
Autonomous Adaptive Environmental Assessment and Feature Tracking via Autonomous Underwater Vehicles

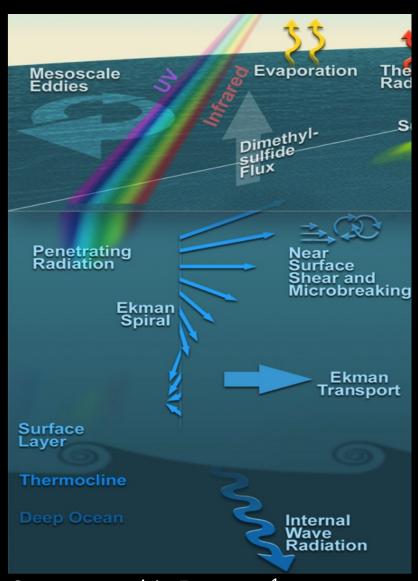
- Tracking the Thermocline -

Stephanie Petillo MIT/WHOI Joint Program

Arjuna Balasuriya & Henrik Schmidt

MIT Laboratory for Autonomous Marine Sensing Systems

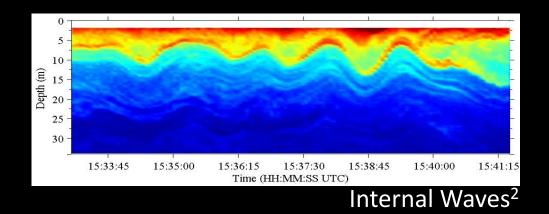
OCEANS '10 IEEE Conference Sydney, Australia – 27 May, 2010



Overview

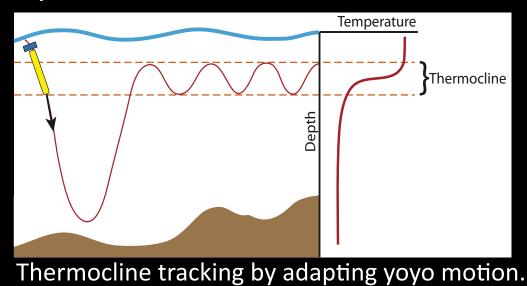
- Background & Motivation
- AAEA & Feature Tracking
 - Problem Definition
 - Theory & Algorithm
 - Implementation on AUVs
 - pEnvtGrad
- Field Experiments & Results
- Summary

Background & Motivation: The Missing Piece


- Bridge Science and Engineering
- Incorporate real-time instrumental (e.g., CTD) data into adaptive sampling behaviors on board AUVs
 - Track oceanographic features
 - Thermoclines, haloclines, pycnoclines
 - Sound speed
 - O₂ & Cl concentrations, fluorescence
 - Light attenuation
 - Fronts
 - Currents

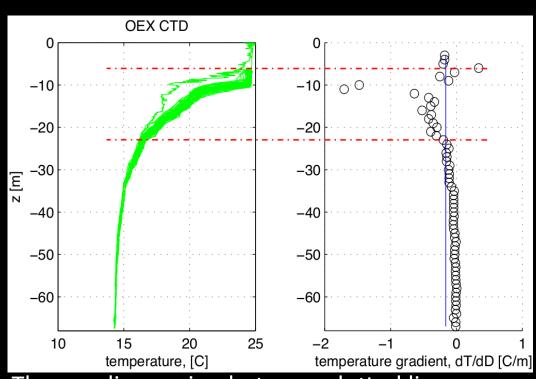
Oceanographic Features¹

Background & Motivation: Thermocline Tracking


- Example and proof-of-concept of AAEA & feature tracking
- Present in most large bodies of water
- Most AUVs are equipped with a CT or CTD sensor
- Widely studied in the oceanographic community
 - Acoustic communications
 - Biology phytoplankton, plankton and plankton-eating fish
 - Physical oceanography surface mixing, internal waves

Autonomous Adaptive Environmental Assessment (AAEA) & Feature Tracking: *Problem Definition*

- Vehicle moving through the water column in time and space
- Where is the thermocline (or any feature)?
 - Based on just the environmental information the AUV collects and processes on board
- Completely autonomous (MOOS-IvP autonomy architecture)
- Quantitatively define thermocline

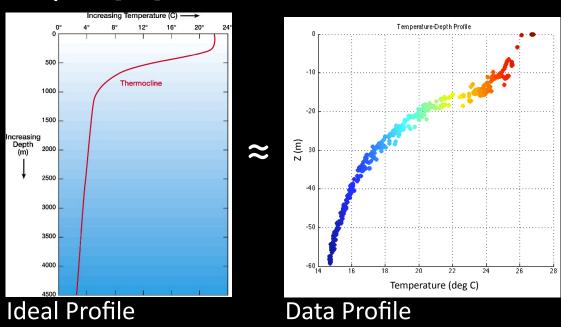

AAEA & Feature Tracking: Thermocline Definition

Qualitative

 "the region in a thermally stratified body of water which separates warmer surface water from cold deep water and in which temperature decreases rapidly with depth" [www.merriam-webster.com]

Quantitative

The depth range
 over which the
 vertical derivative of
 temperature, dT/dz,
 exceeds a threshold
 value



Thermocline region between dotted lines

AAEA & Feature Tracking: Algorithm

In theory...

- Ideal temperature profile at some (Lat, Lon)
- T = temperature [°C]
- $z = depth[m, + \uparrow]$
- H = water depth [m]

AAEA & Feature Tracking: Algorithm, cont.

 Calculate slope of the temperature curve at each point in depth (z')

- Average the vertical derivatives over the span of the water column
 - Threshold value

$$\left(\frac{\partial T}{\partial z}\right)_{tot_avg} = \frac{1}{H} \int_{z'=0}^{-H} \frac{\partial T}{\partial z} \bigg|_{z'} dz'$$

AAEA & Feature Tracking: Algorithm, cont.

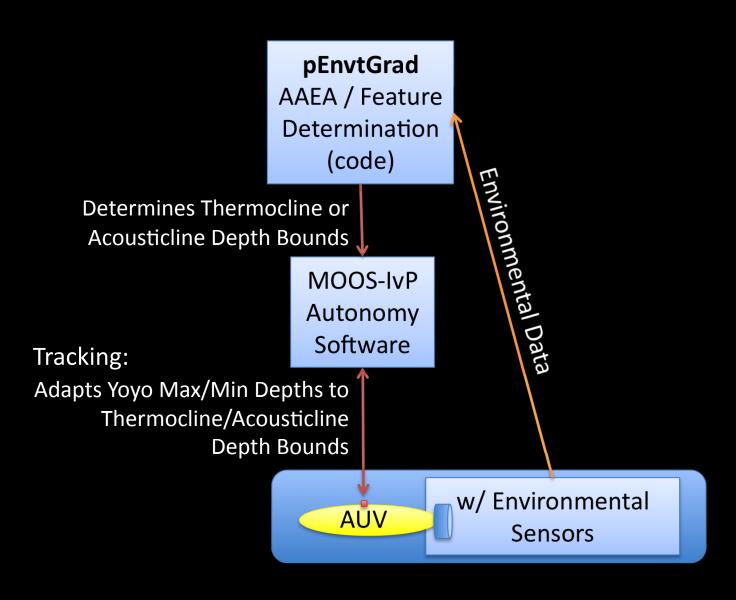
 Determine upper and lower depth limits of the thermocline

```
if: \left| \frac{\partial T}{\partial z} \right|_{z'} \ge \left( \frac{\partial T}{\partial z} \right)_{tot\_avg}

then: z' is within the thermocline (z_{in\_thermocline})

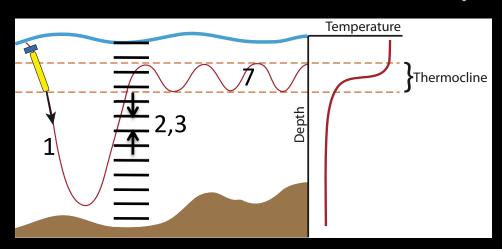
upper\_thermocline\_depth \equiv -\max(z_{in\_thermocline})

lower\_thermocline\_depth \equiv -\min(z_{in\_thermocline})
```

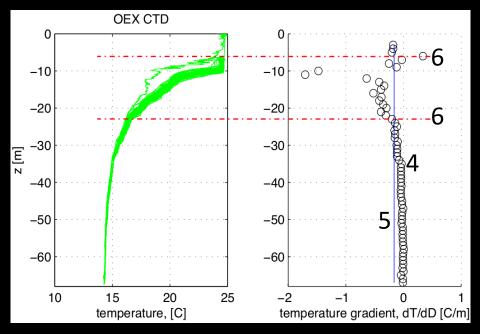

 An analogous determination could be done for the region of maximum sound speed variation over depth, 'acousticline' (or halocline or pycnocline)

AAEA & Feature Tracking: Implementation

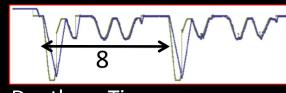
- pEnvtGrad (process: Environmental Gradient)
 - Environmental gradient determination process
 - used with adaptive yoyo behavior
 - Quantitatively defines and detects
 - Thermocline
 - Acousticline



AAEA & Feature Tracking: Implementation, cont.



AAEA & Feature Tracking: pEnvtGrad – Process

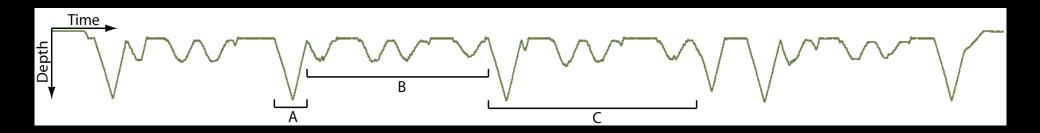

- Track Gradients: Temperature, Sound Speed -

- 1) Initial yoyo
- 2) Create depth "bins"
- 3) Average T in bin
- 4) Vertical derivative $(\Delta T/\Delta z)$ over adjacent bins 'o'

- 5) Threshold Average $\Delta T/\Delta z$ over water column
- 6) Determine thermocline range $(max|\Delta T/\Delta z|)$ '- - - '
- 7) Track! adjust yoyo limits continuously
- 8) Periodic reset

Depth vs. Time

Overview


- Background & Motivation
- AAEA & Feature Tracking
 - Problem Definition
 - Theory & Algorithm
 - Implementation on AUVs
 - pEnvtGrad
- Field Experiments & Results
- Summary

GLINT '09 Field Experiment

- 13-14 July, 2009
 Adaptive Env't. missions
 - MIT
 - NATO Undersea Research Centre (NURC), La Spezia, Italy
- NURC OEX AUV running autonomy software
- Development, testing & simulation of pEnvtGrad
- Track acousticline

GLINT '09 Results (07/14/09)

Autonomy Behaviors:

Adaptive Yoyo (above) & Racetrack (1km x 200m oval)

Mission:

Track the acousticline.

A: Initial yoyo, 7-70m

B: Tracking acousticline, 9-28m


C: Periodic timeout resets yoyo depth limits

Water Depth: ~105m

GLINT'09

Validation of pEnvtGrad Performance

- OEX CTD Gradient Determination -

Sound Speed (m/s)

$$\left(\frac{\Delta c}{\Delta z}\right) = -0.4269$$

Acousticline: 3-28m

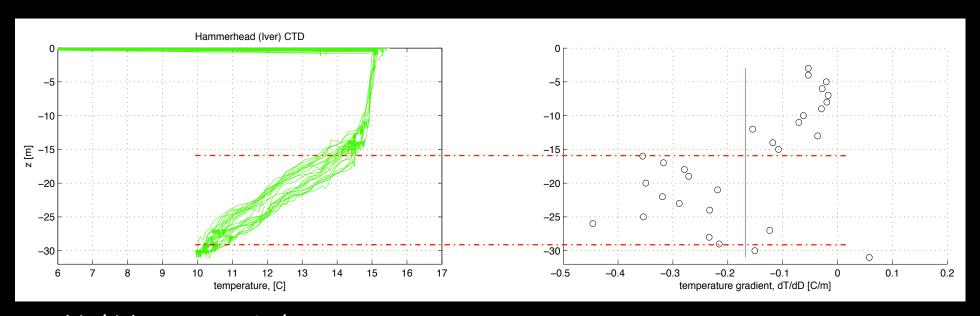
Temperature (°C) $\left(\frac{\Delta T}{\Delta z}\right) = -0.1621$

Thermocline: 3 – 23m

Tyrrhenian Sea – 14 July, 2009

Champlain '09 Field Experiment

- 03-05 October, 2009
 - MIT
 - Naval Undersea Warfare Center (NUWC), Newport, RI
- Iver AUV running autonomy software
- Testing of pEnvtGrad
 - Track thermocline
- Fresh water!



Lake Champlain, VT

Hammerhead (Iver AUV)

Champlain '09 *Thermocline Tracking, cont.*

avg(dT/dz) = -0.1679 °C/m Thermocline = [16 29] m

Summary

 Ongoing advances in AUV autonomy for autonomous & adaptive tracking of environmental features on board AUVs

 Successful proof-of-concept for AAEA & tracking of hydrographic gradients (temperature, sound speed)

Widely applicable in the field

Acknowledgements

- MIT
 - LAMSS: K. Cockrell, T. Schneider
 - MSEAS: P. Lermusiaux
- NUWC
 - D. Eickstedt, S. Sideleau, M. Incze
- NURC
 - D. Hughes, F. Baralli, M. Mazzi & OEX team
- U.S. Office of Naval Research
- Government support through the National Defense Science and Engineering Graduate (NDSEG) Fellowship