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Problem | Collaborative Exploration

Multiple autonomous underwater vehicles (AUVs) tasked
on a mission:

e target tracking (submarines, marine mammals)

e geological survey

e mine countermeasures

Why multiple craft?
e specialization
e redundancy
e spatial
distribution




Problem | Acoustic Target Tracking
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o0 we get find source information:
ing: hydrophone array gives (left/right ambiguous)
ing through traditional beamforming. can break

ambiguity by vehicle motion.

e range: use waveguide invariant, or triangulate using
multiple craft.

e depth: modal energy distribution?
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Problem | Intervehicle Communication

Multiple AUVs must share data:

e broad operational goals

e status (pose and health)

e environmental data (sound speed profile)
e tracking data (probabilistic?)

Acoustic communication (acomms) is the only practical
long range solution, as electromagnetic waves are
rapidly attenuated in water.




Acomms | Network

We use an acoustic network based on the WHOI
MicroModem (rate C: ~25 kHz carrier)

e application layer: encoding: various message codecs,
queuing: pAcommsHandler

e transport layer: MOOS driver

e link layer: MicroModem firmware

e hardware: MicroModem (allows frequency shift / phase
shift keying (FSK/PSK) from 80 to 5400 bits/sec).
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Acomms | Dynamic Encoding

pCTDCodec - example of highly compressed encoding
scheme. need to send: time, sal, temp, depth, lat, lon. can
derive sound speed at receiver.

Ideas to save space:

e global key: preshared data comprising operational
parameters (i.e. some [valin,valn] NOt to be exceeded).
e.g. global key for salinity can be [25, 40] (or tighter for
specific region).

o key frame: within a packet, key all frames after the first
to the values in the first (assumes data samples are
related).

e dissolve byte boundaries.

e discard unused precision (decimal places). e.g. 12.200
becomes 12.2



Acomms | Dynamic Encoding

pCTDCodec - encoding scheme

Data (Sal, Temp, Depth) igg,Pgik§g6 bytes)
CCL Type (0x20) Decode
MOOS Routing (1 byte)
Global Key b Key Frame|(variable bits) Packet Key

Delta Frame|(variable bits)l

Delta Frame

Delta Frame \
Packet Key >@<— Global Key

Encode Delta Frame

First sample of packet "
———» Remaining samples Data (Sal, Temp, Depth)

Valkey encoded = round((valke, — valyin) * 10°¢'*°") (Similar to Excess N scheme)

Va/de/ta,encoded = round((va/de/ta — va/key + de/ta) * 10prec1510n)

SiZekey piece = Ceil(logy((Valmax — valmin) * 10precision))

SiZ€qelta piece] = ceil(log,((2 * delta) x 10PTec’s/oM)




Acomms | Dynamic Encoding

pCTDCodec: performance at GLINTOS8 sea trials (Pianosa,
Italy):

Used in three vehicles (Bluefin21, OEX, Folaga).

Given operational parameters:

e 32 byte (FSK) message: 3 CTD samples (85.3 bits / sample)

e 64 byte (PSK) message: 7 CTD samples (73.1 bits / sample)

e 256 byte (PSK) message: 31 CTD samples (66.1 bits / sample)

Compare to WHOI CCL format: 128 bits/sample

Qualitative observation at GLINTO8: dropped messages
seemed highly linked to vehicle depth. can we explain /
iImprove?



Ray Tracing (Intuition)

Plane wave in homogeneous fluid:
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Ray tracing follows path of rays launched at a fan from
a point source. High number of rays passing through the
receiver point corresponds to low transmission loss and
vice versa.



Ray Tracing (Mathematics)

Ray equations (derived from the Helmholtz equation):

dr d¢ 1 dc
g -l =T ay;
dz B % B 1 dc

ds ~ <O 4T ag
(r(s), z(s)) - trajectory of ray along arclength s
c(&(s), ((s)) - tangent vector to ray

with these initial conditions for a fan of rays each with
angle B to the source: c(é(s), <(s))

(r(s), 2(s)) o, 7

cos 0
= 8 0)
sin 6
PTECT )

.. rez
(I’S,ZS) - source pOS|t|on (S 5)

Reference: F.B. Jensen, W.A. Kuperman, M.B. Porter, H. Schmidt. Computational Ocean Acoustics.



Ray Tracing (BELLHOP model)

BELLHOP uses finite element rays: %

W(s)

Amplitude of the ray (Aqs(s)) is computed by the dynamic ray
equations:

dq dp 1 d’c _ _ 1
a9 _ - q(0) =0, p(0) =
ds Q) ds  c?(s)dn? (s) c(0)
n - direction normal to ray path 1 |c(s) cos(6) 1/2
An(s) =
o(s) 47| rc(0)qg(s)

For high frequency problems, ray tracing is fast
compared to normal modes and sufficiently accurate.

References: M.B. Porter, Y-C Liu. Finite Element Ray Tracing, Theoretical and Computational Acoustics
F.B. Jensen, W.A. Kuperman, M.B. Porter, H. Schmidt. Computational Ocean Acoustics.



Ray Tracing Setup | GLINTOS8

Experimental setup:

e single AUV performing a variety of missions that we can
consider here to place it at arbitrary locations (with range
< 2km) relative to communications buoy (30 m depth).

e water depth ~100 m (assume constant).

e silt bottom: ¢ = 1600 m/s, p = 1.8 g/cm~3, attenuation:
0.5 dB/A

Can we correlate modeled transmission loss to quality of

received messages?
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Ray Tracing Setup | GLINTOS8

Comparison of AUV Unicorn CTD Profile (Yoyo) and R/V Alliance Profile
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Ray Tracing Results | GLINTOS8

Glint08 Jul 31 2008 CTD 16:10 UTC | Messages: 12:16-19:41 UTC
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Ray Tracing Results | GLINTOS8

Glint08 Jul 31 2008 CTD 16:10 UTC | Messages: 12:16-19:41 UTC
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Ray Tracing Results | GLINTOS8

Glint Jul 31 08 CTD 16:10 UTC | Messages: 12:16—19:41 UTC
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Proposed Applications

Back to target tracking example:

e initial research suggests it is impractical to adjust depth
to improve beamforming on target.?

e therefore, it may be advantageous to make a depth-
varying communications optimizing behavior (leaving
heading / speed to behaviors responsible for present
mission)

Also, it may be useful to choose a message rate to satisfy
a desired probability of reception (as higher rates tolerate
less error).

1 K. Cockrell, H. Schmidt. Depth dependence of plane wave beamformed data with a horizontal array
in a waveguide. Presentation at 153rd ASA meeting, New Orleans.



Acomms Improvement Behavior

Scenario:

e AUV undergoing mission that requires certain path in xy-
plane but does not mandate any particular depth (e.g.
target tracking)

e AUV has a certain (known) maximum dive/surface rate.

e want to minimize depth maneuvers to
keep array straight and save power.

closest point
of approach

comms buoy
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Acomms Improvement Behavior

Glint08 Jul 31 2008 CTD 16:10 UTC | Messages: 12:16-19:41 UTC
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Hypothesis Testing

frin (1| Ho)
frn (/| Hy)

choose Hj if > 1)

n = P1/Py to minimize error.

frin(l|Hy)

Conditional Probability

| (ray tracing calculated TL)

Want to “decide” before sending a message whether it will
be received

e hypothesis 0: message will be received

e hypothesis 1: message will be dropped



Hypothesis Testing | GLINT Jul 31 08
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Proposed Multivehicle Experiment

e small environmental AUV “~~y takes sound velocity profile
with depth yoyo.

e small AUV transmits profile acoustically to two (or more)
tracking AUVs with arrays.

e array AUVs localize and track source, varying depth to
iImprove communication.
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