
The Dynamic Compact Control Language Version 3
Toby Schneider, Stephanie Petillo

GobySoft, LLC
North Falmouth, MA

Emails: toby@gobysoft.org,
stephanie@gobysoft.org

Henrik Schmidt
Massachusetts Institute of Technology

Center for Ocean Engineering
Cambridge, MA

Email: henrik@mit.edu

Christopher Murphy
Bluefin Robotics

Quincy, MA
Email: cmurphy@bluefinrobotics.com

Abstract—The Dynamic Compact Control Language (DCCL)
provides a flexible and efficient way to marshall object-messages
into very small datagrams. It is well suited to transmission over
very low throughput links with small maximum transmission
units, such as those commonly used in underwater (acoustic
modem) and sea-surface (satellite) applications. DCCL provides
a interface description language (IDL) and an extensible set
of encoding/decoding algorithms. For example, these messages
could be sensor data samples, autonomous underwater vehicle
positions, or command and control messages for a fleet of vehicles
or instruments.

The DCCL IDL allows the message designer to bound message
fields based on the physical origin of the data sample, including
integrated support for static (compile-time) dimensions and units.
The default encoders provide reasonable performance for a
variety of applications; where more control is desired the DCCL
library user can provide custom encoders/decoders for one or
more of a given message’s fields.

I. INTRODUCTION

Inter-vehicle and vehicle-to-operator digital communication
is an essential component of collaborative autonomous vehi-
cle missions. However, the available links (such as acoustic
modems, satellite radio, and ground-wave radio) tend to have
very low throughput (often less than 100 bits per second)
due to the physical limitations of the carrier and the power
constraints of the autonomous platforms. See Fig. 1 for a
comparison of the nominal latencies and bandwidth for these
“slow” links and typical terrestrial links. Thus, the information
throughput available for collaborative underwater vehicle tasks
is low unless significant source encoding is performed.

Due to this need for efficient source encoding, existing
data marshalling schemes for marine vehicle communication
are often tailored specifically to a given application. As the
number of fielded systems grow, the need for interoperability
has also grown. The Dynamic Compact Control Language
(DCCL) provides an interface description language (IDL) for
marshalling and encoding object-based messages for transmis-
sion over very slow links. This IDL also includes optional
support for static (compile-time) dimensional analysis using
common (e.g. SI) or user-defined systems of units.

In addition to the IDL, the open source DCCL reference
library (libdccl3) provides a default set of numeric encoders
that provide acceptable performance for many applications.
However, many applications require specific encoders for
optimal performance, so DCCL provides an easily extensible
shared library plugin mechanism for user-provided encoders.

101 102 103 104 105 106 107 108 109
10−4

10−3

10−2

10−1

100

101

102

103

throughput (bps)

on
e−

w
ay

 la
te

nc
y

(s
)

Gbps copper (IEEE 802.3ab)
Wireless ethernet (IEEE 802.11G)
US Broadband Average
Iridium Satellite (RUDICS)
Mars to Earth (Opportunity/Spirit)
WHOI Acoustic Micro−Modem
DARPA VRC (uplink)
DARPA VRC (downlink)
DRC2013

Fig. 1. Logarithmic comparison of nominal latency and bandwidth values
for commonly encountered network links (first three quantities) with links
used in sea, space, and disaster-relief (as envisioned by the DARPA Robotics
Challenge [DRC]) robotics. DCCL was originally designed for the acoustic
modem regime represented by the WHOI acoustic Micro-Modem and has been
adopted for use on the Iridium and disaster relief (DARPA Virtual Robotics
Challenge [VRC] and DRC2013 [1]) links.

This design aims to provide enough generality to be stan-
dardizable, but with the flexibility to tackle specific encoding
problems when necessary.

This paper presents the design and several applications of
DCCL version 3 (DCCL3), the first version released as a
standalone project (prior versions are bundled with the Goby
Underwater Autonomy Project [2]). The aim of the standalone
DCCL3 release is to expand the use of the project into other
robotics domains with similar physical link constraints, such
as degraded terrestrial links in the event of natural or man-
made disasters. While preserving backwards-compatibility
with DCCL2, DCCL3 adds compile-time dimensions and units
support and improves the performance of the default encoders.
The DCCL3 source code and technical documentation are
freely available from http://libdccl.org.

II. DCCL INTERFACE DESCRIPTION LANGUAGE

The DCCL IDL uses the Google Protocol Buffers (GPB)
language [3] as the framework for defining messages; an
example is given in Fig. 2a. GPB provides a language-neutral
way to define object-based messages and a well-documented
way to extend its language. Each message is defined as one
or more fields, where the fields can be any of a number
of typical primitive types (various floating point and integer

import "dccl/protobuf/option_extensions.proto";

message CommandMessage
{
 option (dccl.msg) = { id: 125 max_bytes: 32 codec_version: 3 }

 required int32 destination = 1
 [(dccl.field) = { max: 31 min: 0 in_head: true }];
 optional string description = 2
 [(dccl.field).omit = true];
 enum SonarPower { NOMINAL = 10; LOW = 5; OFF = 0; }
 optional SonarPower sonar_power = 10;
 required double speed = 11
 [(dccl.field) = { units { base_dimensions: “LT^-1” }
 max: 2.0 min: -0.5 precision: 1 }];
 repeated int32 waypoint_depth = 12
 [(dccl.field) = { units { base_dimensions: “L” }
 max: 40 min: 0 max_repeat: 4 }];
}

8
5

3
2

5
[3

, 2
7]

H
ea

de
r

(1
6b

)
Bo

dy
 (o

pt
io

na
lly

 e
nc

ry
pt

ed
)

(1
0b

 to
 3

4b
)

[0
,6

]

MSB

LSB

(a) Message definition using DCCL. This message definition is compiled
into an analogous C++ class using the standard GPB compiler protoc
(with the DCCL plugin if static units support is desired). On the left is
the size of each field in bits.

xenc (bin) xenc (dec) x

11111010 250 id: 125 (CommandMessage)
00011 3 destination: 3
000 (padding)
10 2 sonar_power: LOW (i = 1)
10001 17 speed: 1.2
100 4 [10 15 10 12] waypoint_depth: [10, 15, 10, 12]
[001010
 001111
 001010
 001100]
000000 (padding)

hex: fa 03 46 2a 8f c2 00
bin: 11111010 00000011 01000110 00101010 10001111 11000010 00000000

LSB MSB

(b) Example of encoding the DCCL message in (a) for a representative
set of values. The table gives the unencoded x and encoded xenc values;
below the table is the encoded message in little endian format (both in
hexadecimal and binary notation).

Fig. 2. Definition and encoding example of a basic DCCL message for
commanding an underwater vehicle to perform several depth maneuvers while
running a sonar. The same message is 21 bytes using the GPB default encoder,
compared to 7 bytes using DCCL.

types, booleans, strings, etc.). Fields can also be instantiations
of a child message, also referred to as an embedded message
field. DCCL extends the GPB language to add additional
metadata which provides a framework for more efficient
default encoders and user-defined custom encoders (discussed
in detail in Section III).

The additional metadata offered by the DCCL IDL is in two
categories: message extensions which modify the entire DCCL
message, and field extensions which modify a given field
of the message. Table I provides the set of available DCCL
message and field extensions. The DCCL message extensions
provide a numeric identification tag (“id”) for the message
which is sent to allow the decoder to know which message
is to be decoded. In addition, the message extensions allow
the message designer to optionally control which codecs are
used to decode a given message. The field extensions provide

additional bounds for the value of that field, as well a means
of controlling the codec to be used on a field-by-field basis.

A. Static Units of Measure Support

Since the DCCL field bounds (min, max, and precision) are
often based off the physical origins of the data, it is important
to define the units of measure of those fields. The DCCL
IDL has support for defining the units of a numeric field’s
quantity. When using the DCCL C++ library, this support is
directly connected to the Boost Units C++ library [4]. The
units of a given field are given by two parameters: the physical
dimension (e.g. length, force, mass, etc.), and the unit system
which defaults to the International System of Units (SI) [5].
The units of the field can also be specified directly, outside
of a canonical system (e.g. nautical mile, fathom, yard, knot,
etc.).

The fields defined with units generate additional C++ meth-
ods using the DCCL plugin to the GPB compiler (protoc).
These additional methods provide accessors and mutators for
the dimensioned Boost Units quantities, with full static “unit
safety”1, and correct conversions between different units of
the same dimensions (e.g. feet to meters).

The Units field extension has the following options:

• base_dimensions (string): Specifies the dimensions
of the field as a combination of powers of the base
dimensions given in Table II. For example, acceleration
would be defined as "LTˆ-2".

• derived_dimensions (string): As a convenience
alternative to the base_dimensions specification,
any of the Boost Units “derived dimensions” can be
used. For example instead of base_dimensions:
"Lˆ-1 M Tˆ-2" for pressure, one can use
derived_dimensions: "pressure".
Multiplication and division of derived dimensions
is also supported using the “*” and “/” operators.

• system (string, defaults to “si”): A boost::units or user-
defined system of units to use for this field. Defaults to
the SI system with base units of kelvin (temperature),
second (time), meter (length), kilogram (mass), candela
(luminous intensity), mole (amount of substance) and
ampere (electric current).

• relative_temperature (bool, defaults to false):
A special extension only used for temperature fields.
Setting this to true means that the temperature is relative
(i.e. a difference of absolute temperatures) instead of an
absolute temperature. This matters to support correct unit
conversions between different temperature systems. For
example, relative degrees Kelvin are the same as relative
degrees Celsius, but the absolute scales differ by 273.15
degrees.

1We define unit safety as static (compiler-checked) dimensional analysis.
The term is a blending of the (computer science) notion of type safety
with (physical) dimensional analysis. For example, in a unit-safe system, the
compiler will not allow the user to set a field with dimensions of length to a
quantity of hours.

TABLE I
DEFINITION OF THE DCCL INTERFACE DESCRIPTION LANGUAGE

Message Extensionsa

Extension Name Extension
Type

Explanation Default

(dccl.msg).id int32 Unique identifying integer for this message -
(dccl.msg).max bytes uint32 Enforced upper bound for the encoded message length -
(dccl.msg).codec version int32 Default codec set to use (corresponds to DCCL major version) 2
(dccl.msg).codec string Name of the codec to use for encoding the base message. dccl.default2
(dccl.msg).codec group string Group of codecs to be used for encoding the fields. dccl.default2

Field Extensionsb

Extension Name Extension
Type

Explanation Applicable Fields Symbol Default

(dccl.field).precision int32 Decimal digits to preserve; can be negative. double, float p 0
(dccl.field).min double Minimum value that this field can contain (inclusive) (u)intNc, double, float xm -
(dccl.field).max double Maximum value value that this field can contain (inclusive) (u)intN, double, float xM -
(dccl.field).max length uint32 Maximum length (in bytes) that can be encoded string, bytes LM -
(dccl.field).max repeat uint32 Maximum number of repeated values. all repeated rM -
(dccl.field).codec string Codec to use for this field (if omitted, the defaults given in

Table III are used)
all - -

(dccl.field).omit bool Do not include field in encoded message (default = false) all - False
(dccl.field).units Unitsd Physical dimensions and units system information (u)intN, double, float - -
a Extensions of google.protobuf.MessageOptions
b Extensions of google.protobuf.FieldOptions
c (u)intN refers to any of the integer types: int32, int64, uint32, uint64, sint32, sint64, fixed32, fixed64, sfixed32, sfixed64
d See Section II-A for definition of the Units class.

TABLE II
BASE DIMENSIONS IN DCCL

Physical dimension Symbol character
length L
time T
mass M
plane angle A
solid angle S
current I
temperature K
amount N
luminous intensity J
information B
dimensionless -

• unit (string): As an alternative to the dimensions
and system specification, the field can be set to use
particular (typically non-SI) units. A few examples of
such units that are still often encountered in the marine
domain are unit: "metric::nautical_mile",
unit: "metric::bar", and unit: "us::yard".

For example, to set an AUVStatus message’s x and y fields
to meters (the default for the base dimension of length, since
the default system is SI), and then later access them as nautical
miles, one can use this C++ example:

using namespace boost::units;
typedef metric::nautical_mile_base_unit::unit_type

NauticalMile;

AUVStatus status;
status.set_x_with_units(1000*si::meters);
status.set_y_with_units(500*si::meters);

quantity<NauticalMile> x_nm(status.x_with_units());
quantity<NauticalMile> y_nm(status.y_with_units());

The value of x_nm is 0.54 nautical miles and y_nm is 0.27
nautical miles.

III. DCCL ENCODERS/DECODERS

From the DCCL IDL, the user can instantiate a message in
C++ and then encode it using the DCCL reference library. Un-
less otherwise specified, fields are encoded using the DCCL3
defaults. For special applications, user-defined codecs can be
used in place of some or all of the default encoders.

A. Defaults

The DCCL default field encoders/decoders (“codecs”)
achieves lossless compression for all numeric fields through
bounded types with customizable ranges and decimal preci-
sions. For example, an integer (perhaps representing vehicle
depth in meters) with minimum value of 0 and maximum value
of 5000 takes 13 bits instead of the 32 or 64 bits typically used
for an integer type. As a complete example, Fig. 2b gives the
encoding for a realization of the message defined in Fig. 2a.

The precise mathematical formulations of the default field
encoders are given in Table III (the decoders are exactly
the inverse operation, so they are omitted to save space).
Intuitively, the codecs are split into two groups: numeric
(integers, floats, enumerations2, booleans3) and others (strings,
bytes).

Numeric values are all encoded essentially the same way.
Integers are treated as floating point values with zero precision,
where precision is defined as the number of (base 10) decimal
places to preserve (e.g. precision = 3 means round to the

2Enumerations can be considered integers with bounds based on the size
of the defined set of values.

3Booleans can be considered integers with only two possible values: 0 or
1.

closest thousandth, precision = -1 means round to the closest
tens). Thus, integer fields can also have negative precision,
if desired. Fields are bounded by a minimum and maximum
allowable value, based on the underlying source of the data.

To encode, the numeric value is rounded to the desired
precision, and then multiplied by the appropriate power of
ten to make it an integer. Then it is increased or decreased so
that zero (0) represents the minimum encodable value. At this
point, it is simply an unsigned integer. To encode the optional
field’s “not set” state, an additional value (not an additional
bit) is reserved. To allow “not set” to be the zero (0) encoded
value, all other values are incremented by one.

This default encoder assumes unset fields are rare. If a
message commonly has unset optional fields, it would be more
efficient to implement a “presence bit” encoder that uses a
separate bit to indicate if a field is set or not. These are
two extremes of the more general purpose idea of an entropy
encoder, such as the arithmetic encoder. In that case, “not set”
is simply another symbol that has a probability mass relative
to the actual values to capture the frequency with which fields
are set or not set.

B. Custom Encoders

Along with the default encoder reference implementation,
the DCCL library includes two sets of custom encoders:
a set that provides WHOI Compact Control Language [6]
compatibility, and a set that implements an arithmetic encoder
for a user-provided data probability model. This latter set
can be used to provide highly compact encoding of data
streams with low entropy. Such data sources are those that
can be modeled well a priori (e.g. physical oceanographic
measurements from a Conductivity-Temperature-Depth (CTD)
sensor, navigation trajectory of the vehicle, or target track
predictions) and thus only the difference between the model
and the data needs to be sent (which is therefore inexpensive
to send with a properly designed arithmetic encoder model).
An application of the DCCL arithmetic encoder for minimally
encoding the position of an autonomous underwater vehicle is
given in [7].

Any DCCL3 library user can define their own set of codecs
by creating a shared library that subclasses the appropriate
DCCL field codec classes. Custom codecs can use any algo-
rithm they wish as long as they conform to two requirements:
1) codecs must always by able to produce a maximum and
minimum encoded size based on the message’s description
only, and 2) the decoder must consume the exact number of
bits that the encoder produced.

C. Encoding Algorithm

The encoded DCCL message is split into three conceptual
sections: the DCCL id (which identifies to the decoder which
message is to be decoded), the header, and the body as shown
in Fig. 2a. Either the header or the body may be empty (zero
bytes). The main purpose of the header is to provide a nonce
for encrypting the body of the message, if desired. For best

results, this assumes the header includes a constantly varying
value, such as a timestamp.

DCCL messages are always encoded and decoded from
the least significant bit to the most significant bit, where ap-
pending new bits to an existing Bitset means concatenating the
new bits with the existing Bitset starting at the most significant
bit of the existing Bitset. The field Codec encode functions are
given in Table III. Given that, the DCCL encoding process is
defined by the following encode algorithm:

1: function ENCODE(DCCL Message m)
2: Bitset b, bid, bhead, bbody ← ∅
3: bid ← EncodeId(m.id)
4: append bid to b
5: Fields fhead ← m.fields where in head is True
6: bhead ← EncodeFields(fhead)
7: append bhead to b
8: Fields fbody ← m.fields where in head is False
9: bbody ← EncodeFields(fbody)

10: optionally encrypt bbody using bhead as a nonce.
11: append bbody to b
12: return b
13: function ENCODEID(Id i)
14: Bitset bid ← ∅
15: Codec c ← default (dccl.msg).id or user-defined

codec.
16: bid ← c.encode(i)
17: return bid
18: function ENCODEFIELDS(Fields fields)
19: Bitset bfields ← ∅
20: for all fields as f do
21: Codec c← FindCodec(f)
22: Bitset bf ← ∅
23: if f is an child message then
24: bf ← EncodeFields(f .fields)
25: else
26: bf ← c.encode(f)
27: append bf to bfields

28: while bf mod 8 is not 0 do
29: append 0 to bfields

30: return bfields

31: function FINDCODEC(Field f)
32: if (dccl.field).codec is set then return that codec.
33: else if f is a child message and (dccl.msg).codec is set

in the child message definition then return that codec.
34: else if (dccl.msg).codec group is set in the parent

message then return that codec.
35: else
36: return the codec for (dccl.msg).codec version

IV. EXAMPLE MESSAGES AND PERFORMANCE

DCCL can send any type of data that can be defined as an
object-oriented message. However, it is often valuable to have
several examples for commonly used problems. In the marine
sensors and vehicles domain, we can often split data into three
categories:

TABLE III
DEFAULT DCCL FORMULAS FOR ENCODING THE FIELDS FOR DIFFERENT DATA TYPES.

GPB Type Size (bits) (q) Encodea

(dccl.msg).id header (varint)

int32 8 if x ∈ [0, 128)
16 if x ∈ [128, 32768)

xenc =

{
x · 2 if x ∈ [0, 128)
x · 2 + 1 if x ∈ [128, 32768)

required fields

bool 1 xenc =

{
1 if x is true
0 if x is false

enum dlog2(
∑
εi)e xenc = i

(u)intN dlog2(xM − xm + 1)e xenc =

{
x− xm if x ∈ [xm, xM]
0 otherwise

double, float dlog2((xM − xm) · 10p + 1)e xenc =

{
nint((x− xm) · 10p) if x ∈ [xm, xM]
0 otherwise

string (of length L) dlog2(LM + 1)e+ min(L,LM) · 8 xenc = L+
∑min(L,LM)

n=0 x[n] · 28n+dlog2(LM+1)e

bytes LM · 8 xenc = x
Message

∑
qsubfields xenc for each field of Message appended to the previous

(recursive encoding).
optional fields

bool 2 xenc =

 2 if x is true
1 if x is false
0 if x is not set

enum dlog2(1 +
∑
εi)e xenc =

{
i+ 1 if x ∈ {εi}
0 otherwise

(u)intN dlog2(xM − xm + 2)e xenc =

{
x− xm + 1 if x ∈ [xm, xM]
0 otherwise

double, float dlog2((xM − xm) · 10p + 2)e xenc =

{
nint((x− xm) · 10p) + 1 if x ∈ [xm, xM]
0 otherwise

string same as required; empty string treated as “not set”

bytes 1 + LM · 8 if x is set
1 if x is not set xenc =

{
x · 2 + 1 if x is set
0 if x is not set

Message 1 +
∑
qsubfields if x is set

1 if x is not set xenc =

{
required xenc appended to 1 if x is set
0 if x is not set

repeated fields (of size r)
all dlog2(rM + 1)e+ rM · qrequired From LSB to MSB: 1. Size r is encoded using the required

(u)intN encoder (with xm = 0, xM = rM). 2. required xenc

is calculated for each repeated element then appended to the
previous encoded element.

Symbols (in addition to those defined in Table I):
· x is the original (and decoded) value.
· x[n] is the ASCII value of the nth character of the string.
· xenc is the encoded value.
· εi is the ith child of the enumeration definition (where i = 0, 1, 2, . . .), not the value assigned to the enum (which need not be sequential).
· nint(x) means round x to the nearest integer.

a If data are out of range (e.g. x > max or x < min), for optional fields they are encoded as zero (xenc = 0) and decoded as not set; for required fields,
they are encoded as the min value. In the case of strings whose length exceeds LM , the string is truncated to LM before encoding. Thus, care should be
taken not to exceed the min and max values to ensure the message is losslessly decodable.

1) Command and control messages: messages to be sent to
reconfigure an AUV mission or sensor settings. Fig. 2
provides a small complete example of a message that
could be sent to command a vehicle to traverse a set of
waypoints at a given speed. Clearly, one could expand
this 7-byte message to include much more information
while still fitting in the O(10-100) byte maximum trans-
mission units seen on marine data links (e.g. the WHOI
Micro-Modem [8] uses 32 to 256 bytes; Iridium Short-
Burst Data is 270-1960 bytes).

2) Vehicle navigation report messages: AUVs typically
provide a navigation estimate (position, depth) and ori-
entation angles that can be used to monitor missions and
geolocate sensor samples. Fig. 3 gives a possible DCCL

message for such a use (which is modeled off a similar
message that the MIT Laboratory for Autonomous Ma-
rine Sensing Systems has used for all vehicle missions
since 2009).

3) Sensor data messages: A Conductivity-Temperature-
Depth (CTD) sensor is a widely used oceanographic
instrument that measures conductivity of the seawater
(from which salinity is computed), temperature, and
pressure (from which depth is computed). These values
can also be used to empirically compute the compres-
sional speed of sound and the density of the water. Fig. 4
provides a means to transmit a sample with bounds that
would work in much of the world’s oceans shallower
than 6000 meters. Increasing the bounds would make

import "dccl/protobuf/option_extensions.proto";

message AUVStatus {
 option (dccl.msg) = { id: 122
 max_bytes: 32
 codec_version: 3 };

 // Header
 required double timestamp = 1 [(dccl.field) = { codec: "_time" in_head: true }];
 required int32 source = 2 [(dccl.field) = { min: 0 max: 31 in_head: true }];
 required int32 destination = 3 [(dccl.field) = { min: 0 max: 31 in_head: true }];

 // Body
 required double x = 4 [(dccl.field) = { units { base_dimensions: "L" }
 min: -10000 max: 10000 precision: 1 }];
 required double y = 5 [(dccl.field) = { units { base_dimensions: "L" }
 min: -10000 max: 10000 precision: 1 }];

 required double speed = 6 [(dccl.field) = { units { base_dimensions: "LT^-1" }
 min: 0 max: 20.0 precision: 1 }];
 required double heading = 7 [(dccl.field) = { units { derived_dimensions: "plane_angle"
 system: "angle::degree" }
 min: 0 max: 360.0 precision: 1 }];

 optional double depth = 8 [(dccl.field) = { units { base_dimensions: "L" }
 min: 0 max: 6500 precision: 0 }];
 optional double altitude = 9 [(dccl.field) = { units { base_dimensions: "L" }
 min: 0 max: 500 precision: 1 }];
 optional double pitch = 10 [(dccl.field) = { units { derived_dimensions: "plane_angle" }
 min: -1.57 max: 1.57 precision: 2 }];
 optional double roll = 11 [(dccl.field) = { units { derived_dimensions: "plane_angle" }
 min: -1.57 max: 1.57 precision: 2 }];
 optional MissionState mission_state = 12;
 enum MissionState { IDLE = 0; SEARCH = 1; CLASSIFY = 2; WAYPOINT = 3; }

 optional DepthMode depth_mode = 13;
 enum DepthMode { DEPTH_SINGLE = 0; DEPTH_YOYO = 1;
 DEPTH_BOTTOM_FOLLOWING = 2; }
}

Fig. 3. Example DCCL message definition for reporting the status (position,
pose, and basic mission state) of an autonomous underwater vehicle. x and
y are assumed to be offsets from an operation datum using a local cartesian
or Universal Transverse Mercator coordinate system.

import "dccl/protobuf/option_extensions.proto";

message CTDMessage
{
 option (dccl.msg) = { id: 123 max_bytes: 32 codec_version: 3 };

 required double temperature = 1 [(dccl.field) = { units { derived_dimensions: "temperature"
 system: "celsius" }
 min: 0 max: 30 precision: 1 }];
 required int32 depth = 2 [(dccl.field) = { units { derived_dimensions: "length" }
 min: 0 max: 6000 }];
 required double salinity = 4 [(dccl.field) = { min: 10 max: 40 precision: 1 }];
 required double sound_speed = 5 [(dccl.field) = { units { base_dimensions: "LT^-1" }
 min: 1450 max: 1550 precision: 1 }];
}

Fig. 4. Example DCCL message definition for reporting a sample from a
Conductivity-Temperature-Depth sensor (where salinity and sound speed are
pre-computed using the appropriate formulas).

it applicable for more environments; decreasing them
would make smaller messages for more targeted appli-
cations (e.g. for use in shallow Mediterranean waters,
one could increase the salinity minimum and decrease
the depth maximum).

DCCL provides several qualitative benefits: for example,
type safety and consistent applications of units with direct C++
support. In addition, it is possible to quantitatively evaluate
the default encoder performance in terms of the size of the
serialized messages. For this, we chose two baselines: the
GPB built-in encoder, and the Python packed binary data class
(struct) which is similar to the various ad-hoc techniques
used for packing binary data that the authors have seen used
in the field. Table IV gives the encoded message size in
bytes for these two baselines and DCCL on the three example
messages included in this paper. In these cases, DCCL gives
an increased compression ratio of about 50 to 80% over these
other marshalling schemes. This can be the difference between
sending useful sensor data from the vehicle during the mission
run and only sending navigation updates.

V. CONCLUSION

The Dynamic Compact Control Language version 3 pro-
vides a concise type-safe and unit-safe interface description
language for object-based messages to be transmitted between
ocean robots, “smart” sensors (e.g. data buoys, Argo floats)
and human on ships or shore.

From the DCCL description of the message, the default
or user-defined encoders can be used to achieve highly com-
pressed datagrams suitable for transmission over the very low
throughput links present in this domain.

We believe DCCL has suitability for compression of many
types of data in other domains (e.g. outer space, human-
restricted disaster sites) where highly compact messages are
of importance due to the limitations of the physical links.

ACKNOWLEDGMENT

The authors would like to thank the many ship crews and
sea-going organizations that have allowed this work to be
tested and refined outside of an office, without which it would
undoubtedly be less useful. We would also like to thank all
our science teachers and professors who taught us that a value
without a unit is meaningless. Finally, thanks to the MIT
DARPA Robotics Challenge (DRC) team for allowing us an
opportunity to use and refine DCCL in a non-marine domain.

REFERENCES

[1] M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schneider,
H. Dai, C. P. D’Arpino, R. Deits, M. DiCicco, D. Fourie et al., “An archi-
tecture for online affordance-based perception and whole-body planning,”
Journal of Field Robotics, 2014.

[2] T. Schneider and H. Schmidt, “Goby-Acomms version 2: extensible
marshalling, queuing, and link layer interfacing for acoustic telemetry,”
in 9th IFAC Conference on Manoeuvring and Control of Marine Craft,
Arenzano, Italy, 2012.

[3] Google, “Protocol buffers.” [Online]. Available: https://developers.google.
com/protocol-buffers/

[4] M. C. Schabel and S. Watanabe, “Boost units.” [Online]. Available:
http://www.boost.org/doc/libs/1 57 0/doc/html/boost units.html

TABLE IV
DCCL PERFORMANCE

Message Example Instantiation GPB
Size
(bytes)

Python
struct [9]
Size (bytes)

DCCL
Size
(bytes)

DCCL
Compres-
sion

CommandMessage (Fig. 2) destination: 3, sonar power: LOW, speed: 1.2, waypoint depth: [10,
15, 10, 12]

21 15 7 53-67%

AUVStatus (Fig. 3) timestamp: 1427316658, source: 1, destination: 2, x: 2326, y: 1100,
speed: 1.1, heading: 152.4, depth: 2150, altitude: 100, pitch: 0.01,
roll: -0.02, mission state: SEARCH, depth mode:
DEPTH BOTTOM FOLLOWING

90 48 19 60-79%

CTDMessage (Fig. 4) temperature: 10, depth: 50, salinity: 32, sound speed: 1485 29 18 7 61-76%

[5] I. B. of Weights, Measures, B. N. Taylor, and A. Thompson, “The
international system of units (SI),” 2001.

[6] R. P. Stokey, L. E. Freitag, and M. D. Grund, “A compact control
language for AUV acoustic communication,” in Oceans 2005-Europe,
vol. 2. IEEE, 2005, pp. 1133–1137.

[7] T. Schneider and H. Schmidt, “A state observation technique for highly
compressed source coding of autonomous underwater vehicle position,”
Oceanic Engineering, IEEE Journal of, vol. 38, no. 4, pp. 796–808, 2013.

[8] E. Gallimore, J. Partan, I. Vaughn, S. Singh, J. Shusta, and L. Freitag,
“The WHOI MicroModem-2: A scalable system for acoustic communi-
cations and networking,” in OCEANS 2010. IEEE, 2010, pp. 1–7.

[9] Python Software Foundation, “The Python Standard Library: struct
– interpret strings as packed binary data.” [Online]. Available:
https://docs.python.org/2/library/struct.html

