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Broad Problem
Terrorist threats against ships

are real (USS Cole, Limburg, Somalian pirates)•	
can be difficult to distinguish from normal boat traffic•	
in harbors are a high possibility due to predictability of •	
ship movement and low manueverability  
 
 
 

Unmanned Surface Vehicles (USV) offer a potential 
solution. Relative to manned systems, USVs are:

safe (no danger for sailors due to threat or rough seas in •	
small boat)
low cost •	
scalable•	
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Specific Problem: Scenario
Scenario:

Ship [or high value asset] (“HVA”) at anchor or transiting •	
at slow speed through harbor
Specified number of potential targets (“targets”) (normal •	
small boat traffic) with arbitrary destinations within the 
harbor
Specified number of USVs (“friends”) actively protecting •	
ship
USVs investigate targets approaching (or near •	
approaching) ship by cutting range to target and using 
on-board sensors
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Specific Problem: Assumptions
Simulation Initial Assumptions:

Ship radar is capable of accurately picking up target •	
positions within harbor
Ship to USV communications is robust (though not •	
necessarily high throughput)
USVs have short range sensors useful (to human) for •	
determining target’s potential threat (video / still camera, 
lidar, etc.)
USVs may have hailing system to warn away (accidental) •	
intruders from ship
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Software Architecture (MOOS)
Publish / subscribe infrastructure

comprised of individual processes (“MOOS modules”)•	
modules communicate through central database •	
(“MOOSDB”)
allows for rapid prototyping and “plug-in” functionality •	
with contributions from many authors 
 

MOOSDB

{sensors}
pHelmIvP

pClusterPriority

{vehicle control}

{utilities}

{communication}
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Why MOOS?
Backseat / frontseat model:

MOOS runs as “backseat driver” sending commands for 
heading, speed, [depth] to “frontseat” (vehicle control, 
manufacturer specific) 

Allows for platform independence (MOOS-IvP autonomy •	
has run on many unique USVs / AUVs)
Allows for rapid transition between simulation and on-•	
vehicle (runtime) tests 
 
Mandarina USV:

Common Modules Runtime Only Simulation Only

11 4 4

1
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Autonomy Infrastructure (MOOS-IvP)
Behavior based autonomy

Set of behaviors govern action space (heading and speed •	
for USV) 
Each behavior generates an objective function -- function •	
of utility over the entire heading-speed plane
IvP Helm (pHelmIvP)  •	
optimizes over all running 
behaviors to choose 
mutually beneficial or 
(in case of mutual 
exclusivity) highest priority 
action 
 
 

MOOSDB

pHelmIvP

{vehicle control}

{utilities}

{communication}

BHV_Attractor_1

BHV_Attractor_2

BHV_RubberBand

{sensors}
pClusterPriority
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Cluster Defense Overview
Two behaviors and one MOOS module govern USV ac-
tions in this work:

BHV_Attractor: seeks to draw vehicles towards targets to •	
investigate.
BHV_RubberBand: seeks to bring vehicles back to •	
defense positions around 
ship.
pClusterPriority: balances •	
priorities for both behaviors 
in the context of multiple 
USVs / multiple contacts. 
 
 

MOOSDB

pHelmIvP

{vehicle control}

{utilities}

{communication}

BHV_Attractor_1

BHV_Attractor_2

BHV_RubberBand

{sensors}
pClusterPriority
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Autonomy: BHV_Attractor
seeks to cut range to a target. An instance is run for •	
every target
objective function governs over heading •	
 
 
 
 
 
 
 
 
 
 
CPA: closest point of approach (USV <-> target) 
pwt: priority weight set by pClusterPriority 
results presented: r1 = 0 m, r2 = 100 m, strength = 0.5 

target

friend (USV)

ship (HVA)

defense point

“attraction”

course of action

“rubberband”
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Autonomy: BHV_RubberBand
seeks to station keep near a fixed point (assigned by •	
pClusterPriority). one instance is run.
objective function governs over heading and speed •	
 
 
 
 
 
 
 
 
 
 
CPA: closest point of approach (USV <-> target) 
results presented: r1 = 15 m, r2 = 30 m, stiffness = 2, 
pwt = 50

target

friend (USV)

ship (HVA)

defense point

“attraction”

course of action

“rubberband”
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Autonomy: pClusterPriority
prioritizes contacts based on closest point of approach •	
rebalances individual BHV_Attractor priorities within the •	
cluster of USVs 
 A(d , d , cpa) = A0 ∗ C (cpa) ∗ e−α(d−d)/d

C (cpa) = cpa ∗
Cmin − Cmax

cpacutoff

+ Cmax

symbol value used here description

A computed priority weight of BHVAttractor

A0 100 normalizing constant

d computed distance to target

d computed average friends’ distance to target

α 2 ”strength” of decay

C computed closest point of approach (CPA) scaling factor

cpa computed CPA of target to ship within cpatime seconds

cpatime 120 s time to ”look forward” for CPA

Cmax 2 maximum CPA scaling factor

Cmin 0.5 minimum CPA scaling factor

cpacutoff 500 m range beyond which C = Cmin

1
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Autonomy: pClusterPriority
sets initial defense locations on evenly spaced points of •	
circle around ship: 
 
 
 
 

rebalances USVs in case of loss (or addition) of one: •	

target

friend (USV)

ship (HVA)

defense point

“attraction”

course of action

“rubberband”
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Autonomy: Combined Actions
Together these three pieces perform a task analogous to 
zone defense in basketball:

Each USV investigates target(s) nearest to them and •	
other USVs back off when another USV is near.
When targets are not near or potentially threatening, •	
USVs return to defense points and station-keep

target

friend (USV)

ship (HVA)

defense point

“attraction”

course of action

“rubberband”
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Performance Evaluation: Qualitative
Successes:

USVs investigate most targets of highest interest •	
(heading close or directly toward ship).
USVs usually do not overlap investigation at the expense •	
of another target.
System requires only knowledge of targets’ and ship’s •	
<speed, heading, position> and friends <position>. No 
other data must be shared for autonomy to function.

Needs Improvement:
USVs close to each other can sometimes form an •	
unwanted team at the expense of defending ship from 
new targets.
BHV_Attractor should govern over speed to avoid wasting  •	
power when full speed is not needed.
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Performance Evaluation: pScorer
Quantitative performance evaluation of dynamic com-
plex systems is hard:

Highly nonlinear; analytic solutions require (often •	
unrealistic) simplifying assumptions
Want a performance evaluation that works equally for •	
runtime (on vehicles) and simulation 

A modular scoring process (MOOS Module “pScorer”) 
was designed that tries to accomplish this with plug-in 
evaluation “Metrics”

Each Metric produces a score and perfect score based on •	
the task it is designed to evaluate.
pScorer combines the scores of all Metrics to produce a •	
(weighted) mean normalized score.
In a Monte Carlo simulation (with I.I.D. random •	
variables), the score should eventually converge.
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Metric: Cluster_Intercept
Targets outside “warning radius” are ignored. Targets 
within “danger radius” are scored:

Score is an exponential based on •	 range to ship at which 
target is first intercepted (farther is better). 
Perfect Score is interception at “danger radius”•	
Interception requires a USV entering “intercept radius” •	
 
 
 
 
  
 

For all results here:  warning_radius = 1200 m
							       danger_radius = 1000 m
							       intercept_radius = 20 m

target

friend (USV)

ship (HVA)

defense point

“attraction”

course of action

“rubberband”

warning_radius

danger_radius

intercept_radius

target path
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pScorer Results

description vehicles
station keep
(baseline)

full system,
1 USV

full system,
3 USVs

defense radius (m) 300 300 300
number of USVs 3 1 3
number of simulta-
neous contacts

10 9 10

time (hrs) 5 5 5
overall score (%) 19.3 23.5 26.8

1



t. schneider | MIT/WHOI joint progam | laboratory for autonomous marine sensing systems

Extending pScorer
One Metric does not adequately evaluate the perfor-
mance of this system. 

New Metrics that could be designed:
Coverage: determines how well vehicles (over time) •	
are covering the area around the ship to deal with 
unexpected targets. [next week].
Power usage: average power consumption. •	
Communications performance: throughput and timeliness •	
of data, weighted by importance. 

pScorer could be used for completely different tasks 
(with appropriate Metrics):

Oceanographic sampling balanced with acoustic •	
communications [on return to MIT].
ASW•	
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