so the messages are passed
through a surface craft (ASC).

for a ship (topside), an AUV and an ASC, where the topside commander wishes to send
a command to the AUV as well as receive a status message (e.g., position, orientation,
speed, health) from the AUV.

In the first scenario (on the left), theAUV is in direct acoustic communicationwith the
ship modem so that the messages pass directly between the topside and the AUV. In the
second scenario (right side of Figure A.3), the AUV is out of acoustic range of the ship, but
within the range of the ASC. The ASC is in range above the surface with the ship so that
it can forward the messages between the two. This is a somewhat brute force technique
to routing (all important packets are forwarded), but removes the need to maintain a
very rapidly changing routing table (since almost everything is in motion) and since the
bandwidth available above the sea is so much higher (three to four orders of magnitude
above the acoustic underwater communications), there is no risk of saturating the wifi
network. This trailing behavior as part of the Unified C2 network was first successfully
demonstrated at the CCLNET08 experiment in January 2008 (see Figure A.4). The Robotic
Marine kayaks Dee and Bobby trailed both the research vessel (Leonardo) and the OEX AUV,

135

Figure A.4: GEOV screenshot showingASCs Bobby andDee trailing theOEXAUV to improve
networking throughput at the CCLNET08 experiment. Acoustic communications are only
robust over short distances with largely vertical propagation, which makes these “mo-
bile gateways” effective, as they can always maintain a relatively short distance to the
AUV. The ASCs were commanded to trail at 100 meters behind the AUV at 170◦ and 190◦
relative to the AUV’s bow. The ASCs were also running a high priority collision avoid-
ance behavior with the RV Leonardo (“leo”), which accounts for the shift to port from the
normative tracking positions.

forwarding acoustic messages to the topside. Similar behavior was used as part of the
GLINT08 and GLINT09 networks.

The underwater network can be thought of as a local network broadcast, where ev-
ery vehicle hears every transmission within range (a few kilometers for the 25 kHzWHOI
Micro-Modem (see [100]) employed in all the authors’ experiments, though highly vari-
able within the spatial and temporal environment). The above sea network is based off
TCP/IP andUDPprotocols, the latter used for caseswhen throughput is so bad that TCP/IP
does not adequately handle all themissed packets andwhat ismost desirable is the newest
message rather than all the messages.

In fact, throughput of allmessages is rarely achievable. Using the Band CWHOIMicro-
Modemwith a carrier of 25 kHz, the authors have observed that actual throughput in good
conditions ranges from about 20 bits-per-second (bps) using the low-rate frequency-shift
keying (FSK rate 0) modulation to 2000 bps using the high-rate phase shift keying (PSK

136

rate 5) modulation. However, this throughput is highly dependent on the environmental
conditions (sound speed profile, water depth, surface waves), with the higher rates the
most sensitive. It is also dependent on the orientation of the vehicle and the mounting
position of the modem. Communication performance can change substantially over the
course of one day to the next due to changes in the environment. Communication in very
shallow water (∼20 meters depth), such as that in the operation region of SWAMSI09,
posed the most difficulty. Communications would fail for tens of minutes at a time, espe-
cially at ranges of more than several hundred meters. However, in GLINT08 with a water
depth of 100 meters, even high rate (PSK rate 5) transmissions would occur successfully
at ranges up to 1.6 km. To maximize the throughput, but ensure some consistent mes-
saging, the authors will command the vehicles to alternatingly send messages at low and
high rates.

Allmessages are prioritized to compensate for the reality of low and variable through-
put. The message with the highest priority is sent at each opportunity provided by the
medium access control (MAC) scheme. The priorities grow in the time since the last mes-
sage of that type was sent. Thus, higher priority messages do not continuously over-
whelm lower priority messages. This is implemented through a set of queues: one queue
for each DCCL message (e.g. LAMSS STATUS has one queue, ACTIVE CONTACTS has an-
other). Each queue i has a priority value (Pi(t)) which is calculated using

Pi(t) = Vi

(
t− τi
ttli

)
(A.1)

where Vi is the base value of the queue (i.e. the importance of that type of message), ttli
is the time-to-live (in seconds) of messages in that queue, τi is the last time a message
was sent from the ith queue and t is the current time. Messages with a short ttl are pre-
sumably more time sensitive, so their priorities grow faster than messages with a longer
ttl. When the MAC scheme permits a message to be sent, the queue is chosen with the
highest P (t).

One example of why this dynamic growth of priorities is desirable is during a subsea
detection. The AUV generates track and contact reports (high priority messages) for the
detected object, but the operator still desires an occasional lower priority status message
to ensure the vehicle is performing correctly. Were priorities not to grow, the operator
would never receive a status message while track reports were being generated.

Messages received fromunderwater nodes are forwarded by the surface nodes so that
all interested parties (typically all the assets in the experiment) can log anduse these data.
This allows for redundancy when certain vehicles are out of range of the initial sender.

137

A.3.2 Dynamic Compact Control Language (DCCL)

The Dynamic Compact Control Language (DCCL) provides a structure language for defin-
ing fixed-length short messages primarily to be sent through an acoustic modem (but
which can be sent through TCP/IP or UDP as well). The messages are configured in
XML and are intended to be easily reconfigurable, unlike the original CCL framework
(see [101]) used in theREMUSvehicles that DCCL aims to replace. DCCL can operatewithin
a CCL network, as themost significant byte (or CCL ID) is 0x20. DCCLmessages can be eas-
ily reconfigured because they are defined in plain text XML files which are encoded using
a set of standard rules given in Table 2.3. Creating a new CCLmessage, on the other hand,
requires defining each field and its encoding in software code and then testing to en-
sure its correctness. By using an XML schema and other structural checks, DCCL greatly
reduces the chance of undetected error when defining new messages. A more in-depth
explanation of DCCL, including example XML files, can be found in [102]. The source code
and documentation for DCCL, provided as the C++ library libdccl, is available as part of the
open-source goby-acomms project at http://launchpad.net/goby.

One example that demonstrates the flexibility of DCCL occured in SWAMSI09. In this
experiment, two AUVs were to perform bistatic acoustic detection of mine-like targets
on the seafloor. In order to do this, both AUVs needed to traverse a circular pattern
around the potential target, maintaining a constant bistatic angle. However, entering
into this collaboration andmaintaining the correct angle required handshaking and data
transfer between both vehicles. At the time of the experiment there was no available
fields in the current message set to perform this handshake. By adding some new fields
(i.e. several lines of XML text) to the LAMSS STATUS message, the vehicles were able to
perform the handshake underwater as needed. This would not have been possible with
the hard-coded CCL messages without substantially more planning, coding, and testing.

DCCL is similar to the ASN.1 unaligned Packed Encoding Rules [103]. DCCL messages
are packedbasedonbit boundaries (as opposed to bytes orwords) determinedwith knowl-
edge of the XML file. They are not self-describing, as this would be prohibitively expen-
sive in terms of data use. Thus, the sender and receiver must have a copy of the same
XML file for decoding a given message. Also, each message is defined by an identification
number that must be unique within a network.

DCCL messages can be used for any kind of data expressible as a combination of one
or more customizably bounded integers or fixed point real numbers, strings, enumer-
ations, booleans, or uncategorized hexadecimal. Thus, among other uses, they can be

138

http://launchpad.net/goby

used to encode commands and status messages for AUVs. The algorithms used for en-
coding the DCCL types are provided in Table 2.3. DCCL is currently limited to these data
types, which cover the needs for vehicle status, command, and collaboration messages.
However, it is not well suited for large vectors or arrays of data, since each field must
be specified separately in the XML file. Presently, other processes are used, such as
pCTDCodec, to encode datamessages into hexadecimal that can form part or all of a DCCL
message. pCTDCodec uses delta-difference encoding to compactly store samples from a
Conductivity-Temperature-Depth (CTD) sensor. Delta-difference encoding makes use of
the correlation between samples by sending only the difference values from an initial
“key” sample.

Within the MOOS-IvP autonomy infrastructure, all the acoustic communications are
handled by a process called pAcommsHandler. This involves encoding/decoding (using
DCCL), message queuing and transmission by priority, and interaction with the modem
firmware (driver). The sequence for sending a command underwater ismodeled in Figure
A.5. Above the surface, over wifi, the process is simpler since most of the networking is
handled by TCP/IP (see figure A.6). Here, pAcommsHandler is used just for encoding
and decoding (again with DCCL). DCCL is perhaps unnecessary with the higher rate wifi
connectivity, but by encoding all messages with the same scheme, a vehicle can switch
easily and seamlessly from being commanded on the surface to being commanded below
the surface.

The command process (iCommander) is an NCurses terminal graphical user interface
that allows a user to type in values for the fields for any number of DCCL messages. Since
the fields displayed to the human operator for entry are directly read from the XMLmes-
sage files, any change to the commandmessage contents are immediately available to the
operator without changing software code. In the authors’ experience it is preferable to
avoid changing code on experiments whereever possible without sacrificing the ability
to make changes to the messages (e.g., to allow a new experiment to take place).

DCCL loads the message configuration (given as XML) into C++ objects at runtime.
Thus, when a message is changed, the vehicle and topside software needs merely to be
restarted, not recompiled, for the change to propagate through the communications soft-
ware (pAcommsHandler) and the command software (iCommander). This is advantageous
for embedded computers, such as those deployed on marine vehicles, since compilation
can be a time consuming process.

The authors have developed about a dozen DCCL messages that are widely used in

139

Topside MOOS Computer AUV MOOS Computer

iCommander MOOSDB pAcommsHandler WHOI Micro-Modem pAcommsHandlerWHOI Micro-ModemOperator pAcommsPoller

types commands

OUT_COMMAND

OUT_COMMAND

$CCCYC (Poll)

$CADRQ (Data request)

$CCTXD (Transmit data)

Acoustic PSK/FSK Data

Acoustic Ack

$CAACK (Acknowledgement)

$CARXD (Receive data)

pHelmIvP

ACOMMS_ACK

ACOMMS_ACK
display ack

IN_COMMAND

DCCL Message encoded
and queued.

MOOSDB

Message decoded.

IN_COMMAND

Message flushed

Figure A.5: Sequence diagram for sending a command to an AUV using the Unified C2
infrastructure. The operator types a command into the iCommander application, which
is configured with the desired set of DCCL messages (defined in XML). This message is
encoded using DCCL, queued by pAcommsHandler, and sent through the water using
a 25 kHz acoustic carrier (the WHOI Micro-Modem). On the receiving end, the mes-
sage is decoded and an acknowledgment is generated and displayed to the operator.
pAcommsPoller handles access of the acoustic channel by a centralized time division
MAC scheme.

Topside MOOS Computer ASC MOOS Computer

iCommander MOOSDB pAcommsHandler pAcommsHandlerOperator

types commands

OUT_COMMAND

OUT_COMMAND

IN_COMMAND_HEX

pHelmIvP

IN_COMMAND

MOOSDB

Message decoded.

IN_COMMAND

OUT_COMMAND_HEX

pMOOSBridge

DCCL Message encoded.

pMOOSBridge

IEEE 802.11b 2.4 GHz

Figure A.6: Sequence diagram for sending a command to an ASC using the Unified C2
infrastructure. The TCP transport layer handles reliability so no acknowledgment is pro-
duced for the operator.

140

Subsea RV Endeavor

Topside MOOS Computer

«executable»

GEOV Server

Lab Display Computer

«executable»

Google Earth

Bluefin 21 AUV

(Unicorn) MOOS

Computer
GPS

«serial»

Bluefin 21 AUV

(Macrura) MOOS

Computer

«acoustic»

Micro-Modem

«wired»

ethernet

Figure A.7: Network structure for the SWAMSI09 experiment in Panama City, FL.

our experiments, as well a number of test messages. The messages used in field trials are
summarized in Table 2.10. They are broken into three rough categories: Data, Command,
and Collaboration. Data messages are sent from the vehicles to the topside operator with
some type of measured or calculated data. Commands are sent to change the mission
state of the vehicles. Collaboration messages are sent between robots to provide data or
handshaking relevant to a multi-vehicle experiment.

A.3.3 Network examples

Figure A.7 shows the network connectivity for a simple two-AUV / no-ASC experiment
(SWAMSI09). The topside (through a buoy) is connected to the vehicles by an acoustic
network using the WHOI Micro-Modem. A wifi network (not shown) is used to upload
configuration and code changes and download data logs, but this is primarily done be-
fore the day’s operations. Once the vehicle is underway, the vehicles are deployed and
redeployed through the acoustic network alone.

Figure A.8 gives the network connectivity for a larger experiment with both surface
and subsea nodes (GLINT08/09). This network allows forwarding of messages through
mobile gateways (the ASCs) and visualization of data shoreside via the internet andGEOV.

A.4 Google Earth interface for Ocean Vehicles (GEOV)
Visual feedback for the AUV operators is provided through a set of continually updated
Keyhole Markup Language (KML) files in Google Earth. This Google Earth Interface for
Ocean Vehicles (GEOV) provides a database for vehicle positions, speeds, headings and
depths as well as a set of add-on modules for displaying other types of data (e.g, an op-
erational grid, target track lines). GEOV is a client/server architecture (see Figure A.9)
where the user configures what data he or she wishes to display from a web browser.
Then any number of clients running Google Earth can see these data. GEOV has three

141

Subsea

Surface

RV Alliance

RV Leonardo Internet

http://aubergine.whoi.edu

Topside MOOS Computer

«executable»
GEOV Server

Lab Display Computer

Bridge Display Computer

«executable»
Google Earth

«executable»
Google Earth

«wired»
ethernet

Kayak (Elanor)

MOOS Computer

Kayak ASC (Dee)

MOOS Computer

Bluefin 21 AUV

(Unicorn) MOOS

Computer

NURC AUV (OEX)

MOOS Computer

Topside MOOS Computer

«wifi»
5.0GHz WiLan

«acoustic»
Edgetech

GPS

«serial»

GPSRadar

«serial» «serial»

«executable»
GEOV Server

Any Computer

«executable»
Google Earth

OceanServer

Iver2 AUV MOOS

Computer

«wifi»
IEEE 802.11

«acoustic»
Micro-Modem

Figure A.8: Collective network structure of the GLINT08 and GLINT09 experiments south
of Elba, Italy. GLINT08 did not have the RV Leonardo-to-Internet connection in place and
GLINT09 did not have the Unicorn AUV present.

GEOV Client

GEOV Server

«executable»

Web Server (Apache 2)

«executable»

Web Scripting (php 5)

«executable»

Database (MySQL 5)

«executable»

Web Browser (e.g. Firefox)

«executable»

Google Earth

Other Google

Earth Content

«html» «kml»

«kml»

Figure A.9: Model of the client/server interaction for the Google Earth interface for Ocean
Vehicles (GEOV).

142

Figure A.10: Screenshot of GEOV from the SWAMSI09 experiment. Bluefin 21 AUVs Uni-
corn and Macrura are performing a synchronized racetrack maneuver for bistatic acous-
tics (both vehicles have sources and nose arrays). This synchronized behavior was com-
manded using the LAMSS DEPLOY DCCL message and is autonomously coordinated us-
ing the LAMSS STATUS message. The history of the vehicles is also provided by the
LAMSS STATUS message. The subsea targets are represented by purple arrows and each
grid box is 25 meters square. The solid colored lines indicate the position history of each
vehicle, while the name and icon show the current location.

143

Figure A.11: Target tracking by the AUVUnicorn at the GLINT08 experiment visualized us-
ing GEOV. The pink lines indicate the direction of a detected source (the RV Leonardowas
towing an acoustic source). These contact data are provided from the vehicles acous-
tically by the DCCL LAMSS CONTACT message. Vehicles in capital letters were merged
onto the GEOV display using AIS reports through a separate data feed.

modes of operation:

1. Realtime: displays up-to-date position and position history for vehicles selected.
For an example from the SWAMSI09 experiment, see Figure A.10.

2. Playback: similar to the realtime display but for a chosen period of time in the past.
Also allows for playback at faster than real speed.

3. History: displays the vehicle tracks for a period of time in the past. This differs
from playback in that the history is incorporated into the KML file information,
allowing history files to be saved and used separately from the GEOV server. The
other two modes (realtime and playback) require a continuous connection to the
GEOV server.

Google Earth was chosen due to its ubiquity, availability of continuously updated
satellite data, and ease of meshing data from numerous sources. On collaborative exper-
iments, it is possible to display other KML data along with GEOV data, allowing several
research groups to work off the same display withminimal integration effort. In the field

144

experiment SQUINT08 (May 2008: La Spezia, SP, Italy), data from a sidescan sonar on a
surface craft were displayed using the manufacturer’s KML parser on top of GEOV po-
sition data. In GLINT08 (Pianosa Island, LI, Italy), Automatic Identification System (AIS)
data for nearby ships was displayed using a collaborator’s Perl script to convert AIS to
KML, again along with the GEOV data (see Figure A.11 for an example).

The ability to have any number of clients for a given GEOV server allows individual
scientists to visualize data on their own laptopswhile not disturbing themain lab display.
Furthermore, AUV operations requires significant interaction with the bridge of the re-
search vessel. Having a GEOV display on the bridge gives the officers a much better sense
of what is happening underwater and allows for safer and more efficient operations.

A.5 Summary
In summary, the authors have found through numerous field trials that successful com-
mandand control ofmultiple researchmarine vehicles requires several componentswhich
are addressed by the Unified C2 architecture:

• Abstraction of the differences between vehicle types (each manufacturer is dif-
ferent) - This is accomplished through the “frontseat”-“backseat” operation para-
digm. After this abstraction, to the systemdesigner, each vehicle is similar: aMOOS
community running pHelmIvP.

• Hierarchical configuration - Changes in configurationmust bepropagated through-
out the network of vehicles, ideally by making a change in a single location. By or-
ganizing the vehicle configuration into a hierarchy, much redundant configuration
is removed.

• Sufficiently robust but flexible communications - Acoustic communications are
often unreliable due to the physical constraints of the medium. To compensate for
this reality, the subsea network can be connected to the more robust surface net-
work by means of mobile gateways (surface craft). Very small messages are pro-
vided by DCCL, whose XML configuration allows for rapid reconfiguration when
new data or commands need to be sent. Time-varying priorities allow for messages
to be sent based on importance, while allowing for all message types to have some
access to the communications channel.

145

• Meshed visualization - GEOV allows for visualization of vehicle data for runtime
performance evaluation and safety. Google Earth allows easy meshing of data from
multiple sources, allowing GEOV to interface with data from collaborators who do
not need to be running the same MOOS-IvP infrastructure and display everything
on a single display.

Together these elements fight the ever increasing complexity inherent inmulti-vehicle
robotic systems to create a manageable, yet readily reconfigurable, system.

Portions of this chapter are c©2010 Wiley-Blackwell. Reprinted, with permission, from T. Schneider and

H. Schmidt, “Unified Command and Control for Heterogeneous Marine Sensing Networks,” Journal of Field

Robotics, Volume 27, Issue 6, pages 876-889, November/December 2010.

146

B Goby-Acomms Details

B.1 Goby1 DCCL XML Specification
Version 1 of DCCL used an eXtensible Markup Language (XML) language definition. The
current (version 2) definition of DCCL is in Google Protocol Buffers option extensions (see
Table 2.2).

The full XML schema is available with the source code at<http://launchpad.net/
goby/1.1>; here we give a summary of the tags. A DCCL message file always consists of
the root tag <message set> which has one or more <message> tags as its children. The
<message> children are as follows:

• <id>: an identification number (9 bits, so<id> ∈ [0, 511]) representing this mes-
sage to all decoding nodes [unsigned integer].

• <name>: a name for the message. This tag and<id>must each be a unique identi-
fier for this message. [string].

• <size>: the maximum size of this message in bytes [unsigned integer]. DCCL
may produce a smaller message, but will not validate this message XML file if it

CCL ID

(0x20)

DCCL ID

<id>

time of day

<time>

source ID

<src_id>

destination ID

 <dest_id>

8 9 17 5 5 1 1 2 (<size> - 6)*8

multimessage

�ag

user data

<layout>

broadcast

�ag

reserved

Figure B.1: Layout of the DCCL (version 1) header, showing the fixed size (in bits) of each
header field. The user cannot modify the size of these header fields, but can access and
set the data inside through the same methods used for the customizable data fields spec-
ified in <layout>. The multimessage and broadcast flags are not used by DCCL, but are
included for use by priority queuing (see Section 2.3).

147

http://launchpad.net/goby/1.1
http://launchpad.net/goby/1.1

exceeds this size.

• <repeat>: empty tag that can be specified to tell DCCL to repeatedly create the
entire message to fill the entire <size> of the message.

• <header>: the children of this tag allow the user to rename the header parts of the
DCCL message. See Fig. B.1 for a sketch of the DCCL header format. These names
are used when passing values at encode time for the various header fields.

– <time>: seconds elapsed since 1/1/1970 (“UNIX time”). In the DCCL encod-
ing, this reduced to seconds since the start of the day, with precision of one
second. Upon decoding, assuming themessage arrives within twelve hours of
its creation, it is properly restored to a full UNIX time.

∗ <name>: the name of this field; optional, the default is “ time”. [string]

– <src id>: a unique address (<src id> ∈ [0, 31]) of the sender of this mes-
sage. For a given experiment these short unique identifiers can bemapped on
to more global keys (such as vehicle name, type, ethernet MAC address, etc.).

∗ <name>: default is “ src id”. [string]

– <dest id>: the eventual destinationof thismessage (also anunsigned integer
in the range [0,31]). If this destination exists on the same subnet as the sender,
this will also be the hardware layer destination id number.

∗ <name>: default is “ dest id”. [string]

• <layout>: the children of this tag define the generic data fields of the message,
which can be drawn from any combination of the following types:

– <bool>: a boolean value.

∗ <name>: the name of this field. [string]
∗ <array length>: optional; specifying this makes this field an array of

bool instead of a single bool [unsigned integer].

– <int>: a bounded integer value.

∗ <name>: see <bool><name>.
∗ <max>: the maximum value this field can take. [real number].
∗ <min>: the minimum value this field can take. [real number].

148

∗ <max delta>: gives the maximum value for the difference of delta fields
when using delta-difference encoding. Optional; the use of this tag en-
ables delta-differencing encoding. This feature is explained where it is
motivated in as part of the CHAMPLAIN09 experiment in section 2.6.5
[real number].

∗ <array length>: see <bool><array length>.
– <float>: a bounded real number value.

∗ <name>: see <bool><name>.
∗ <max>: see <int><max>.
∗ <min>: see <int><min>.
∗ <max delta>: see <int><max delta>.
∗ <precision>: specifies the number of decimal digits to preserve. For

example, a precision of “2” causes 1042.1234 to be rounded to 1042.12; a
precision of “-1” rounds 1042.1234 to 1.04e3. [integer].

∗ <array length>: see <bool><array length>.
– <string>: a fixed length string value.

∗ <name>: see <bool><name>.
∗ <max length>: the length of the string value in this field. Longer strings

are truncated. <max length>4</max length>means “ABCDEFG” is sent
as “ABCD”. [unsigned integer].

∗ <array length>: see <bool><array length>.
– <enum>: an enumeration of string values.

∗ <name>: see <bool><name>.
∗ <value>: a possible value the enumeration can take. Any number of

values can be specified.
∗ <array length>: see <bool><array length>. [string].

– <hex>: a pre-encoded hexadecimal value.
∗ <name>: see <bool><name>.
∗ <num bytes>: the number of bytes for this field. The string provided

should have twice as many characters as <num bytes> since each char-
acter of a hexadecimal string is one nibble (4 bits or 1

2
byte). [unsigned

integer].

149

150

Bibliography

[1] C. Kunz, C. Murphy, H. Singh, C. Pontbriand, R. A. Sohn, S. Singh, T. Sato,
C. Roman, K.-i. Nakamura, M. Jakuba, R. Eustice, R. Camilli, and J. Bailey,
“Toward extraplanetary under-ice exploration: Robotic steps in the arctic,”
Journal of Field Robotics, vol. 26, no. 4, p. 411–429, 2009. [Online]. Available:
http://onlinelibrary.wiley.com.libproxy.mit.edu/doi/10.1002/rob.20288/abstract

[2] R. Camilli, C. M. Reddy, D. R. Yoerger, B. A. S. V.Mooy, M. V. Jakuba, J. C. Kinsey, C. P.
McIntyre, S. P. Sylva, and J. V. Maloney, “Tracking hydrocarbon plume transport
and biodegradation at deepwater horizon,” Science, vol. 330, no. 6001, pp. 201–204,
Oct. 2010. [Online]. Available: http://www.sciencemag.org/content/330/6001/201

[3] K. Cockrell and H. Schmidt, “Robust passive range estimation using the waveguide
invariant,” The Journal of the Acoustical Society of America, vol. 127, p. 2780, 2010.

[4] M. Purcell, D. Gallo, G. Packard, M. Dennett, M. Rothenbeck, A. Sherrell, and S. Pas-
caud, “Use of REMUS 6000 AUVs in the search for the air france flight 447,” in
OCEANS 2011, Sep. 2011, pp. 1 –7.

[5] WHOI Media Relations Office, “Scientists find part of New Zealand’s submerged
“pink terraces”,” News Release, February 2011. [Online]. Available: http:
//www.whoi.edu/main/news-releases/2011?tid=3622&cid=89648

[6] D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless
sensor network based on optical communication: Research challenges and
current results,” in Sensor Technologies and Applications, 2009. SENSORCOMM’09.
Third International Conference on, 2009, p. 476–479. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210866

[7] M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and
D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater

151

http://onlinelibrary.wiley.com.libproxy.mit.edu/doi/10.1002/rob.20288/abstract
http://www.sciencemag.org/content/330/6001/201
http://www.whoi.edu/main/news-releases/2011?tid=3622&cid=89648
http://www.whoi.edu/main/news-releases/2011?tid=3622&cid=89648
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210866
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210866

point-to-point communication,” in OCEANS 2009, MTS/IEEE Biloxi-Marine Technology
for Our Future: Global and Local Challenges, 2009, p. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5422200

[8] N. Farr, A. Bowen, J. Ware, C. Pontbriand, andM. Tivey, “An integrated, underwater
optical /acoustic communications system,” in OCEANS 2010 IEEE - Sydney, May 2010,
pp. 1 –6.

[9] C. Clay and H. Medwin, Acoustical oceanography: Principles and applications. John
Wiley & Sons, Inc., 1977.

[10] A. Baggeroer, “Acoustic telemetry–An overview,” IEEE J. Ocean. Eng., vol. 9, no. 4, pp.
229–235, 1984.

[11] D. Kilfoyle and A. Baggeroer, “The state of the art in underwater acoustic teleme-
try,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4–27, 2000.

[12] J. Preisig, “Acoustic propagation considerations for underwater acoustic commu-
nications network development,” ACM SIGMOBILE Mobile Computing and Communica-
tions Review, vol. 11, no. 4, pp. 2–10, 2007.

[13] M. Stojanovic, “Recent advances in high-speed underwater acoustic communica-
tions,” IEEE J. Ocean. Eng., vol. 21, no. 2, pp. 125–136, 1996.

[14] M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater acoustic communica-
tions and networking: Recent advances and future challenges,” The State of Technol-
ogy in 2008, vol. 42, no. 1, pp. 103–114, 2008.

[15] J. Partan, J. Kurose, and B. N. Levine, “A survey of practical issues in underwater
networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 11, no. 4, pp. 23–33, 2007.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1347372

[16] M. A. Ainslie and J. G. McColm, “A simplified formula for viscous and chemical
absorption in sea water,” The Journal of the Acoustical Society of America, vol. 103, p.
1671, 1998. [Online]. Available: http://link.aip.org/link/jasman/v103/i3/p1671/s1

[17] C. Chen and F. Millero, “Speed of sound in seawater at high pressures,” J. Acoust. Soc.
Am, vol. 62, no. 5, pp. 1129–1135, 1977.

152

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5422200
http://portal.acm.org/citation.cfm?id=1347372
http://link.aip.org/link/jasman/v103/i3/p1671/s1

[18] J. C. Preisig and G. B. Deane, “Surface wave focusing and acoustic communications
in the surf zone,” The Journal of the Acoustical Society of America, vol. 116, p. 2067,
2004. [Online]. Available: http://link.aip.org/link/jasman/v116/i4/p2067/s1/html

[19] M. Stojanovic, “OFDM for underwater acoustic communications: Adaptive syn-
chronization and sparse channel estimation,” in Acoustics, Speech and Signal
Processing, 2008. ICASSP 2008. IEEE International Conference on, 2008, p. 5288–5291. [On-
line]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4518853

[20] M. Grund, L. Freitag, J. Preisig, and K. Ball, “The PLUSNet underwater communica-
tions system: acoustic telemetry for undersea surveillance,” in OCEANS 2006, 2006,
p. 1–5. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
4099155

[21] R. P. Stokey, “A compact control language for autonomous underwater vehicles,”
WHOI, Tech. Rep. Public Release 1.0, 2005. [Online]. Available: http://acomms.
whoi.edu/ccl/

[22] J. Rice, “SeaWeb acoustic communication and navigation networks,” in Proceed-
ings of the International Conference on Underwater Acoustic Measurements: Tech-
nologies and Results, 2005. [Online]. Available: http://dtnrg.org/docs/papers/
UAMeasurements2005Rice2.pdf

[23] J. Rice and D. Green, “Underwater acoustic communications and networks for the
US navy’s seaweb program,” in Second International Conference on Sensor Technologies
and Applications, 2008. SENSORCOMM ’08, Aug. 2008, pp. 715 –722.

[24] International Telecommunication Union, “Information technology - open systems
interconnection - basic reference model: The basic model,” Internation Telecom-
munication Union, Tech. Rep. X.200, 1994.

[25] M. Stojanovic, “On the relationship between capacity and distance in an
underwater acoustic communication channel,” ACM SIGMOBILE Mobile Computing
and Communications Review, vol. 11, no. 4, pp. 34–43, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1347373

[26] M. Porter and Y. Liu, “Finite-element ray tracing,” in Proc. Int. Conf. on Theoretical
Comp. Acoust, vol. 2, pp. 947–956.

153

http://link.aip.org/link/jasman/v116/i4/p2067/s1/html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4518853
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4099155
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4099155
http://acomms.whoi.edu/ccl/
http://acomms.whoi.edu/ccl/
http://dtnrg.org/docs/papers/UAMeasurements2005Rice2.pdf
http://dtnrg.org/docs/papers/UAMeasurements2005Rice2.pdf
http://dl.acm.org/citation.cfm?id=1347373

[27] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested Autonomy for
Unmanned Marine Vehicles with MOOS-IvP,” Journal of Field Robotics, vol. 27, no. 6,
pp. 834–875, November/December 2010.

[28] R. Zimmerman, G. D’Spain, and C. Chadwell, “Decreasing the radiated acoustic and
vibration noise of a mid-size AUV,” IEEE Journal of Oceanic Engineering, vol. 30, no. 1,
pp. 179 – 187, Jan. 2005.

[29] S. Petillo, H. Schmidt, and A. Balasuriya, “Constructing a distributed AUV network
for underwater plume-tracking operations,” International Journal of Distributed Sen-
sor Networks, vol. 2012, 2012.

[30] A. Shafer, “Autonomous cooperation of heterogeneous platforms for sea-based
search tasks,” Master’s thesis, Massachusetts Institute of Technology, 2008.

[31] H. Zimmermann, “OSI reference model–The ISO model of architecture for open
systems interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4, pp.
425–432, 2002.

[32] G. Booch, J. Rumbaugh, and I. Jacobson, “The unified modeling language,” Unix Re-
view, vol. 14, no. 13, p. 5, 1996.

[33] S. Basagni, C. Petrioli, R. Petroccia, and M. Stojanovic, “Choosing the packet size in
multi-hop underwater networks,” Proceedings of IEEE OCEANS 2010, p. 24–27, 2010.
[Online]. Available: http://dandelion-patch.mit.edu/people/millitsa/resources/
pdfs/oc10-roberto1.pdf

[34] Google, “Protocol buffers: Developer guide.” [Online]. Available: http://code.
google.com/apis/protocolbuffers/docs/overview.html

[35] A. Bradley, M. Feezor, H. Singh, and F. Yates Sorrell, “Power systems for au-
tonomous underwater vehicles,” Oceanic Engineering, IEEE Journal of, vol. 26, no. 4,
pp. 526–538, 2001.

[36] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” AES Proposal, 1999. [Online].
Available: http://www.cryptosoft.de/docs/Rijndael.pdf

[37] “Secure hash signature standard,” NIST, Tech. Rep. FIPS PUB 180-2, 2002. [Online].
Available: http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

154

http://dandelion-patch.mit.edu/people/millitsa/resources/pdfs/oc10-roberto1.pdf
http://dandelion-patch.mit.edu/people/millitsa/resources/pdfs/oc10-roberto1.pdf
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://www.cryptosoft.de/docs/Rijndael.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[38] W. Dai, “Crypto++ library 5.6.0.” [Online]. Available: http://www.cryptopp.com/

[39] R. P. Stokey, L. E. Freitag, and M. D. Grund, “A compact control language for AUV
acoustic communication,” Oceans 2005-Europe, vol. 2, p. 1133–1137, 2005.

[40] R.Martins, P. Dias, E. Marques, J. Pinto, J. Sousa, and F. Pereira, “IMC: A communica-
tion protocol for networked vehicles and sensors,” in OCEANS 2009-EUROPE. IEEE,
2009.

[41] T. Welch, “Technique for high-performance data compression.” Computer, vol. 17,
no. 6, pp. 8–19, 1984.

[42] D. Huffman, “A method for the construction of minimum-redundancy codes,” Res-
onance, vol. 11, no. 2, pp. 91–99, 2006.

[43] J. Larmouth, ASN.1 Complete. Elsevier, 2000. [Online]. Available: http://www.oss.
com/asn1/larmouth.html

[44] S. Webster, R. Eustice, C. Murphy, H. Singh, and L. Whitcomb, “Toward a platform-
independent acoustic communications and navigation system for underwater ve-
hicles,” in OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and
Local Challenges, oct 2009.

[45] L. Freitag, M. Grund, C. von Alt, R. Stokey, and T. Austin, “A shallow water acous-
tic network for mine countermeasures operations with autonomous underwater
vehicles,” Underwater Defense Technology (UDT), 2005.

[46] R. Eustice, L. Whitcomb, H. Singh, and M. Grund, “Experimental results in
synchronous-clock one-way-travel-time acoustic navigation for autonomous un-
derwater vehicles,” in Robotics and Automation, 2007 IEEE International Conference on.
IEEE, 2007, pp. 4257–4264.

[47] M. R. Benjamin, “The MOOS-IvP uField Toolbox for Multi-Vehicle Operations and
Simulation,” Massachusetts Institute of Technology, Tech. Rep. 12.2, 02 2012.

[48] T. Schneider and H. Schmidt, “Unified command and control for heterogeneous
marine sensing networks,” Journal of Field Robotics, 2010.

[49] NIMA, “Department of defense world geodetic system 1984: Its definition and
relationships with local geodetic systems. second edition, amendment 1,” NIMA,

155

http://www.cryptopp.com/
http://www.oss.com/asn1/larmouth.html
http://www.oss.com/asn1/larmouth.html

Tech. Rep. TR8350.2, 2000. [Online]. Available: http://earth-info.nga.mil/GandG/
publications/tr8350.2/wgs84fin.pdf

[50] C.Murphy, “Progressively communicating rich telemetry fromautonomous under-
water vehicles via relays,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy and Woods Hole Oceanographic Institution, 2012.

[51] Y. Zhang, M. Godin, J. Bellingham, and J. Ryan, “Using an autonomous underwater
vehicle to track a coastal upwelling front,” IEEE Journal of Oceanic Engineering, vol. 37,
no. 3, pp. 338 –347, Jul. 2012.

[52] S. Petillo, A. Balasuriya, and H. Schmidt, “Autonomous adaptive environmental as-
sessment and feature tracking via autonomous underwater vehicles,” in OCEANS
2010 IEEE - Sydney, May 2010, pp. 1 –9.

[53] A. Baggeroer, “An overview of acoustic communications from 2000-2012,” in Un-
derwater Communications: Channel Modelling & Validation, 2012.

[54] M. Chitre, personal communication, UComms 2012 conference, 2012.

[55] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks:
research challenges,” Ad Hoc Networks, vol. 3, no. 3, pp. 257–279, 2005.

[56] C. Murphy and H. Singh, “Human-guided autonomy for acoustically tethered un-
derwater vehicles,” in OCEANS 2008, Sep. 2008, pp. 1 –8.

[57] M. Koegel and M. Mauve, “On the spatio-temporal information content and
arithmetic coding of discrete trajectories,”Mobile andUbiquitous Systems: Computing,
Networking, and Services, pp. 13–24, 2012. [Online]. Available: http://www.
springerlink.com/index/P1032Q10R1542638.pdf

[58] D. Feldman, C. Sung, andD. Rus, “The single pixel GPS: learning big data signals from
tiny coresets,” in Proc. 20th ACM International Conference on Advances in Geographic
Information Systems, 2012.

[59] A. Civilis, C. Jensen, and S. Pakalnis, “Techniques for efficient road-network-based
tracking of moving objects,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 5, p. 698–712, 2005.

156

http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://www.springerlink.com/index/P1032Q10R1542638.pdf
http://www.springerlink.com/index/P1032Q10R1542638.pdf

[60] N. Trawny, S. I. Roumeliotis, and G. B. Giannakis, “Cooperative multi-robot
localization under communication constraints,” in Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, 2009, pp. 4394–4400. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5152606

[61] E. D. Nerurkar and S. I. Roumeliotis, “Asynchronous multi-centralized cooperative
localization,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, 2010, pp. 4352–4359. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5650133

[62] A. Bahr, “Cooperative localization for autonomous underwater vehicles,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, 2009.

[63] M. Fallon, G. Papadopoulos, and J. Leonard, “Cooperative AUV navigation using
a single surface craft,” in Field and Service Robotics, 2010, pp. 331–340. [Online].
Available: http://www.springerlink.com/index/E82JH73176245368.pdf

[64] E. R. B. Marques, J. Pinto, S. Kragelund, P. S. Dias, L. Madureira, A. Sousa, M. Correia,
H. Ferreira, R. Goncalves, and R. Martins, “AUV control and communication using
underwater acoustic networks,” in OCEANS 2007-Europe, 2007. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4302469

[65] A. Rajala, M. O’Rourke, and D. B. Edwards, “AUVish: an application-based
language for cooperating AUVs,” in OCEANS 2006, 2006. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4098924

[66] C. Murphy and H. Singh, “Rectilinear coordinate frames for deep sea navigation,”
in Autonomous Underwater Vehicles (AUV), 2010 IEEE/OES. IEEE, 2010.

[67] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking. part i. dynamic
models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333
– 1364, Oct. 2003.

[68] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans-
actions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp. 35–45, 1960.

[69] S. Rao, “Modified gain extended kalman filter with application to bearings-
only passive manoeuvring target tracking,” in Radar, Sonar and Navigation, IEE
Proceedings-, vol. 152, 2005, p. 239–244.

157

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5152606
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650133
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650133
http://www.springerlink.com/index/E82JH73176245368.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4302469
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4098924

[70] R. Lum and H. Schmidt, “Exploiting adaptive processing and mobility for multi-
static tracking by AUV networks,” in Proceedings of 4th International Conference on
Underwater Acoustic Measurements: Technologies and Results, Kos, Greece, Jun. 2011.

[71] M. Blain, S. Lemieux, and R. Houde, “Implementation of a ROV navigation system
using acoustic/Doppler sensors and kalman filtering,” in OCEANS 2003. Proceedings,
vol. 3, 2003, p. 1255–1260.

[72] D. Loebis, R. Sutton, J. Chudley, and W. Naeem, “Adaptive tuning of a
kalman filter via fuzzy logic for an intelligent AUV navigation system,” Control
Engineering Practice, vol. 12, no. 12, pp. 1531–1539, Dec. 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0967066103002582

[73] S. E. Webster, R. M. Eustice, H. Singh, and L. L. Whitcomb, “Advances in single-
beacon one-way-travel-time acoustic navigation for underwater vehicles,” Inter-
national Journal of Robotics Research, vol. 31, no. 8, p. 935–950, Jul. 2012.

[74] T. Schneider and H. Schmidt, “Goby-acomms version 2: extensible marshalling,
queuing, and link layer interfacing for acoustic telemetry,” in 9th IFAC Conference
on Manoeuvring and Control of Marine Craft, Arenzano, Italy, 2012.

[75] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987. [Online]. Available:
http://dl.acm.org/citation.cfm?id=214771

[76] K. Sayood, Introduction to Data Compression. Elsevier, Dec. 2005.

[77] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The WHOI Micro-
Modem: an acoustic communications and navigation system for multiple plat-
forms,” in IEEE Oceans Conference, 2005.

[78] M. B. Porter, “The acoustics toolbox.” [Online]. Available: http://oalib.hlsresearch.
com/Modes/AcousticsToolbox/

[79] H. Schmidt, “Oases: Ocean acoustic and seismic exploration synthesis.” [Online].
Available: http://lamss.mit.edu/lamss/pmwiki/pmwiki.php?n=Site.Oases

[80] R. Brooks, “Intelligencewithout reason,” Artificial intelligence: critical concepts, vol. 3,
1991.

158

http://www.sciencedirect.com/science/article/pii/S0967066103002582
http://dl.acm.org/citation.cfm?id=214771
http://oalib.hlsresearch.com/Modes/AcousticsToolbox/
http://oalib.hlsresearch.com/Modes/AcousticsToolbox/
http://lamss.mit.edu/lamss/pmwiki/pmwiki.php?n=Site.Oases

[81] T. Schneider, H. Schmidt, T. Pastore, and M. Benjamin, “Cooperative autonomy for
contact investigation,” in OCEANS 2010 IEEE-Sydney. IEEE.

[82] D. Hughes, S. Kemna, M. Hamilton, and R. Been, “Sensible behaviour strategies for
AUVs in ASW scenarios,” in OCEANS 2010 IEEE-Sydney. IEEE, 2010.

[83] D. Eickstedt, M. Benjamin, H. Schmidt, and J. Leonard, “Adaptive control of het-
erogeneous marine sensor platforms in an autonomous sensor network,” in Intel-
ligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006, pp.
5514–5521.

[84] S. Petillo, A. Balasuriya, and H. Schmidt, “Autonomous adaptive environmental as-
sessment and feature tracking via autonomous underwater vehicles,” in OCEANS
2010 IEEE-Sydney. IEEE.

[85] F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, Computational ocean acoustics.
Springer London, Limited, 2011.

[86] M. B. Porter, “The KRAKEN normal mode program,” SACLANT Undersea Research
Centre, Tech. Rep., May 2001. [Online]. Available: http://oalib.hlsresearch.com/
Modes/kraken.pdf

[87] T. Schneider and H. Schmidt, “Unified command and control for heterogeneous
marine sensing networks,” Journal of Field Robotics, vol. 27, no. 6, pp. 876–889, 2010.
[Online]. Available: http://dx.doi.org/10.1002/rob.20346

[88] P. Oliveira, A. Pascoal, V. Silva, and C. Silvestre, “Mission control of theMarius AUV:
System design, implementation, and sea trials,” International journal of systems sci-
ence, vol. 29, no. 10, pp. 1065–1080, 1998.

[89] Titan PXA270 RISC based PC/104 Single Board Computer Technical Manual, EuroTech, Ltd.
[Online]. Available: http://www.eurotech.com/en/pb.aspx?tab=download&pg=
titan

[90] User Manual: PCM-3363, Advantech Co., Ltd.

[91] M. Stojanovic, “Underwater acoustic communications: Design considerations on
the physical layer,” in Wireless on Demand Network Systems and Services, 2008. WONS
2008. Fifth Annual Conference on. IEEE, 2008.

159

http://oalib.hlsresearch.com/Modes/kraken.pdf
http://oalib.hlsresearch.com/Modes/kraken.pdf
http://dx.doi.org/10.1002/rob.20346
http://www.eurotech.com/en/pb.aspx?tab=download&pg=titan
http://www.eurotech.com/en/pb.aspx?tab=download&pg=titan

[92] L. Freitag, “FHFSK coding and modulation specification,” Woods Hole
Oceanographic Institution, Tech. Rep. 401003-SPEC, 2005. [Online]. Available:
http://acomms.whoi.edu/publications/

[93] L. Freitag and S. Singh, “Compact data layer for acoustic communications,” Woods
Hole Oceanographic Institution, Tech. Rep. 401002-SPEC, 2004. [Online]. Available:
http://acomms.whoi.edu/publications/

[94] W. Li and J. Preisig, “Estimation of rapidly time-varying sparse channels,” Oceanic
Engineering, IEEE Journal of, vol. 32, no. 4, pp. 927–939, 2007.

[95] L. Freitag, M. Stojanovic, S. Singh, and M. Johnson, “Analysis of channel effects
on direct-sequence and frequency-hopped spread-spectrum acoustic communica-
tion,” Oceanic Engineering, IEEE Journal of, vol. 26, no. 4, pp. 586–593, 2001.

[96] G. M. Wenz, “Acoustic ambient noise in the ocean: Spectra and sources,” The
Journal of the Acoustical Society of America, vol. 34, no. 12, pp. 1936–1956, 1962.
[Online]. Available: http://link.aip.org/link/?JAS/34/1936/1

[97] L. Freitag, M. Stojanovic, D. Kilfoyle, J. Preisig, and M. Stojanovic, “High-rate
phase-coherent acoustic communication: A review of a decade of research and a
perspective on future challenges,” in Proc. 7th European Conf. on Underwater Acoustics,
2004. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.115.358&rep=rep1&type=pdf

[98] J. Crowell, “Small AUV for hydrographic applications,” in Proceedings of the IEEE
Oceans Conference 2006, Boston, MA, 2006.

[99] M. R. Benjamin, J. J. Leonard, H. Schmidt, and P. M. Newman, “An overview of
MOOS-IvP and a brief users guide to the IvP Helm autonomy software,” MIT,
Tech. Rep. MIT-CSAIL-TR-2009-028, 2009. [Online]. Available: http://hdl.handle.
net/1721.1/45569

[100] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The WHOI Micro-
Modem: an acoustic communications and navigation system for multiple plat-
forms,” in Proceedings of the IEEE Oceans Conference 2005, Washington, DC, 2005.

[101] R. Stokey, L. Freitag, andM. Grund, “A Compact Control Language for AUV acoustic
communication,” in Proceedings of the IEEEOceans Conference 2005, Brest, France, 2005.

160

http://acomms.whoi.edu/publications/
http://acomms.whoi.edu/publications/
http://link.aip.org/link/?JAS/34/1936/1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.358&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.358&rep=rep1&type=pdf
http://hdl.handle.net/1721.1/45569
http://hdl.handle.net/1721.1/45569

[102] T. Schneider and H. Schmidt, “The Dynamic Compact Control Language: A compact
marshalling scheme for acoustic communications,” in Proceedings of the IEEE Oceans
Conference 2010, Sydney, Australia, 2010.

[103] O. Dubuisson and P. Fouquart, ASN. 1: communication between heterogeneous systems.
Morgan Kaufmann Pub, 2000.

161

	Contents
	Introduction
	Motivation
	Historical Background
	Contributions

	Goby-Acomms: A modular acoustic networking framework for short-range marine vehicle communications
	Introduction
	DCCL: data marshalling (or source coding)
	queue: Dynamic priority based buffering
	amac: Medium Access Control
	modemdriver: Acoustic modem driver
	Goby1 Field Case Studies
	Goby2 Field Trials
	Conclusion

	Non-disruptive Technique: autonomous modeling to improve source coding
	Introduction
	Approach
	State Observation
	Arithmetic coding
	Results on experimental data
	Robustness
	Performance comparison to traditional approach
	Conclusion

	Disruptive Technique: autonomous navigation approaches to improve the physical link
	Introduction
	GRAM: Low power in-situ Generalized Acoustic Modeling
	GLINT10 Shallow water experiment
	Acoustic Connectivity in Deep Ocean Environments
	Conclusion

	Closing remarks
	Unified Command and Control for Heterogeneous Marine Sensing Networks
	Introduction
	Hierarchical configuration
	Network
	Google Earth interface for Ocean Vehicles (GEOV)
	Summary

	Goby-Acomms Details
	Goby1 DCCL XML Specification

	Bibliography

