
MOOS-IvP Communications Software
with acoustic networking from the

Goby Underwater Autonomy Project

Toby Schneider and Henrik Schmidt

Laboratory for Autonomous Marine Sensing

Department Mechanical Engineering

Massachusetts Institute of Technology, Cambridge MA

Technical Memorandum LAMSS-09-03

August 24, 2010

Abstract

This paper provides a User’s Guide for the MIT MOOS-IvP communication modules for un-
dersea networking of multiple autonomous underwater vehicles (AUVs). These modules provide
a complete software stack for handling communication with other vehicles and the topside oper-
ators using acoustic modems. The infrastructure described in this document allows the vehicles
to remain submerged under autonomous control with commands from the topside being passed
exclusively through the underwater acoustic modem network.

Contents

1 Introduction 3
1.1 Subsea Autonomous Sensing Networks . 3

2 Overview of the LAMSS Communication Stack 4
2.1 goby-acomms . 9
2.2 pGeneralCodec . 9
2.3 pAcommsHandler . 10
2.4 iCommander . 10
2.5 iMOOS2SQL . 10
2.6 pREMUSCodec . 10
2.7 pBTRCodec . 11
2.8 pCTDCodec . 11
2.9 pAcommsPoller . 11

3 Communications Modules 11
3.1 pAcommsHandler . 11

3.1.1 Overview . 11
3.1.2 Usage . 14
3.1.3 Parameters for the pAcommsHandler Configuration Block 14
3.1.4 MOOS variables subscribed to by pAcommsHandler 20
3.1.5 MOOS variables published by pAcommsHandler 20
3.1.6 DCCL Encoding/Decoding Unit: Overview 20
3.1.7 DCCL Encoding/Decoding Unit: Designing Messages 24
3.1.8 DCCL Encoding/Decoding Unit: XML Tag Reference 29
3.1.9 DCCL Encoding/Decoding Unit: Under the Hood 34
3.1.10 Priority Message Queuing Unit . 37
3.1.11 Modem Driver Unit . 38
3.1.12 Medium Access Control (MAC) Unit . 39

3.2 pGeneralCodec . 39
3.3 pCTDCodec . 39
3.4 iCommander . 39

3.4.1 Parameters for the iCommander Configuration Block 39
3.4.2 Reference Sheet . 40

A Glossary 45

2

1 Introduction

The purpose of this document is to provide a functionality overview of and User’s Guide for
MOOS-IvP modules used for the Acoustic Communication within an underwater network using
the WHOI Micro-Modems.

Following this overview, this document includes a detailed guide for MOOS system developers
interested in incorporating these modules into their work.

1.1 Subsea Autonomous Sensing Networks

The process of undersea observation, mapping, and monitoring is experiencing a dramatic paradigm
shift away from platform-centric, human-controlled sensing, processing and interpretation. Rather,
distributed sensing using networks of autonomous platforms is becoming the preferred technique.
An optimal platform suite is often highly heterogeneous with large differences in mobility, maneu-
verability, sensing capability, and communication connectivity. The sensor systems have different
constraints on platform mobility and communication capacity, and some network operations require
highly coordinated maneuvering of heterogeneous platforms. Nested Autonomy [] is a new com-
mand and control paradigm, inherently suited for such heterogeneous networks. Implemented using
MOOS-IvP, Nested Autonomy provides the fully integrated sensing, modeling and control that allows
each platform, on its own or in collaboration with partners of opportunity, to autonomously detect,
classify, localize and track (DCLT) an episodic, natural or human-created event, and subsequently
report back to the operators.

A robust undersea communication infrastructure is crucial to the operation of such networks.
In contrast to air and land-based equivalents, the extremely limited bandwidth, latency and in-
termittency of underwater acoustic communication imposes severe requirements to the selectivity
of message handling. Thus, contact and track reports for high-priority event, such as a detected
chemical plume from a deep ocean vent, which may indicate an imminent volcanic eruption, must
be transmitted to the system operators without delay. On the other hand, reports concerning less
important events and platform status reports may be delayed without significant effects. Previous
message handling systems for underwater communications have only a rigid, hard-coded queuing
infrastructure, and do not support such advanced priority-based selectivity, hampering the type
and amount of information that can be passed between cooperating nodes in the network. This
severely limits the level of autonomy that can be supported on the network nodes.

In response to this problem, a new MOOS-IvP communication software stack was developed at
the MIT Laboratory for Autonomous Marine Sensing Systems (LAMSS), in support of autonomous
sensing programs such as the ONR ASAP MURI, GOATS, and SWAMSI. This new stack has
enabled the operation of a communication infrastructure which provides robust message handling for
collaborative autonomous sensing by heterogeneous, undersea autonomous assets, as demonstrated
in a handful of major recent field experiments. As an example, Fig. 1 shows the collaborative,
multistatic MCM mission by the Unicorn and Macrura BF21 AUVs during SWAMSI09 in Panama
City, FL. The two vehicles are circling a proud cylinder (cp) at a distance of 80 m maintaining a
constant bistatic angle of 60 degrees. The collaboration was achieved fully autonomously without
any intervention by the operators, with each vehicle adapting its speed based on its current position
and the position of the other vehicle extrapolated from the latest status, contact or track report.
Such collaborative maneuvers would not be possible using traditional communication schemes,

3

Figure 1: Collaborative autonomy demonstrated in SWAMSI09 using MIT LAMSS communication stack. The two
BF21 AUVs Unicorn and Macrura perform synchronized swimming maintaining a constant bistatic angle of 60◦

relative to a proud cylindrical target (cp).

where navigation packets must be rigidly interleaved with messages containg data and command
and control sequences. In contrast, the Dynamic Compact Control Language (DCCL) used by the
LAMSS communication stack allows for adequate navigation information to be packed with all
other required message content.

Being based on established libraries of message handling software, the open source architecture
of this new MOOS communication stack lends itself directly to a wide range of military and civilian
applications. It supports an arbitrary message suite and content without requirement of modifying
software. All message encoding and decoding information is specified in a mission-unique config-
uration file written in the standard XML format. Not only does this ensure maximal flexibility
in regard to message design, but it inherently enables arbitrary levels of encryption for LPI/LPD
communication networks.

2 Overview of the LAMSS Communication Stack

MIT LAMSS has over the last decade focused its research on the development of sensor-adaptive,
collaborative, autonomous sensing concepts for the capture of episodic undersea events, including
the mapping of coastal fronts, chemical plumes, and natural and man-made underwater acoustic
sources. All these applications involve the Detection, Classification, Localization and Tracking
(DCLT) of the event. To exploit the benefits of having multiple platforms involved in tracking
the event, an underwater robust communication system is obviously a requirement. On the other
hand, the communication capacity of such systems is many orders of magnitude below land- and air-
based equivalents, requiring a much higher level of data compression and on-board processing and
decision-making than is required in air-based systems. Nested Autonomy, developed over the last
decade by LAMSS, is an example of such an autonomy-driven undersea sensing concept. Although

4

MOOS Computer

«executable»
pAcommsHandler

{responsibility = Message Manager}

«executable»
pHelmIvP

{responsibility = Backseat Control}

«executable»
iREMUS

{responsibility = Frontseat Control}

«executable»
MOOSDB

«file»
XML ConfigurationOpen Source

(GPL License)
UCII Specific

C2

Sensor«executable»
iSensor

{responsibility = Sensor Interface}

Recon

«executable»
pContactManager

{responsibility = Contact Manager}

«executable»
pMissionMonitor

{responsibility = Mission Manager}

Figure 2: Incorporation of the open source LAMSS communication stack into a MOOS-IvP DCLT Autonomy System.
The green boxes identify the open source modules, including the IvP Helm, the generic mission manager module,
and the communication stack. The red modules are project specific, including the frontseat driver module, and the
sensor modules. Also the message configuration specifying the message content and the coding, is project specific.

5

this concept is based on the philosophy that the system must be able to achieve its mission objective
even during periods with no or limited communication, there is obviously still a need for occasional
communication, e.g. for reporting detected events of interest.

The new MOOS-IvP communication stack alleviates some of the problems and limitations of
the existing software stacks in this regard. These software stacks in general were designed to
sequentially transmit all messages generated by the autonomy system, with only a rigid, hard-
coded priority-based message queuing infrastructure.

In undersea autonomous systems the priorities of information generated by the on-board pro-
cessing are highly dynamic, depending on the tactical situation and the criticality of the generated
information. Thus, for example, a contact report for a target of interest obviously must bypass
queued contact reports for less significant targets. Also, in high-clutter environments, the num-
ber of contact reports may by far exceed the communication capacity and on-board priority-based
filtering is required.

MOOS (Backseat) Computer

Hydrophone Array

Main Vehicle

Computer

WHOI Micro-Modem

«subsystem»
Vehicle Autonomy Control
{components = pHelmIvP}

«subsystem»
Tracking

{components = p1BTracker, pTrackQuality}

«subsystem»
Front Seat Interface

{components = pHuxley}

«subsystem»
Acoustic Communications

{components = pAcommsHandler,
pREMUSCodec, pBTRCodec, pCTDCodec,

pGeneralCodec, pAcommsPoller}

Environmental

Sensor (e.g. CTD)

«subsystem»
Sonar Interface and Processing

{components = iDAS, pBearingTrack}

«subsystem»
Environmental Sampling

{components = iCTD, pEnvtGrad}

«executable»
MOOSDB

Figure 3: MOOS-IvP community for MIT sonar AUVs, with the autonomous communication, command and control
modules highlighted in gold.

The incorporation of the MIT LAMSS communication stack into a MOOS-IvP DCLT Autonomy
System is illustrated in Fig. 2. The green boxes identify the Open Source modules, including the

6

MOOS (Backseat Computer)

Acoustic Communications Subsystem

WHOI Micro-Modem

«executable»
pAcommsHandler

«executable»
pREMUSCodec

«executable»
pBTRCodec

«executable»
pCTDCodec

«executable»
pGeneralCodec

«executable»
pAcommsPoller

«subsystem»
Vehicle Autonomy Control

{components = pHelmIvP}

«executable»
MOOSDB

«CCL» «DCCL» «DCCL» «DCCL»

Figure 4: UML Component Model of the MIT LAMSS communication stack. The principal message handler module
is pAcommsHandler, which communicates directly with the modem using built-in drivers, and thus not dependent on
third-party MOOS modem drivers. It also manages the message stream by a dynamic, priority-based queuing system.
The message coding and decoding is performed by pGeneralCodec based on the rules set out in the configuration file,
and dedicated DCCL codecs for transmitting various data streams.The stack also supports standard fixed Compact
Control Language (CCL) messages such as the State message used by the Remus AUV, using dedicated codecs.
Dashed line indicate dependencies between components.

helm pHelmIvP, the generic mission manager module pMissionMonitor, and the communication
stack. The red modules are project-specific, including the frontseat driver module iRemus, the sen-
sor modules, and the contact manager process pContactManager. Also the message configuration
files specifying the message content and the coding specifics, are project-specific and not hard-wired
into the communication stack.

Figure 3 shows the communications subsystem as part of the whole MIT LAMSS AUV MOOS
community.

A list of the components of the communication stack modules is given in Table 1. A detailed
description of the modules, their configuration and interaction with the MOOSDB is given in the
appendices. Figure 5 shows the sequence of commands for a single operator command message sent
using iCommander.

The structure of the MIT LAMSS communication stack is illustrated in Fig. 4, with the func-
tionality of the modules being as follows:

7

Module Name Module Description Author Size

1 pAcommsHandler (1) Optionally handles encoding / decoding of data using DCCL.
If not using this option, pGeneralCodec must be run. (2) Man-
ages queues for transmission of acoustic messages. Different
message queues can be given priorities that increase with time
since the last message was sent from that queue. (3) Interfaces to
the WHOI Micro-Modem firmware. (4) Handles Medium Access
Control (MAC) of the acoustic network using slotted TDMA or
polling.

Schneider

2 pREMUSCodec Encodes / decodes a subset of the REMUS CCL messages. Schneider,
Schmidt

3 iCommander Allows a human operator to type in the fields for a DCCL mes-
sage, thus provide a way to command vehicles using DCCL.

Schneider

4 pCTDCodec Deprecated. Do not use, rather use the <max delta> feature
of pAcommsHandler which provides all the same functionality
but with much more generality.

Schneider

5 pBTRCodec Deprecated. Do not use, rather use the <array length> fea-
ture of pAcommsHandler which provides the same functionality.

Schneider

6 pGeneralCodec Handles encoding / decoding using DCCL. This can be done in
pAcommsHandler now, so only run pGeneralCodec for legacy
situations.

Schneider

7 pAcommsPoller Deprecated, use the MAC in pAcommsHandler. Schneider

Total unique lines of code

Total aggregate lines of code

Table 1: Communication software stack for MOOS-IvP onboard autonomy system.

8

Vehicle MOOS ComputerTopside MOOS Computer

«MOOS process»
iCommander

«MOOS process»
MOOSDB

«MOOS process»
pAcommsHandler

«firmware»
WHOI Micro-Modem

«MOOS process»
pAcommsHandler

«firmware»
WHOI Micro-Modem

«human»
Operator

«MOOS process»
pAcommsPoller

types commands

OUT_COMMAND

OUT_COMMAND

$CCCYC (Poll)

$CADRQ (Data request)

$CCTXD (Transmit data)

Acoustic PSK/FSK Data

Acoustic Ack

$CAACK (Acknowledgement)

$CARXD (Receive data)

«MOOS process»
pHelmIvP

ACOMMS_ACK

ACOMMS_ACK

display ack

IN_COMMAND

Message encoded
and queued.

«MOOS process»
MOOSDB

Message decoded.

IN_COMMAND

Message flushed

Figure 5: UML Sequence diagram for sending a command to an AUV via the LAMSS Acoustic Communications
Modules.

2.1 goby-acomms

Several of the libraries used by pGeneralCodec and pAcommsHandler are now part of the Goby
Underwater Autonomy Project (https://launchpad.net/goby). These libraries are collectively
referred to as “goby-acomms”. These libraries are mirrored in the moos-ivp-local subversion reposi-
tory so that users of the MOOS processes presented here do not have check out goby code. However,
the fact that these modules are all standalone from MOOS means that an interested developer can
incorporate them into his or her own open source project. Please refer to the above URL if this
situation applies to you.

2.2 pGeneralCodec

This process uses a custom designed compression scheme for losslessly encoding and decoding
messages into arbitrary sized fields, as specified through XML configuration files. This optimizes the
amount of data that will fit in a single message. In addition to the encoding/decoding specifications,
the XML file for each message specifies which MOOS variable(s) should be be set upon receipt of
the message, eliminating the need for dedicated interface processes between the message decoder
and the autonomy system.

A number of project-specific message sets have been defined, including active sonar contact and
track reports for active, multistatic acoustic applications, environmental messages for oceanographic
missions, and passive sonar contact and track reports for undersea surveillance missions.

Another example is a message for acoustically poking the MOOSDB on a node. It allows the
operator to modify a particular MOOS variable on a deployed node, in essence giving him full power
over a deployed autonomy system. This feature has proven extremely useful for in-field debugging

9

https://launchpad.net/goby

of the autonomy system.
pGeneralCodec works primarily be calling the goby-acomms dccl library.

2.3 pAcommsHandler

pAcommsHandler is the core process in the stack. It subscribes to an arbitrary number of coded
messages, specified in the configuration file, queuing them for transmission based on a set of user-
configured priorities. In order to not have a low-priority message such as a Status Report becoming
stale during periods of high density of other messages, such as Contact Reports the user can con-
figure time constant for an exponential maturing of the various messages, thus establishing optimal
queuing strategy for each particular CONOPS. This in contrast to iMicroModem, which has a hard-
coded, static message priority structure, and no feature for pruning the queues, e.g. in high-clutter
situations. Another feature is a message flag defining whether messages should be transmitted
first-in/first out, or last-in/first-out, again a feature not available in other communication stacks.

The message scheduling can be controlled by the medium access control (MAC) built into
pAcommsHandler. The MAC internal to pAcommsHandler handles either polling, slotted time
division-multiple access (TDMA) with auto peer discovery, or fixed slotted TDMA.

When a node is polled for a rate 0 FSK message, only 32-byte message queues will be active.
Similarly, when a node is polled for a rate 5 PSK message (8x256 byte), pAcommsHandler will
pack the message with an optimal mix of high-priority 32-byte messages and lower priority data
messages, such as those containing CTD and BTRs, based on the current priorities. This priority
queuing is handled by the goby-acomms library queue.

pAcommsHandler also calls a driver that interacts directly with the WHOI Micro-Modem NMEA
0183 serial feed. To do this, it uses the goby-acomms library modemdriver.

Finally, pAcommsHandler can optionally call the same library (goby-acomms dccl) as pGeneralCodec,
allowing it to be a full featured communications process without the need to run pGeneralCodec.
pGeneralCodec is still provided for a user who needs a standalone encoder/decoder for DCCL
messages.

2.4 iCommander

iCommander is a topside command and control (C2) tool which provides a simple console for issuing
commands through the acoustic network. By sharing message configuration (XML) files with
pAcommsHandler and pGeneralCodec it automatically adapts to the current message set, without
any need to change software code.

2.5 iMOOS2SQL

This is a transponder process, which translates Status, Contact, and Track Reports into a format
for interfacing the MOOS C2 with the generic Google Earth-based (geov) topside display, e.g. as
shown in Fig. 1.

2.6 pREMUSCodec

This codec handles several of the standard REMUS CCL messages. It can be configured to generate
CCL State messages at regular intervals, and it will translate incoming CCL State messages into the

10

standard NODE REPORT format used internally in the LAMSS autonomy systems. This codec allows
a MOOS vehicle to perform collaborative behaviors, such as collision avoidance, with a non-MOOS,
standard CCL vehicle.

2.7 pBTRCodec

Deprecated. Do not use, rather use the <array length> feature of pAcommsHandler which provides
the same functionality.

This is a dynamic encoder/decoder (codec) which compresses Beam-Time Records (BTRs) for
passive and active sonar applications into 256 byte DCCL messages, which can be transmitted to the
topside operators using high-rate Phase Shift Key (PSK) modulation on the WHOI Micro-Modem.

2.8 pCTDCodec

Deprecated. Do not use, rather use the <max delta> feature of pAcommsHandler which provides
all the same functionality but with much more generality.

Similar to pBTRCodec, this codec compresses CTD measurements into low-rate Frequency-Shift
Key (FSK), or high-rate PSK messages. pCTDCodec uses a lossless difference encoding scheme
which further reduces the size of messages on highly correlated data (which CTD samples are).

2.9 pAcommsPoller

Deprecated. Use the MAC built into pAcommsHandler.
This process is typically used on the topside to schedule node communication by selective polling

or broadcasting. A particularly useful feature is the possibility of interleaving polling for different
rates and protocols, which in combination with the dynamic queuing by pAcommsHandler and the
acknowledgement feature of the Micro-Modem allows the network to optimally adapt to the current
communication capacity.

3 Communications Modules

3.1 pAcommsHandler

3.1.1 Overview

Any terms in italics are defined the Glossary (section A).

Problem Acoustic communications (in our case, with the WHOI Micro-Modem) are highly lim-
ited in throughput. Thus, it is unreasonable to expect “total throughput” of all communica-
tions data. Furthermore, even if total throughput is achievable over time, certain messages have
a lower tolerance for delay (e.g. vehicle status) than others (e.g. CTD sample data). Refer-
ence http://acomms.whoi.edu/umodem/documentation.html for more information on the WHOI
Micro-Modem.

Also, in order to make the best use of this available bandwidth, messages need to be compacted
to a minimal size before sending (effective encoding). To do this, pAcommsHandler provides an

11

http://acomms.whoi.edu/umodem/documentation.html

Figure 6: pAcommsHandler running with verbosity = scope.

12

interface to the Dynamic Compact Control Language (DCCL1.) encoder/decoder. Furthermore,
DCCL has powerful parsing abilities (“algorithms”) for both encoding and decoding, including the
ability to perform certain geodesic conversions (e.g. latitude, longitude ↔ UTM x,y) and lookups
(e.g. modem id ↔ vehicle name) on data.

pAcommsHandler roughly performs the same functions of pFramer, pRouter, pAcommsPoller,
and iMicroModem but generalized to handle any number of message queues and extended to give
more control over queue parameters. The DCCL encoding is much more flexible and more compact
than the CCL encoding used by these older processes.

Solution pAcommsHandler provides a(n):

1. Encoder/decoder unit (codec): encodes and decodes messages using DCCL (goby-acomms
dccl library), which reduces the data required to be sent by:

• Predefined messages: the user must specify a message structure what specifies what
fields the message contains and how large each field should be (in an intuitive fashion
that DCCL turns into bits). Both the sender and receiver have preshared knowledge of
the message structure. From this knowledge, no meta information about the message
(beyond an identifier) needs to be sent, simply the data.

• Custom field sizes: message fields are defined with custom tolerances (ranges and pre-
cisions) that are tighter than those given by the IEEE standards for floating point and
integer numbers. For example, if a field needs to hold an integer that will never range
outside [0, 1000] that field in the message will only be 10 bits long (ceil(log2 1001)).

2. Priority Queuing System: maintains an arbitrary number of message queues (each tied to a
different MOOS variable) for hexadecimal data strings. (goby-acomms queue library)

• allows configuration of the queue priorities and dynamic growth of the priority over the
time since the last sent message.

• allows management of WHOI CCL message types as well as DCCL queuing.

3. Modem Driver: handles all Micro-Modem serial communications. The driver (goby-acomms
modemdriver library) is intended to be extensible to other modems besides the WHOI Micro-
Modem.

4. MAC Manager: provides medium access control in the form of a simple slotted time division-
multiple access (TDMA) scheme or flexible centralized polling.

Limitations pAcommsHandler does not :

• provide any multi-hop routing. The sender and receiver must be directly in acoustic commu-
nications.

• split user messages into packets. The user must provide data that are small enough to fit into
the modem frame desired (32 - 256 bytes for the WHOI Micro-Modem).

1the name comes from the original CCL written by Roger Stokey for the REMUS AUVs, but with the ability to
dynamically reconfigure messages based on mission need. DCCL is backwards compatible with a CCL network as it
uses CCL message number 32

13

Quick Start

3.1.2 Usage

Compilation pAcommsHandler depends on the boost, boost thread, boost date time, boost regex,
xerces-c, crypto++, and asio libraries in addition to the libraries included in MOOS and moos-ivp-
local.

• boost: reference http://www.boost.org/ or look for your distribution’s boost developer
package (libboost-dev in Debian/Ubuntu).

• boost thread: reference http://www.boost.org/ or look for your distribution’s boost thread
developer package (libboost-thread-dev in Debian/Ubuntu).

• boost date time: reference http://www.boost.org/ or look for your distribution’s boost date time
developer package (libboost-date-time-dev in Debian/Ubuntu).

• boost regex: reference http://www.boost.org/ or look for your distribution’s boost regex
developer package (libboost-regex-dev in Debian/Ubuntu).

• asio: reference http://sourceforge.net/projects/asio/ or look for your distribution’s
asio developer package (libasio-dev in Debian/Ubuntu). You do not want boost-asio, just
asio. Note that you will need a fairly recent version of asio, so it may be best to simply install
from source. asio is a header-only library so it is simply a matter of copying the header files
to /usr/local/include or a similar directory.

• xerces-c: reference http://xerces.apache.org/xerces-c/ or look for your distribution’s xerces-c
developer package (libxerces-c-dev in Debian/Ubuntu as of this writing).

• crypto++: reference http://www.cryptopp.com or look for your distribution’s crypto++ de-
veloper package (libcrypto++-dev in Debian/Ubuntu as of this writing).

• ncurses: should be provided with most UNIX systems.

3.1.3 Parameters for the pAcommsHandler Configuration Block

Example moos file

modem_id = 1

modem_id_lookup_path = ../../../data/acomms/modemidlookup.txt

log_path = /tmp/moos/logs // directory to log runtime debugging output to

ProcessConfig = pAcommsHandler

{

// available to all moos processes.

AppTick = 10

CommsTick = 10

verbosity = verbose // scope, verbose [default], terse, quiet

log = true // true [default] or false

//////////////////////

// DCCL Codec configuration

//////////////////////

// or you could use pGeneralCodec if you set these to "false"

// default (for legacy support) is false for both

encode = true // true or false [default]

decode = true // true or false [default]

14

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://sourceforge.net/projects/asio/

crypto_passphrase = my_precious // if omitted, messages are not encrypted

//////////////////////

// XML files (used for both Queuing and DCCL encoding)

//////////////////////

message_file = ../../../data/acomms/acoustic_moospoke.xml

// manipulators go between "message_file = " and "somexml.xml". comma separate multiple manipulators

message_file = on_demand = ../../../data/acomms/simple_status.xml

message_file = loopback,no_queue = ../../../data/acomms/simple_deploy.xml

// relative to location of xml files! (syntax checking)

schema = ../../../moos-ivp-local/src/tes/goby/acomms/libdccl/message_schema.xsd

//////////////////////

// CCL Queuing configuration (for non-DCCL CCL messages)

//////////////////////

// send_CCL = outgoing_hex_moos_var,

// id

// ack

// blackout_time

// max_queue

// newest_first

// value_base

// ttl

send_CCL = OUT_REMUS_STATUS_HEX_30B, 0e, 0, 0, 1, 1, 0.8, 1800

// receive_CCL = incoming_hex_moos_var, id

receive_CCL = IN_REMUS_STATUS_HEX_30B, 0e

receive_CCL = IN_REMUS_RANGER_HEX_30B, 10

send_CCL = OUT_REMUS_REDIRECT_HEX_30B, 07, 1, 0, 5, 1, 5, 1800

receive_CCL = IN_REMUS_REDIRECT_HEX_30B, 07

//////////////////////

// Driver configuration

//////////////////////

connection_type = serial // serial [default], tcp_as_client, tcp_as_server

serial_port = /dev/ttyS0

baud = 19200 // 9600, 19200 [default], 38400, ... must conform to BR1 setting

// for connection_type = tcp_as_client or tcp_as_server

// network_port = 10000

// for connection_type = tcp_as_client

// network_address = 192.168.1.124

// set all CFG values to factory defaults at the start before sending our CFG values

cfg_to_defaults = true // true [default] or false

// modem CFG values

cfg = snr,1

cfg = rev,0

//////////////////////

// MAC

//////////////////////

mac = slotted // or polled, fixed_slotted, or none [default]

// for slotted

slot_time = 15 // seconds for the width of each slot, default 15

rate = 0 // modem rate (0 [default], 2, 3, 5 or auto [not implemented])

expire_cycles = 30 // how many cycles to go without hearing from a vehicle before removing them

// for polled

// initializer.string = ACOMMS_POLLER_UPDATE = destination=1,update_type=add,poll_type1=data,poll_from_id1=1,poll_to_id1=0,poll_rate1=0,poll_wait1=15

// initializer.string = ACOMMS_POLLER_UPDATE = destination=1,update_type=add,poll_type1=data,poll_from_id1=2,poll_to_id1=0,poll_rate1=0,poll_wait1=15

//////////////////////

// Misc

//////////////////////

// initialize MOOS variable to value of the .moos file variable from the top of the moos file

global_initializer.double = LAT_ORIGIN = LatOrigin

global_initializer.double = LONG_ORIGIN = LongOrigin

global_initializer.string = MODEM_ID_PATH = modem_id_lookup_path

// initialize MOOS variable from value set here

initializer.string = VEHICLE_NAME = unicorn

initializer.string = VEHICLE_TYPE = auv

}

Filling out the .moos file

15

General Parameters

• verbosity: choose verbose for full text terminal output, terse for symbolic heartbeat
output, and quiet for no terminal output. A new scope mode is helpful to debugging
and visualizing the many data flows of pAcommsHandler. See figure 6 for a screenshot of
pAcommsHandler in scope mode.

• modem id: integer that specifies the modem id of this current vehicle / community. this
must match the micromodem SRC configuration parameter (send the modem $CCCFQ,SRC to
check). For the remainder of the document,modem id refers to the value $CCCFG,SRC,modem id.
If using the internal driver (driver file = internal), this configuration parameter will be
set on startup. often this is set as a global parameter to the moos file (specifed outside the
ProcessConfig blocks).

• modem id lookup path: path to a text file giving the mapping between modem id and vehicle
name and type for a given experiment. This file should look like:

// modem id, vehicle name (should be community name), vehicle type, other aliases

0, broadcast, broadcast

1, endeavor, ship

3, unicorn, auv

4, macrura, auv

• initializer: since many times it is useful to have a MOOS variable including in a message
that remains static for a given mission (vehicle name, etc), we give the option to publish
initial MOOS variables here (for later use in messages [until overwritten, of course]).

• global_initializer: looks for a global (i.e. specified at the top of the MOOS file or outside
any ProcessConfig blocks) value in the .moos file with the name to the right of the colon
and publishes it to a MOOS variable with the name to the left of the colon. For example,
global_initializer.double = LAT_ORIGIN = LatOrigin looks for a variable in the .moos
file called LatOrigin and publishes it to the MOOSDB as a double variable LAT_ORIGIN with
the value given by LatOrigin.

• log path: folder to log all terminal output to for later debugging. Similar to system logs in
/var/log.

• log: boolean to indicate whether to log terminal output or not.

Encoding/Decoding (DCCL) Parameters

• encode: boolean flag indicating if pAcommsHandler should encode the messages specified
in message file=. Alternatively, you can run pGeneralCodec to encode these messages.
[optional, default is false for legacy support].

• decode: boolean flag indicating if pAcommsHandler should decode the messages specified in
message file=. [optional, default is false for legacy support].

16

• crypto passphrase: secret text string used to encrypt DCCL messages with. All parties to
the communication must have the same passphrase and this must be kept secret for secure
communications. [optional, messages will not be encrypted if this is not provided.].

• message_file: path to an XML file containing a message set of one or messages. You
can insert manipulators in between the message file= and somefile.xml that change the
behavior of pAcommsHandler for messages defined in that file. Comma separate multiple
manipulators. Allowed manipulators:

– no encode: do not encode this message

– no decode: do not decode this message

– no queue: do not queue this message

– loopback: decode this message internally immediately following encode (used to com-
mand yourself)

– on demand: encode immediately upon a data request command (use for time sensitive
messages like STATUS)

• schema: path to the DCCL message schema.xsd XML schema used for syntax checking.
If using a relative path, specify the path relative to the XML file location, not the present
working directory (pwd).

DCCL Queuing information stored in message XML files All queue configuration for
DCCL messges must be configured within the XML files <queuing /> tag and included with
message file = message.xml. The tags correspond to these configuration variables:

• outgoing hex moos var: name of the moos variable to subscribe to for messages to add to
this queue. Publishes here should be pure hexadecimal or a key=value string specified later
in section 3.1.10.

• id: a user specified integer from 0-127 that is a tag for the outgoing hex moos var. Thus,
each outgoing hex moos var must have a unique id. Only the id is sent with the message
(to save space), not the full outgoing hex moos var of the queue. Thus, this must match
the id on the receiving vehicle’s receive configuration in the incoming parameters section
below. For example, if i have send=SOME OUT HEX, 1 on the sending vehicle, the receiving
vehicles must have a field receive=SOME IN HEX, 1. All messages with ID 1 will be put in
SOME IN HEX. Clearly, if unique mapping is desired on the receiving end, unique ids must be
used on the sending end.

• ack: boolean flag (1=true, 0=false) whether to request an acoustic acknowledgment on all
sent messages from this field. If omitted, default of 0 (false, no ack) is used.

• blackout time: time in seconds after sending a message from this queue for which no more
messages will be sent. Use this field to stop an always full queue from hogging the channel.
If omitted, default of 0 (no blackout) is used.

• max queue: number of messages allowed in the queue before discarding messages. If newest first

is set to true, the oldest message in the queue is discarded to make room for the new message.
Otherwise, any new messages are disregarded until the space in the queue opens up.

17

• newest first: boolean flag (1=true=FILO, 0=false=FIFO) whether to send newest mes-
sages in the queue first (FILO) or not (FIFO).

• ttl: the time (in seconds) the message is allowed to live before being discarded. This also
factors into the priority calculation as messages with a lower time-to-live (ttl) grow in priority
faster.

• value base: Each queue has a base value (Vbase) and a time-to-live (ttl) that create the
priority (P (t)) at any given time (t):

P (t) = Vbase

(t− tlast)

ttl

where tlast is the time of the last send from this queue.

This means for every queue, the user has control over two variables (Vbase and ttl). Vbase is
intended to capture how important the message type is in general. Higher base values mean
the message is of higher importance. The ttl governs the number of seconds the message lives
from creation until it is destroyed by libqueue. The ttl also factors into the priority calculation
since all things being equal (same Vbase), it is preferable to send more time sensitive messages
first. So in these two parameters, the user can capture both overall value (i.e. Vbase) and
latency tolerance (ttl) of the message queue.

An example queuing block:

<message_set>

<message>

<id>23</id>

...

<queuing>

<ack>false</ack>

<blackout_time>0</blackout_time>

<max_queue>1</max_queue>

<newest_first>true</newest_first>

<value_base>4</value_base>

<ttl>1000</ttl>

</queuing>

</message>

...

</message_set>

CCL Queue Parameters

• send CCL: configure a queue for a WHOI CCL message type (do not use the moos id). The
queues mentioned above (send=) use the CCL identifier byte 0x20 and then the second byte
includes the VariableID leaving N−2 bytes for the user where N = 32, 64, or 256 depending
on the modem rate. This queue send CCL does not use the second byte, thus making it useful
for handling the static CCL types defined by WHOI. The send CCL parameter is a comma
delimited string of two mandatory parameters and up to six optional parameters (in order
specified here). To skip an optional field and use the default value, simply use a blank ”,”:

18

All parameters in the send CCL list are the same as those for the DCCL tag list with the
exception of the second parameter. Here it is the CCLIdentifierByte in hexadecimal, not
the id.

• receive CCL: specifies a mapping between an incoming incoming hex moos var and a moos
variable to place the incoming message. The sender’s modem id is stored as the commu-
nity name for the received message. Rather than a incoming hex moos var you specify a
CCLIdentifierByte that is the first byte of the CCL message.

Micro-Modem Driver Parameters

• connection type: type of connection to make to the modem (serial, tcp as client, tcp as server)
[optional, default: serial]

• serial port: serial port to which the MicroModem is connected [mandatory if connection type=serial].

• baud: baud rate to use. [optional, default: 19200]

• network port: networking port to use. [mandatory if connection type=tcp *]

• network port: IPv4 networking address of the server to connect to. [mandatory if
connection type=tcp as client]

• cfg: set some modem NVRAM setting to a value. note that by default pAcommsHandler
resets all NVRAM (CFG) parameters on startup ($CCCFG,ALL,0) and then sets the these
values. thus, you must include cfg= lines only for parameters that differ from the defaults.
Set cfg to defaults=false to turn off the automatic reset of the CFG parameters.

Medium Access Control (MAC) Parameters

• mac: type of Medium Access Control. Values can be slotted, polled, fixed slotted or
none.

• slot time: length, in seconds, of each communication slot for the mac=slottedMAC option.

• rate: rate for the mac=slotted MAC option. 0 is a single 32 byte packet (FSK), 2 is three
frames of 64 bytes (PSK), 3 is two frames of 256 bytes (PSK), and 5 is eight frames of 256
bytes (PSK)

• initializer.string: use the MOOS variable ACOMMS MAC CYCLE UPDATE to adjust the TDMA
schedule for the mac=polled or mac=fixed slotted MAC option. To set a few initial values,
you can use the initializer key to “poke” this MOOS variable on startup. The format of
ACOMMS MAC CYCLE UPDATE is a string of comma delimited key=value pairs, where # is an
incrementing number for each slot specified in the message. See table 2 for all the keys and
values.

for example:

destination=1,update_type=add,slot_1_type=data,slot_1_from=1,slot_1_to=0,

slot_1_rate=0,slot_1_wait=15

19

key value

destination modem id of poller to update

update type enum{add,replace,remove}

slot # type enum{data,ping}

slot # from modem id of the sender

slot # to modem id of the receiver

slot # rate rate to poll at

slot # wait seconds for the slot to last before next poll

Table 2: Parameters of mac=polled and mac=fixed slotted reconfiguration message (to ACOMMS MAC CYCLE UPDATE)

3.1.4 MOOS variables subscribed to by pAcommsHandler

Some variables are configurable in the .moos file and/or message XML files as described in section
3.1.3. For example, if send = OUT CTD HEX 30B, ... is set in the .moos file (or
<outgoing hex moos var>OUT CTD HEX 30B</outgoing hex moos var> in a message XML file),
then OUT CTD HEX 30B is the variable actually subscribed. See section 3.1.6 and beyond for de-
tails on filling out and interpreting these XML files. See table 3 for a full list of the subscribed
variables.

3.1.5 MOOS variables published by pAcommsHandler

Similarly to the subscriptions, the some publishes done by pAcommsHandler are defined in the
.moos file or in message XML files. Again, instead of MOOS variables, the table below sometimes
indicates the .moos file keys or XML tags for which one can define the publishes. See table 4 for a
full list of the published variables.

3.1.6 DCCL Encoding/Decoding Unit: Overview

Example message XML file First, let us give a brief background on XML (eXtensible Markup
Language). XML files contain tags (like <name>) that are considered “metadata” and define both
the structure of the following data and the contents. Order of the tags does not matter for a given
level unless explicitly specified. Text data resides both in the tags (like <name>bob</name> or as
attributes of the tag (such as <name id="1245"></name>). XML files can be edited with any text
editor. For more information on XML consult any number of books on the subject or browse the
internet. XML is a very widely used format for storing data that can be both read by both people
and computers. Also see section 3.1.7 for further examples. Let’s call this file example1.xml, which
we will use in two following examples:

<?xml version="1.0" encoding="ASCII" standalone="yes"?>

<message_set>

<message>

<name>GoToCommand</name>

<id>1</id>

<outgoing_hex_moos_var>OUT_GOTO_HEX</outgoing_hex_moos_var>

<incoming_hex_moos_var>IN_GOTO_HEX</incoming_hex_moos_var>

<trigger>publish</trigger>

<trigger_moos_var mandatory_content="CommandType=GoTo">OUTGOING_COMMAND</trigger_moos_var>

<size>32</size>

20

MOOS variable or .moos file key or
XML tag specifying a MOOS vari-
able

Type Description Published by

DCCL

<destination moos var
key=”destkey”/>

$ or D Contains the modem id to send this message
from. Can either be double (ex: 3) or string
(ex: ...,destkey=3,...)

many

<trigger moos var/> $ or D A publish here triggers the creation of this mes-
sage. The contents may contain message parts
or not.

many

<moos var key=”somekey”/> $ or D Data for a given message var. Can ei-
ther be double (ex: 3.234) or string (ex:
“bob” or “3.234”) or keyed string (ex:
...,somekey=3.234,...).

many

Queue

send=
outgoing hex moos var,... $ outgoing hex moos var contains hexadecimal

string to queue (and eventually send).
Various Codecs
(pCTDCodec,
pBTRCodec,
etc.)

<outgoing hex moos var/> $ outgoing hex moos var contains hexadecimal
string to queue (and eventually send). Only

subscribed for when DCCL encoding is

disabled in pAcommsHandler.

pGeneralCodec

Driver

ACOMMS NMEA OUT $ Raw messages to send to the modem

MAC

ACOMMS MAC CYCLE UPDATE $ Updates to the mac=polled or
mac=fixed slotted TDMA cycle

Table 3: MOOS Variables Subscribed to by pAcommsHandler

21

MOOS variable or .moos file
key or XML tag specifying a
MOOS variable

Type Description Format

DCCL

<publish> <moos var
type=”string”/>
</publish>

$ (string) Message created from decoded hex-
adecimal string.

Defined by <format>

<publish> <moos var
type=”double”/>
</publish>

D (double) Message created from decoded hex-
adecimal string.

Defined by <format>

<outgoing hex moos var/> $ Encoded hexadecimal string.

Queue

receive=
incoming hex moos var,... $ incoming hex moos var contains a hexadecimal

string from the micromodem to route to this
queue.

see below

<incoming hex moos var/> $ incoming hex moos var contains a hexadecimal
string from the micromodem to route to this
queue.

see below

ACOMMS ACK $ Notification of acknowledged messages

ACOMMS EXPIRE $ Notification of expired messages (ttl exceeded)

ACOMMS SQSIZE name $ Notification of change in queue size (push or
pop)

New size of queue
(number of messages)

Driver

ACOMMS NMEA IN $ Incoming NMEA messages from the modem See WHOI Micro-
Modem Software
Interface Guide

ACOMMS NMEA OUT $ Outgoing NMEA messages to the modem See WHOI Micro-
Modem Software
Interface Guide

MAC

Table 4: MOOS Variables Published by pAcommsHandler

22

<header>

<dest_id>

<name>Destination</name>

</dest_id>

</header>

<layout>

<static>

<name>type</name>

<value>goto</value>

</static>

<int>

<name>goto_x</name>

<max>10000</max>

<min>0</min>

</int>

<int>

<name>goto_y</name>

<max>10000</max>

<min>0</min>

</int>

<bool>

<name>lights_on</name>

</bool>

<string>

<moos_var>SPECIAL_INSTRUCTIONS</moos_var>

<name>new_instructions</name>

<max_length>10</max_length>

</string>

<float>

<name>goto_speed</name>

<max>3</max>

<min>0</min>

<precision>2</precision>

</float>

</layout>

<on_receipt>

<publish>

<moos_var>INCOMING_COMMAND</moos_var>

<all />

</publish>

<publish>

<moos_var>SPECIAL_INSTRUCTIONS</moos_var>

<format>special_instructions=%1%,lights_on=%2%</format>

<message_var>new_instructions</message_var>

<message_var>lights_on</message_var>

</publish>

</on_receipt>

</message>

<message>

<name>VehicleStatus</name>

<id>2</id>

23

<trigger>time</trigger>

<trigger_time>30</trigger_time>

<outgoing_hex_moos_var>OUT_STATUS_HEX</outgoing_hex_moos_var>

<incoming_hex_moos_var>IN_STATUS_HEX</incoming_hex_moos_var>

<size>32</size>

<layout>

<float>

<name>nav_x</name>

<moos_var>NAV_X</moos_var>

<max>1000</max>

<min>0</min>

<precision>1</precision>

</float>

<float>

<name>nav_y</name>

<moos_var>NAV_Y</moos_var>

<max>1000</max>

<min>0</min>

<precision>1</precision>

</float>

<enum>

<name>health</name>

<moos_var>VEHICLE_HEALTH</moos_var>

<value>good</value>

<value>low_battery</value>

<value>abort</value>

</enum>

</layout>

<on_receipt>

<publish>

<moos_var>STATUS_SUMMARY</moos_var>

<all />

</publish>

</on_receipt>

</message>

</message_set>

3.1.7 DCCL Encoding/Decoding Unit: Designing Messages

Designing a publish triggered message We will look at two scenarios and detail how to design
a proper message file for each scenario. We will reference the example file given in section 3.1.6 for
both scenarios.

Scenario: you want to command an surface craft to move to a new location:

1. Identify the data: location (x (goto x) and y (goto y) on a local grid). you also want
to specify a speed (goto speed) at which it should transit, whether it should have lights
(lights on) on or not, and finally a string (special instructions) with possible special
instructions. All these data will come in to a moos variable OUTGOING COMMAND on a string
like:

OUTGOING_COMMAND: Destination=3,CommandType=GoTo,goto_x=351,goto_y=294,

24

lights_on=true,special_instructions=make_toast,goto_speed=2.3

2. Type the data (i.e. is it an int, a float, a string?) and give the ranges and precisions needed:

• goto x: integer (in meters) (int) that will operate on a (positive valued) local grid not
to exceed 10 km in either dimension.

• goto y: same as goto x.

• goto speed: speed in m/s. the vehicle cannot exceed 3 m/s and does not go backwards.
we would like to give precise speeds to the hundredths place. thus, we need a float

ranging from 0 to 3 with precision 2.

• lights on: simply a flag (boolean value) whether to have our lights on or off. thus, we
need a bool message var.

• special instructions: We want a field that can hold any string of characters, but we
know it will not exceed ten characters. thus, we need a string message var.

3. Putting all this together, we can define the <layout> portion of the first message defined in
section 3.1.6. We do not need any <moos var> tags within the message vars since all the data
are contained in the contents of the trigger variable message (OUTGOING COMMAND). That is,
when we leave out the <moos var>, pGeneralCodec will insert <moos var>OUTGOING COMMAND</moos var>,
which is exactly what we want. For example, taking one of the message vars:

<int>

<name>goto_x</name>

<max>10000</max>

<min>0</min>

</int>

is exactly the same as saying

<int>

<name>goto_x</name>

<moos_var>OUTGOING_COMMAND</moos_var>

<max>10000</max>

<min>0</min>

</int>

4. Now we can fill out the rest of the tags on the <message> level:

• <name>GoToCommand</name>: just a name so we can identify this message quickly when
reading through the XML.

• <outgoing hex moos var>OUT GOTO HEX</outgoing hex moos var>: we will publish our
hex strings here for consumption by the low level modem stack processes (probably
pAcommsHandler send=OUT GOTO HEX...). the publishes will look a bit like:

OUT_GOTO_HEX: Dest=3,HexData=a9385bc098109830a9385bc0981098a9385bc098109830a9385bc0981098

• <incoming hex moos var>IN GOTO HEX</incoming hex moos var>: where we expect to re-
ceive incoming messages to decode (probably from pAcommsHandler receive=IN GOTO HEX...).
messages should be pure hex with the community set to the sendingmodem id. An exam-
ple for the received message on modem id=3 if the sending node (say a topside command
computer) is modem id=1:

25

IN_GOTO_HEX: a9385bc098109830a9385bc0981098a9385bc098109830a9385bc0981098

{Community=1}

• <trigger>publish</trigger>: we are creating this message on a publish (to OUTGOING COMMAND).

• <trigger moos var mandatory content="CommandType=GoTo">OUTGOING COMMAND</trigger moos var>:
OUTGOING COMMAND is the trigger variable and it must contain the substring CommandType=GoTo.
That is, other commands might be published here (e.g. CommandType=Loiter, CommandType=Track)
and we do not define the message structure of those here (this particular <message></message>

is only for a GoTo message). Other messages can be created to encode/decode these
other command types.

• <size>30</size>: we want this message to fit in a WHOI micromodem FSK frame
(32 bytes) and thus we have 30 bytes to work with (pAcommsHandler needs 2 bytes of
header).

5. Finally, we fill out the <publish> section which indicates where (i.e. what moos variables) and
how (what format and which part(s) of the message) pGeneralCodec should publish decoded
messages upon receipt of hex from other vehicles. Each <publish> indicates a separate
action that is taken upon receipt of a message. As many <publish> sections as desired may
be included for a given message. So, for our example message, we want to replicate the
original string (a common practice):

INCOMING_COMMAND: CommandType=GoTo,goto_x=351,goto_y=294,

lights_on=true,special_instructions=make_toast,goto_speed=2.3

to do this we fill out a publish <all>. This is the simplest form of the <publish> section:

<on_receipt>

<publish>

<moos_var>INCOMING_COMMAND</moos_var>

<all />

</publish>

</on_receipt>

this says to take every message var and make a “key=value” comma-delimited string from
it. the above <publish> block is a shortcut for a much longer form:

<on_receipt>

<publish>

<moos_var>INCOMING_COMMAND</moos_var>

<format>type=goto,goto_x=%1%,goto_y=%2%,lights_on=%3%,

special_instructions=%4%,goto_speed=%5%</format>

<message_var>goto_x</message_var>

<message_var>goto_y</message_var>

<message_var>lights_on</message_var>

<message_var>special_instructions</message_var>

<message_var>goto_speed</message_var>

</publish>

</on_receipt>

26

These two blocks are functionally identical.

We may want to also publish the special instructions to another moos variable, so that:

SPECIAL_INSTRUCTIONS: special_instructions=make_toast,lights_on=true

we can do this with another publish block:

<publish>

<moos_var>SPECIAL_INSTRUCTIONS</moos_var>

<format>special_instructions=%1%,lights_on=%2%</format>

<message_var>new_instructions</message_var>

<message_var>lights_on</message_var>

</publish>

in this case the <format> block is necessary because the default would be
<format>new instructions=%1%,lights on=%2%</format> not
<format>special instructions=%1%,lights on=%2%</format>.

Those are the basics to designing a publish triggering message.

Designing a time triggered message Scenario: we need a status message that grabs data
from various moos variables and publishes them (encoded) on a time interval. We will not go into
as much detail here, but rather highlight the changes from the previous scenario.

• you will notice

<trigger>time</trigger>

<trigger_time>30</trigger_time>

instead of

<trigger>publish</trigger>

<trigger_moos_var mandatory_content="CommandType=GoTo">OUTGOING_COMMAND</trigger_moos_var>

this indicates that a message should be made on a time interval (given by <trigger time>,
which is every 30 seconds here), rather than on a publish to some moos variable.

• you will notice that all the message vars have a <moos var> tag, which was omitted in the
previous example since we were taking data from the trigger variable. Obviously, there is no
trigger variable now so we must specify a location for the data to come from (in the moos
db). The newest available value will be used when the message needs to be made. This
means there is no guarantee that the data is fresh. Thus, you should use moos variables
that are often updated for a <trigger>time</trigger> message. If this is not the case, a
<trigger>publish</trigger> message (see previous scenario) may be a better choice.

• the format of the value read from the <moos var> can have several options. First, if the
message var is of a numeric type (<int>, <float>, <bool>) and the <moos var> is a double,
the value of the double is used as is (with appropriate rounding and type casting). If the
message var is a string, two options are available. First, the pGeneralCodec looks for a
substring of the form:

27

name=value

within the string and picks out the value to send for the message. If there is no such name= sub-
string, the entire string is converted to the appropriate form. An example: we have a <float>

called <name>my float</name> that has a tag <moos var>SOME FLOAT VARIABLE</moos var>:

– if

(double)SOME_FLOAT_VARIABLE: 3.56

then 3.56 is sent.

– if instead

(string)SOME_FLOAT_VARIABLE: "my_float=3.56"

then 3.56 is still sent.

– if instead

(string)SOME_FLOAT_VARIABLE: "3.56"

again, 3.56 is sent.

– Finally, if some other string like

(string)SOME_FLOAT_VARIABLE: "blah=3.56"

then blah=3.56 is converted (using streams) to a float, which will probably be zero or
something else undesired. In other words, this case is not what you want, whereas the
above three are fine.

Further examples

• I currently store our working message files in moos-ivp-local/data/acomms. look for .xml
files in this directory for further examples.

• Probably the simplest message you can make (for a single string MOOS variable published
to MY STRING that gets truncated at 30 chars (need two bytes for CCL and DCCL ids) and
sent to broadcast):

<?XML version="1.0" encoding="UTF-8"?>

<message_set>

<message>

<name>SimpleStringSender</name>

<id>1</id>

<trigger>publish</trigger>

<trigger_moos_var>MY_STRING</trigger_moos_var>

<size>32</size>

<layout>

<string>

<name>my_string</name>

<max_length>30</max_length>

</string>

<on_receipt>

<publish>

28

CCL ID

(0x20)

DCCL ID

<id>

time of day

<time>

source ID

<src_id>

destination ID

 <dest_id>

8 9 17 5 5 1 1 2 (<size> - 6)*8

�ags user data

<layout>

Figure 7: Layout of the DCCL header, showing the fixed size (in bits) of each header field. The user cannot modify the
size of these header fields, but can access and set the data inside through the same methods used for the customizable
data fields specified in <layout>. The flags are not used by DCCL, but are included for use by the lower level
networking.

<moos_var>INCOMING_COMMAND</moos_var>

<all />

</publish>

<on_receipt>

</message>

</message_set>

3.1.8 DCCL Encoding/Decoding Unit: XML Tag Reference

Message XML file reference: allowed tags Let us now give a description of all the allowed
tags:

• <?xml version="1.0" encoding="UTF-8"?>: specifies the file is XML. All you need to know
is that this must be the first line of every message XML file.

• <message set>: the root element. All XML files must have a single root element. Since we
are define a set of messages (one or more per file), this is a logical choice of name for the root
element. [mandatory, one allowed].

• <message>: defines the start of a message. [mandatory, one or more allowed].

– <name>: a human readable name for the message. This is not used internally at this
point in time. [mandatory, one allowed]

– <size>: the maximum allowed size of the message in bytes. There are eight bits (binary
digits) to a byte. Use N here for messages passed to the micromodem where N is
the desired micromodem frame size (N =32, 64, or 256 depending on the rate). If
the <layout> of the message exceeds this size, pAcommsHandler will exit on startup
with information about sizes, from which you can remove or reduce the size of certain
message vars.

– <repeat>: make as many copies of the message structure defined in <layout> as will fit
in the message <size>. No message will be sent until the message is full. For example,
if the message is 32 bytes and the layout is 8 bytes, three copies of the message will be
stored before sending (32 − 6 − 3 ∗ 8 = 0). That is, three messages will be triggered,
packed and sent as a single DCCL message. [optional, if omitted only a single copy is
made]. If <repeat> is specified, array length must omitted for all message vars. That
is, you cannot have repeated messages that contain arrays.

29

– <header>: the children of this tag allow the user to rename the header parts of the
DCCL message. See Fig. 7 for a sketch of the DCCL header format. These names are
used when passing values at encode time for the various header fields.

∗ <id>: an unsigned nine bit integer (1-511) that identifies this message within a
network. very similar to the CCL identifier, but for DCCL messages. The CCL
identifier occupies the most significant byte (MSB) of the message followed by this
id which takes the second MSB. This must be unique within a network as this id
determines the message decoding [mandatory, one allowed]

∗ <time>: seconds elapsed since 1/1/1970 (“UNIX time”). In the DCCL encoding,
this reduced to seconds since the start of the day, with precision of one second.
Upon decoding, assuming the message arrives within twelve hours of its creation, it
is properly restored to a full UNIX time.

· <name>: the name of this field; optional, the default is “ time”. [string]

∗ <src id>: a unique address (<src id> ∈ [0, 31]) of the sender of this message. For
a given experiment these short unique identifiers can be mapped on to more global
keys (such as vehicle name, type, ethernet MAC address, etc.).

· <name>: default is “ src id”. [string]

∗ <dest id>: the eventual destination of this message (also an unsigned integer in
the range [0,31]). If this destination exists on the same subnet as the sender, this
will also be the hardware layer destination id number.

· <name>: default is “ dest id”. [string]

– <layout>: defines the message structure itself (what fields [the message variables or
message vars] the message contains and how they are to be encoded). [mandatory, one
allowed].

∗ <static>: a message var that is not actually sent with the message but can be
used to include in received messages (publishes). [optional, one or more allowed].

· <name>: the name of this message var. [mandatory, one allowed].

· <value>: the value of this static variable. [mandatory, one allowed].

∗ <bool algorithm="">: a boolean (true or false) message var The optional parame-
ter algorithm allows you to perform certain algorithms on the data before encoding.
See below. [optional, one or more allowed].

· <name>

· <moos var>: the moos variable from which to pull the value of this field. [op-
tional if <trigger>publish</trigger>: default is trigger moos var; mandatory
if <trigger>time</trigger>, one allowed].

· <array length>: if larger than 1, this makes a bool array instead of a single
bool. [optional, default is 1].

∗ <int algorithm="">: an integer message var [optional, one or more allowed].

· <name>

· <moos var>

· <max>: the maximum value this field can take. [mandatory, one allowed].

· <min>: the minimum value this field can take. [mandatory, one allowed].

30

· <array length>

· <max delta>: if specified, delta-difference encoding is done of the <repeat>ed
message or the values in the array (for <array length> > 1). The first value
is used as a key for the remaining values which are sent as a difference to this
key. The number specified here is the maximum expected difference between
the first value (key) and any of the remaining values in the message. [optional,
if omitted, delta-difference encoding is not performed].

∗ <float algorithm="">: a floating point message var [optional, one or more al-
lowed].

· <name>

· <moos var>

· <max>

· <min>

· <precision>: an integer that specifies the number of decimal digits to pre-
serve. Negatives are allowed. For example, <precision>2</precision> rounds
1042.1234 to 1042.12; <precision>-1</precision> rounds 1042.1234 to 1.04e3.
[mandatory, one allowed].

· <array length>

· <max delta>

∗ <string algorithm="">: an ASCII string message var [optional, one or more al-
lowed].

· <name>

· <moos var>

· <max length>: the length of the string value in this field. Longer strings
are truncated. <max length>4</max length> means “ABCDEFG” is sent as
“ABCD”. [mandatory, one allowed].

· <array length>

∗ <enum algorithm="">: an enumeration message var [optional, one or more allowed].

· <name>

· <moos var>

· <value>: a possible value (string) the enum can take. Any number of values
can be specified. [mandatory, one or more allowed].

· <array length>

∗ <hex>: a message variable represented pre-encoded hexadecimal to add to the mes-
sage. This field is useful if another source is encoding part or all of a DCCL message.
[optional, one or more allowed].

· <name>: the name of this message var. [mandatory, one allowed].

· <moos var>

· <num bytes>: the number of bytes for this field. The string provided should be
twice as many characters as <num bytes> since each character of a hexadecimal
string is one nibble (4 bits or 1/2 byte). [mandatory, one allowed].

· <array length>

31

– <on receipt>: begins a set of actions to be performed when a message of this type is
received from another vehicle. [mandatory, one allowed].

∗ <publish>: defines a single output value upon receipt of a message. Any number of
publishes containing any subset of the message vars can be specified. [mandatory,
one or more allowed].

· <moos var>: the name of the moos variable to publish to. If desired, a format
string is allowed here as well (e.g. %1% NAV X will fill %1% with the first mes-
sage var). See the <format> tag description for more info. [mandatory, one
allowed].

· <format>: a string conforming to the format string syntax of the boost::format
2 library. This field will specify the format of the string published to the moos
variable defined in <moos var>. At its simplest it is a string of increment-
ing numbers surrounded by %%. Or, instead, you may also use a printf style
string, using %d for int message var, %lf for floats, and %s for strings, bools and
enums. [optional: default is name1=%1%,name2=%2%,name3=%3%, where name1 is
the name of the first <message var> field to follow, name2 is the second, etc.
exception: default is %1% if only a single <message var> defined. one allowed].

· <message var algorithm="">: the name (<name> above) of a message var con-
tained in this message (i.e. an <int>, <bool>, etc.) the values of these fields
upon receipt of a message will be used to populate the format string and the re-
sult will be published to <moos var>. The optional parameter algorithm allows
you to perform certain algorithms on the data after receipt before publishing.
See below. [mandatory unless <all> used, one or more allowed].

· <all>: equivalent to <message var> for all the message vars in the message.
This is a shortcut when you want to publish all the data in a human readable
string. [optional, one allowed].

– <queuing>: optional section used by pAcommsHandler to handle message queuing. See
section 3.1.3 for details.

– <trigger>: how the message is created. Currently this field must take the value “pub-
lish” (meaning a message is created on a publish event to a certain moos variable) or
“time” (a message is created on a certain time interval). [mandatory, one allowed]

– <trigger var>: used if <trigger>publish</trigger>, this field gives the MOOS vari-
able that publishes to will trigger the creation of this message [mandatory if and only
if <trigger>publish</trigger>]. optional attribute mandatory content specifies a
string that must be a substring of the contents of the trigger variable in order to trigger
the creation of a message. For example, if you wanted to create a certain message every
time COMMAND contained the string CommandType=GoTo... but no other time, you would
specify
mandatory content="CommandType=GoTo" within this tag.

– <trigger time>: used if <trigger>time</trigger>, this field gives the time interval
pGeneralCodec should create this message. For example, a value of

2see the syntax of the format-string at http://www.boost.org/doc/libs/1 37 0/libs/format/doc/format.html#syntax

32

<trigger time>10</trigger time> would mean a message was created every ten sec-
onds. [mandatory if and only if <trigger>time</trigger>].

– <destination var>: moos variable to find where this message should be sent. Specify
attribute “key=” to specify a substring to look for within the value of this moos variable.
For example, if COMMAND contained the string Destination=3 and you want this message
sent to modem id 3, then you should set key=Destination to properly parse that string.
[optional: default is 0 (broadcast), one allowed].

– <incoming hex moos var>: where to look for messages (hex string) to decode. [optional,
one allowed. default is IN <name/> HEX <size/>B].

– <outgoing hex moos var>: where to publish the encoded message (as a hexadecimal
string). [optional, one allowed. default is OUT <name/> HEX <size/>B].

Algorithms You can perform a number of simple algorithms on data either before encoding
(specified in the message var tag (e.g. <string algorithm="">) or after receipt (specified in the
<message var> tag. You can apply more than one algorithm by separating them with commas and
they are processed in the order given. The currently implemented algorithms include:

• to upper: converts string, enum, or bool to uppercase

• to lower: converts string, enum, or bool to lowercase

• angle 0 360: wraps float or int angle in degrees into the range of [0, 360)

• angle -180 180: wraps float or int angle in degrees into the range of [-180, 180)

• lon2utm x: converts longitude to a local utm coordinate (meters) used by LAMSS3. Requires
LatOrigin and LongOrigin to be specified at the top of the moos file. Since a UTM conver-
sion requires a lon/lat pair, you must specify the latitude variable here to pair with by adding
a colon after this algorithm followed by the name of the latitude variable. e.g. <message var

algorithm="lon2utm x:our lat">our lon</message var> converts our lon to a local x (east-
ing) using our lat as the latitude point.

• lat2utm y: similar to lon2utm x but for latitude.
e.g. <message var algorithm="lat2utm y:our lon">our lat</message var> converts our lat

to a local y (northing) using our lon as the longitude point.

• utm x2lon: the reverse conversion from x to longitude. similarly to the latitude, longitude to
x,y conversion you must pair x and y. e.g.,
<message var algorithm="utm x2lon:our y">our x</message var>

• utm y2lat: example: <message var algorithm="utm y2lat:our x">our y</message var>

• modem id2name: converts a WHOI modem id to a vehicle name. requires a file (path given
in the .moos as modem id lookup path=/path/to/modemidlookup.txt. an example file:

3we define a latitude/longitude origin near our basis of operations. From this datum we calculate the UTM
northings (y) and eastings (x). All further UTM calculations are the offset from this datum point. This offset is what
is returned by this algorithm. Contact me if you need more information on this.

33

// modem_id, vehicle name (should be community name), vehicle type, other aliases

0, broadcast, broadcast

1, endeavor, ship

3, unicorn, auv

4, macrura, auv

if no match is found, the modem id is returned as a string (e.g. ”10”).

• name2modem id: performs the (case insensitive) reverse lookup on the same file. if no match
is found, atoi(name.c str()) is returned (probably zero unless you passed something like
”4” to this function).

• modem id2type: similar to modem id2name but returns the type of the vehicle (ship, auv, etc.)

• power to dB: takes 10 log10 of the value.

• dB to power: takes power antilog of the value.

• alg TSD to soundspeed: applied to temperature, with references to salinity and depth,
calculates the speed of sound using the Mackenzie equation. For example: <message var

algorithm="alg TSD to soundspeed:sal:depth">temp</message var>

• add: adds the reference <message var> to the current <message var>. example: <message var

algorithm="add:b">a</message var> adds b to a.

• subtract: subtracts the reference <message var> from the current <message var>.

3.1.9 DCCL Encoding/Decoding Unit: Under the Hood

Bitwise Layout of the Messages We may want to know the actual layout of the binary/hex
message. Let us explain it with an example; for the first example message in example1.xml given
in section 3.1.6, if we run pGeneralCodec we get information about that message:

type (static):

value: {goto}

size [bits]: [0]

goto_x (int):

source: {OUTGOING_COMMAND}

[min, max] = [0,10000]

size [bits]: [14]

goto_y (int):

source: {OUTGOING_COMMAND}

[min, max] = [0,10000]

size [bits]: [14]

lights_on (bool):

source: {OUTGOING_COMMAND}

size [bits]: [1]

new_instructions (string):

source: {SPECIAL_INSTRUCTIONS}

max_length: {10}

size [bits]: [80]

34

Table 5: Formulas for encoding the DCCL types.

DCCL
Type

Size (bits) Encodea

<bool> 2 xenc =

2 if x is true

1 if x is false

0 if x is undefined

<enum> ⌈log2(1 +
∑

ǫi)⌉ xenc =

{

i+ 1 if x ∈ {ǫi}

0 otherwise

<string> length · 8 ASCIIb

<int> ⌈log2(max−min+ 2)⌉ xenc =

{

nint(x−min) + 1 if x ∈ [min,max]

0 otherwise

<float>
⌈log2((max − min) ·
10precision + 2)⌉

xenc =

{

nint((x−min) · 10precision) + 1 if x ∈ [min,max]

0 otherwise

<hex> num bytes · 8 xenc = x

· x is the original (and decoded) value; xenc is the encoded value.
· min, max, length, precision, num bytes are the contents of the <min>, <max>,
<max length>, <precision>, and <num bytes> tags, respectively. ǫi is the ith <value> child
of the <enum> tag (where i = 0, 1, 2, . . .).
· nint(x) means round x to the nearest integer.

a for all types except <string> and <hex>, if data are not provided or they are out of range
(e.g. x > max), they are encoded as zero (xenc = 0) and decoded as not-a-number (NaN).

b the end of the string is padded with zeros to length before encoding if necessary.

goto_speed (float):

source: {OUTGOING_COMMAND}

[min, max] = [0,3]

precision: {2}

size [bits]: [9]

the calculated sizes are used to pack the message like so (# equals size of field in bits), where left
to right is the same as reading the hex string from left to right:

[[0 {122}][goto_x {14}][goto_y {14}][lights_on {1}][new_instructions {80}][goto_speed {9}]]

where [0 122] means zero fill the front of the message to the full size (30 bytes = 240 bits minus
118 for other fields = 122). Byte boundaries are dissolved and encoded as a string “ABCDEF...”
where the most significant byte (MSB, or leftmost 8 bits) is 0xAB, second MSB is 0xCD, etc.

The encoding of each message var is done as an unsigned integer, with the exception of strings,
which are store as ASCII. The value 0 (all bits zero) always indicates ”not specified” or ”Not a
Number” (nan). This means that the user did not specify any value for this field, specified a value
causing overflow (<int> or <float> greater than <max> or less than <min>), or provided a value
for an <enum> that did not match any of the enumerate’s <value> options. Along with this rule,
the method for encoding and decoding is given in Table 5. An example is provided in Fig. 8.

35

<?xml version="1.0" encoding="UTF-8"?>

<message_set>
 <message>
 <id>1</id>
 <header>
 <src_id>
 <name>Src</name>
 </src_id>
 <dest_id>
 <name>Dest</name>
 </dest_id>
 </header>
 <layout>
 <bool>
 <name>B</name>
 </bool>
 <enum>
 <name>E</name>
 <value>cat</value>
 <value>dog</value>
 <value>mouse</value>
 </enum>
 <string>
 <name>S</name>
 <max_length>4</max_length>
 </string>
 <int>
 <name>I</name>
 <max>100</max>
 <min>-50</min>
 </int>
 <float>
 <name>F</name>
 <max>100</max>
 <min>-50</min>
 <precision>2</precision>
 </float>
 <hex>
 <name>H</name>
 <num_bytes>1</num_bytes>
 </hex>
 </layout>
 <name>Example</name>
 <size>32</size>
 <!--omitted other tags for
 publish/subscribe
 architectures-->
 </message>
</message_set>

b)

d)

} true

} cat

} FAT

} 34

} -22.49

} 0x09

10

01

01000110 01000001
01010100 00000000

01010101

00101011000000

00001001}

000000 10 01 01000110
01000001 01010100
00000000 01010101
00101011000000 00001001

0x2000AA3002300251905500154AC009

e)

c)

f)

a)

}

=

3

1

00100000 (ccl_id)
000000001 (<id>)
01010100
011000000 (time, 12:00 UTC)

00001

00011

0000 (flags)

Figure 8: Example of the DCCL encoding process. The process of encoding starts with the DCCL XML file (a).
Data are provided by the application (b). libdccl encodes these data to binary via the algorithms given in Table 5 to
form the header (c) and layout (d), concatenates and zero fills the encoded layout from most significant bit to closest
byte (e) to produce the full encoded message (f). Finally, this point the message is encrypted (if desired).

36

3.1.10 Priority Message Queuing Unit

pAcommsHandler takes all the configured queues and maintains a stack of messages for each queue.
when it is prompted by data by iMicroModem, it has a priority ”contest” between the queues. the
queue with the current highest priority (as determined by the priority and priority time const

fields) is selected. The next message in that queue is then provided to the MicroModem to send.
For modem messages with multiple frames per packet, each frame is a separate contest. Thus a
single packet may contain frames from different queues (e.g. a rate 5 PSK packet has eight 256
byte frames. frame 1 might grab a STATUS message since that has the current highest queue. then
frame 2 may grab a BTR message and frames 3-8 are filled up with CTD messages (e.g. STATUS
is in blackout, BTR queue is empty)).

For messages with ack=1 (acknowledge requested), the last message continues to be re-sent
(that is, it is not popped from the message queue) until the ACK is received from the modem
(thus blocking the sending of other messages). Perhaps i will add max retries at some point soon.
Messages with ack=0 are popped and discarded when they are sent (no retries).

If you do not wish for dynamic growth of the priorities, simply set the ttl to the special value
0. Then the priorities grow as P = V base and messages never expire. Note that this is the same
as setting ttl = ∞.

Messages not to us are ignored We choose modem id 0 as broadcast. thus messages with
the destination field = 0 will always be read by all nodes and reported to the appropriate moos
variable. Otherwise, we ignore messages unless they correspond to our modem id. so if you send a
message to modem id 10, pAcommsHandler for modem ids 1 → 9, 11 → N will ignore that. This
is not the default behavior of the modem, which always reports data, regardless of the sender’s ID.

Input (to pAcommsHandler) formats pAcommsHandler accepts several formats for the
strings placed in the various outgoing hex moos var moos variables (outgoing message queues).
The simplest is just a hexadecimal string of the appropriate length (N − 2 bytes where N =
32, 64, or 256 depending on the modem rate). This message will be queued to send to broadcast
(modem id 04). An example:

OUT_CTD_HEX_32B: 20086850a232ccd2be62e1f36e6b02fffa92385bce8fa2109efa8902ddf3a02

would queue a CTD message to be sent to broadcast (modem ID 0), given the above configuration
file.

pAcommsHandler also accepts a string of key=value, comma delimited fields allowing for more
flexibility. Currently, the only fields supported are data= (required, of course) and dest= for the
intended destination modem id:

OUT_CTD_HEX_32B: dest=3,data=20086850a232ccd2be62e1f36e6b02fffa92385bce8fa2109efa8902ddf3a02

would queue a CTD message to be sent to id 3.

4the WHOI micromodem does not treat certain modem IDs specially (such as zero). All data are reported to the
control computer, regardless of whether that machine is the intended recipient. However, the communications struc-
ture defined by pAcommsHandler and other tes processes treat modem ID 0 as broadcast (much like xxx.xxx.xxx.255
is used for broadcast on TCP/IP networks). This means that incoming messages are read if they are to our modem
ID or to modem ID 0.

37

Output (from pAcommsHandler) formats Upon receipt of a message from the Micro-Modem,
the first byte of the message is checked against the moos CCL type (0x20) and any of the additional
receive CCL CCLIdentifierByte given in the .moos file. if none of these match, the message is
disregarded. If the message matches the moos CCL type (0x20), the second byte is examined for the
id. If the id matches one of the receive fields in the .moos file, the hexadecimal string is stripped
of its first two bytes and placed in the correspoding incoming hex moos var moos variable. The
community name is set to the sender’s variable ID5. For example, the modem reports:6

$CARXD,3,0,0,1,20016850a232ccd2be62e1f36e6b02fffa92385bce8fa2109efa8902ddf3a02

pAcommsHandler places the message in the appropriate moos variable, which for the example
.moos file here is IN CTD HEX 32B:

IN_CTD_HEX_32B: 20016850a232ccd2be62e1f36e6b02fffa92385bce8fa2109efa8902ddf3a02

{Community=3}

from here either pGeneralCodec or pAcommsHandler’s DCCL unit will decode the message (or
pREMUSCodec for CCL messages).

3.1.11 Modem Driver Unit

The Modem driver unit current supports the WHOI Micro-Modem acoustic modem. It is tested
to work with revision 0.93.0.30 of the Micro-Modem firmware, but is known to work with older
firmware (at least 0.92.0.85). The following commands of the WHOI Micro-Modem are imple-
mented:

Modem to Control Computer ($CA):

• $CAACK - acknowledgement of sent message.

• $CADRQ - data request.

• $CARXD - received hexadecimal data.

• $CAREV - revision number and heartbeat. Used to check for correct clock time and modem
reboots.

• $CAERR - error message.

Control Computer to Modem ($CC). Also implemented is the NMEA acknowledge (e.g. $CA-
CYC for $CCCYC):

• $CCTXD - transmit data.

• $CCCYC - initiate a cycle.

• $CCCLK - set the clock. The clock is set on startup until a suitably value within 1 second
of the computer time is reported back. If the modem reboots ($CAREV,...,INIT), the clock
is set again.

5use CMOOSMsg::GetCommunity() to extract the community
6see Micro-Modem Mainboard Software Interface Guide at http://acomms.whoi.edu/umodem/documentation.html

for details on these messages

38

http://acomms.whoi.edu/umodem/documentation.html

• $CCCFG - configure NVRAM value. All values passed to cfg= will be passed to $CCCFG
at startup.

• $CCCFQ - query configuration values. $CCCFQ,ALL is sent after all the $CCCFG lines to
log the NVRAM parameters.

To directly monitor the modem feed, subscribe to ACOMMS NMEA IN and ACOMMS NMEA OUT.
If you wish to control the modem directly, write a valid $CC NMEA string (without newline or
carriage return) to ACOMMS NMEA OUT.

3.1.12 Medium Access Control (MAC) Unit

...documentation coming soon...

3.2 pGeneralCodec

pGeneralCodec is a MOOS process that provides a standalone interface to the DCCL library. It
can be used in the same way as pAcommsHandler’s DCCL unit (see all subsections under section
3.1 that refer to DCCL). If using pAcommsHandler with pGeneralCodec, set encode=false and
decode=false in the MOOS ProcessConfig block for pAcommsHandler so you don’t get duplicate
encoding and decoding. Most new applications should just use the DCCL encoding and decoding
built into pAcommsHandler. pGeneralCodec is still supplied to maintain backwards compatibility
for legacy applications.

3.3 pCTDCodec

pCTDCodec is a deprecated MOOS module that is superceded by the delta-difference encod-
ing available in pAcommsHandler via the <max delta> tag combined with either <repeat> or
<array length>.

3.4 iCommander

3.4.1 Parameters for the iCommander Configuration Block

Example .moos file The moos file is simple since the bulk of the configuration is stored in
separate XML files (see section 3.1.6 for the configuration of these files):

LatOrigin = 42.5

LongOrigin = 10.08333

// where to find the file specifying modem lookups

modem_id_lookup_path = ../../../data/acomms/modemidlookup.txt

Community = topside

//--

// iCommander configuration block

ProcessConfig = iCommander

{

// available to all moos processes.

39

AppTick = 4

CommsTick = 4

// available to all tes moos processes

//verbose, terse, quiet

verbosity = verbose

// for checking xml structure correctness

// highly recommended to use this

// requires path relative to xml file location (or full path)

schema = ../../acomms/libdccl/message_schema.xsd

message_file = ../../../data/acomms/nafcon_command.xml

message_file = ../../../data/acomms/nafcon_report.xml

load = iCommander_autosave.txt

}

Filling out the .moos file

• verbosity: choose verbose for full text terminal output, terse for symbolic heartbeat output,
and quiet for no terminal output.

• message_file: path to an XML file containing a message set of one or messages. These are
the DCCL messages. You can also load messages XML files through the Main Menu in the
program.

• load: path to a file of iCommander saved message(s) to load automatically on startup. You
can also load messages through the Main Menu in the program.

3.4.2 Reference Sheet

Main Menu

__

| iCommander: Vehicle Command Message Sender |

| 2 messages loaded. |

| Main Menu: |

| > Return to active message |

| > Select Message |

| > Load |

| > Save |

| > Import Message File |

| > Exit |

|__|

• Return to active message - only available if you have actively edited a message this session.
Choose to return to the editing screen of the last message you were editing.

40

• Select Message - pick a message type to edit. All messages are read from DCCL (dynamic
compact control language) XML message files.

• Load - load a saved message parameters file. This allows you to save values for message fields
from session to session.

• Save - saves all open messages to a single file for later use. These files are plain text for easy
use outside iCommander.

• Import Message File - import another DCCL XML file for use.

• Exit - quit cleanly.

Editing screen

__

| |

|Editing message variable 1 of 22: MessageType |

|(static) you cannot change the value of this field|

|__|

| |

|Message (Type: SENSOR_PROSECUTE) |

|22 entries total |

| {Enter} for options |

| {Up/Down} for more message variables |

| |

| _________________ |

| | ||

|1. MessageType (static) |SENSOR_PROSECUTE ||

| |_________________||

| _________________ |

| | ||

|2. SensorCommandType (int) |1 ||

| |_________________||

| _________________ |

| | ||

|3. SourcePlatformId (int) |0 ||

| |_________________||

| _________________ |

| | ||

|4. DestinationPlatformId (int) |3 ||

| |_________________||

|___|

41

Scroll to select the box to edit. Note that you will need to scroll up or down off the screen to
see all the fields at once. The information box at the top will tell you how large the field can be
based on the DCCL settings. You cannot enter a value outside these ranges. Hit enter to get the
editing menu.

Editing menu

__

| |

| Choose an action |

|> Return to message |

|> Send |

|> Preview |

|> Quick switch to another open message |

|> Insert special: current time |

|> Insert special: local X,Y to longitude,latitude |

|> Insert special: community |

|> Insert special: modem id |

|> Clear message |

|> Main Menu |

| |

| |

|__|

• Return to message

• Send

• Preview - preview the message to be sent in exact syntactical form

• Quick switch to another open message - switch to another message with information (either
edited this session or loaded)

• Insert special: current time - insert a placeholder (“ time”) that will be replaced with the
current UNIX time when message is sent (e.g. 1236053988). Shortcut: type ’t’ directly
into the field and bypass this menu.

• Insert special: local X,Y to longitude,latitude - insert a placeholder designator to do a UTM
local grid to latitude / longitude conversion. first the latitude (Y or northings) is entered
(“y(lat)1:”), then you choose where to put the longitude (X or eastings) (“x(lon)1:”). after
the colon enter the desired value in meters that will be converted to latitude/longitude based
in the LatOrigin/LongOrigin set in the top of the MOOS file. Note that you may have more
than one pair of x/y. This is the reason for the number following “y(lat)”/“x(lon)”. “y(lat)1”
is paired with “x(lon)1”, “y(lat)2” is paired with “x(lon)2”, etc. Shortcut: type ’y’ or ’x’
respectively directly into the fields and bypass this menu.

• Insert special: community - insert the name of this MOOS community.

42

• Insert special: modem id - choose a modem id from a list of names. This is based off the
modem id lookup table used by pGeneralCodec’s algorithms, and pAcommsPoller.

• Clear message

• Main Menu

Acknowledgments If you are using pAcommsHandler with the ACK field set to 1 (true), all
acoustic message acknowledgments are displayed at the top of the screen. For example, the ack of
a PROSECUTE message would look like this:

__

| |

| Message acknowledged from queue: OUT_PROSECUTE_HEX_30B at time: 2009-Mar-03 03:53:41 |

|__|

43

References

44

A Glossary

• message var : the term for a field within a message. a message var can be of several types: int,
bool, double, float, string, or enum. the message vars are defined within the <layout /> part of the
message.

• modem id : the number given to each whoi micromodem (this is like a variable MAC address) that
defines senders and receivers. modem ids must be unique for each network and are configured using
$CCCFG,SRC,#, where # is the modem id (integer from 0 to 127?).

• publish: the term for a given action to be performed upon receipt of a message. this term is used since
this action will involve a moos publish to some variable (after some string parsing/formatting).

• XML: extensible markup language: a specification for defining a custom markup language, which is a
set of annotations given to text to indicate structure. here we use XML to indicate the structure of a
“message” and its subsequent breakup (“publishes”, during decoding)

– tag: the name given to the “metadata” in the XML file. for example: the tag <message />

indicates the start and end of a message (this is “metadata”), but nothing about what it contains
(which is“data”)

– attributes : data contained within a tag. for example, in <int algorithm="to_upper"></int>,
algorithm is an attribute of the tag int.

– CDATA: Character DATA, or the data contained within a tag or an attribute. for example, in
<name>nav_x</name>, nav x is CDATA.

45

Index

Communication software stack, 7

46

	Introduction
	Subsea Autonomous Sensing Networks

	Overview of the LAMSS Communication Stack
	goby-acomms
	pGeneralCodec
	pAcommsHandler
	iCommander
	iMOOS2SQL
	pREMUSCodec
	pBTRCodec
	pCTDCodec
	pAcommsPoller

	Communications Modules
	pAcommsHandler
	Overview
	Usage
	Parameters for the pAcommsHandler Configuration Block
	MOOS variables subscribed to by pAcommsHandler
	MOOS variables published by pAcommsHandler
	DCCL Encoding/Decoding Unit: Overview
	DCCL Encoding/Decoding Unit: Designing Messages
	DCCL Encoding/Decoding Unit: XML Tag Reference
	DCCL Encoding/Decoding Unit: Under the Hood
	Priority Message Queuing Unit
	Modem Driver Unit
	Medium Access Control (MAC) Unit

	pGeneralCodec
	pCTDCodec
	iCommander
	Parameters for the iCommander Configuration Block
	Reference Sheet

	Glossary

