
pAcommsHandler Tutorial
MOOS-DAWG 2010
T. Schneider tes@mit.edu
Laboratory for Autonomous Marine Sensing Systems
MIT / WHOI Joint Program in Oceanography & Ocean
Engineering

gobysoft.com
aquatic software

Please download the referenced documents and example missions from
http://gobysoft.com/dl/moosdawg2010_tutorial.tgz.

1 Background

pAcommsHandler1 is theMOOS interface to a collectionof four C++ libraries (goby-acomms2)
that handle various aspects of single-hop acoustic networking. Currently pAcommsHan-
dler only supports the WHOI Micro-Modem3, but the design is abstracted such that intro-
ducing support for a different acoustic modem (or even different physical channel) would
only involve a single subclass.
The four libraries are (listed in order of a traditional networking ”stack” frommost to

least abstract):

• libdccl - highly compact datamarshalling provided by the Dynamic Compact Control
Language.

• libqueue - prioritized buffering of DCCL (and legacy CCL4)messages for sendingwhen
dictacted by the Medium Access Control (libamac)

• libamac - Time Division Multiple Access (TDMA) Medium Access Control. Supports
both centralized and decentralized modes, with optional peer discovery.

• libmodemdriver - abstract driver andWHOIMicro-Modem realization. Handles serial
communications with the physical modem.

Each of these libraries can be used alone or together as part of a non-MOOSnetworking
application. The latter situation is not within the scope of this tutorial, but for reference
see http://gobysoft.com/doc.
Copies of many of the references noted in this document are given in the references

folder of pAcommsHandler tutorial. Many example (real usage) DCCL messages can be
found in moos-ivp-local/data/acomms.

1http://gobysoft.com/#/1/3
2https://launchpad.net/goby
3http://acomms.whoi.edu
4http://acomms.whoi.edu/ccl/

1

http://gobysoft.com/dl/moosdawg2010_tutorial.tgz
http://gobysoft.com/doc
http://gobysoft.com/#/1/3
https://launchpad.net/goby
http://acomms.whoi.edu
http://acomms.whoi.edu/ccl/

2 Philosophy

2.1 Acoustic Communications are slow

Do not take too much from traditional networking (e.g. TCP/IP), some things we are do-
ing here for acoustic communications (hereafter, acomms) are unconventional from the
approach of networking on electromagnetic carriers (hereafter, EM networking). The dif-
ference is a result of a vast spread in the expected throughput of a standard internet hard-
ware carrier and acoustic communications. For example, an optical fiber can put through
greater than 10 Tbps over greater than 100 km, whereas theWHOI acoustic Micro-Modem
can (at best) do 5000 bps over several km. This is a difference of thirteen orders of mag-
nitude for the bit-rate distance product!

2.2 Efficiency to make messages small is good

Extremely low throughputmeans that essentially every efficiency in bit packingmessages
to the smallest size possible is desirable. The traditional approach of layering (e.g. TCP/IP)
creates inefficiencies as each layer wraps the message of the higher layer with its own
header. See RFC3439 section 3 (”Layering Considered Harmful”) for an interesting discus-
sion of this issue5. Thus, the ”layers” of goby-acomms are more tightly interrelated than
TCP/IP, for example. Higher layers depend on lower layers to carry out functions such as
error checking and do not replicate this functionality.

2.3 Total throughput unrealistic: prioritize data

The secondmajor difference stemming from this bandwidth constraint is that total through-
put is often an unrealistic goal. The quality of the acoustic channel varies widely from
place to place, and even from hour to hour as changes in the sea affect propagation of
sound. This means that it is also difficult to predict what one’s throughput will be at any
given time.
These two considerations manifest themselves in the goby-acomms design as a prior-

ity based queuing system for the transport layer. Messages are placed in different queues
based on their priority (which is determined by the designer of the message). This means
that the channel is always utilized (low priority data are sent when the channel quality is
high) but important messages are not swamped by low priority data. In contrast, TCP/IP
considers all packets equally. Packets made from a spam email are given the same consid-
eration as a high priority email from the President. This is a tradeoff in efficiency versus
simplicity thatmakes sense for EMnetworking, but does not for acoustic communications.

2.4 Despite all this, simplicity is good

The ”law of diminishing returns” means that at some point, if we try to optimize exces-
sively, we will end up making the system more complex without substantial gain. Thus,
goby-acomms makes some concessions for the sake of simplicity:

5http://tools.ietf.org/html/rfc3439#page-7

2

http://tools.ietf.org/html/rfc3439#page-7

Numerical message fields are bounded by powers of 10, rather than 2. Humans deal
much better with decimal than binary. User data splitting (and subsequent stitching) is
not done. This is a key component of TCP/IP, but with the number of dropped packets one
can expect with acomms, at the moment this does not seem like a good idea. The user is
expected to provide data that is smaller or equal to the packet size of the physical layer
(e.g. 32 - 256 bytes for the WHOI Micro-Modem).

2.5 Build on high quality open source projects

Rather than reinvent thewheel (andprobablynot do as good a job doing it), pAcommsHan-
dler relies on a number of high quality (and generally well documented) projects (as well
as obviously MOOS / MOOS-IvP):

• version control: bzr 6

• build system: cmake 7

• general purpose libraries: boost 8

• terminal GUI library: ncurses 9

• XML parsing library: Xerces-C 10

• asynchronous networking and serial communications library: asio 11

• cryptography: crypto++ 12

3 Configuration

Within MOOS, the runtime configuration for all four components of goby-acomms are set
in the same pAcommsHandler ProcessConfig block of the .moos file. Sensible defaults for
most values are available, so a bare (but working) block looks like:

ProcessConfig = pAcommsHandler
{

//
// General Configuration
//
verbosity = scope // or verbose (default), terse, quiet

// 5 bit ID, must be unique within the network. 0 is reserved for broadcast
modem_id = 1 // may also be specified as a global .moos parameter
6http://wiki.bazaar.canonical.com/Documentation
7http://www.cmake.org/cmake/help/cmake2.6docs.html
8http://www.boost.org/doc/libs/1_34_0
9http://www.c-for-dummies.com/ncurses/
10http://xerces.apache.org/xerces-c/program-3.html
11http://think-async.com/Asio/asio-1.4.1/doc/
12http://www.cryptopp.com

3

http://wiki.bazaar.canonical.com/Documentation
http://www.cmake.org/cmake/help/cmake2.6docs.html
http://www.boost.org/doc/libs/1_34_0
http://www.c-for-dummies.com/ncurses/
http://xerces.apache.org/xerces-c/program-3.html
http://think-async.com/Asio/asio-1.4.1/doc/
http://www.cryptopp.com

//
// Data Marshalling with DCCL (libdccl)
//
encode = true // default false
decode = true // default false

//
// XML Configuration (libdccl and libqueue)
//
message_file = deploy.xml
schema = message_schema.xsd

//
// Medium Access Control (libamac)
//
mac = slotted // or fixed_slotted, polled, none (default)

//
// Modem Driver (libmodemdriver)
//
serial_port = /dev/ttyS0

}

for a full listing of available .moos file parameters, see theMOOS-IvP Communications
Software Technical Memo13.
The reason this ProcessConfig block is small is because the bulk of the configura-

tion for encoding / decoding the DCCL messages (libdccl) and their subsequent buffering
(libqueue) is done in one or more XML files and are included using one or more ”mes-
sage file=” lines in the .moos file. Creating this Message XML files will be the subject of
section 6.

4 Complementary Applications

Several MOOS applications are especially useful for projects using pAcommsHandler.

4.1 pGeneralCodec

pGeneralCodec is a standalone interface to libdccl (without the remaining networking fa-
cilities provided by libqueue, libamac, and libmodemdriver that pAcommsHandler pro-
vides). The configuration is identical to pAcommsHandler’s DCCL unit and is useful when
encoding and decoding of DCCL messages needs to be done on a node without an acoustic

13http://gobysoft.com/dl/comms_stack.pdf

4

http://gobysoft.com/dl/comms_stack.pdf

modem. Since DCCL messages are highly compact, they are suitable for sending on ma-
rine TCP/IP or UDP connections (typically boosted IEEE 802.11 wifi), which often suffer
dropouts and low data rates.

4.2 iModemSim

Roughly simulates the AUV 0.92.0.85 revision of theWHOIMicro-Modem firmware by pro-
viding a virtual ”ocean” on UDP broadcast. Only useful for packet rate 0 (FSK / 32 bytes)
as the simulation for higher rates has serious errors. Introduces realistic delays and ques-
tionable selective dropping of packets (based on range). See
moos-ivp-local/src/anrp/iModemSim/doc/iModemSim.pdf for details on using this pro-
cess.
Alternatively to a software simulator,WHOImakes amodememulator box that has two

modems connected by a coax cable instead of power electronics and transducers. This is
the best choice for software development, but youmust remember that packet delays and
dropouts are not simulated.
pAcommsHandler will work with iModemSim, and all WHOI Micro-Modem firmware

revisions since AUV 0.92.0.85. I currently test primarily on AUV 0.93.0.30 and newer and
highly recommend upgrading to these newer revisions as I know of a number of bugs in
0.92.0.85.

4.3 iCommander

iCommander provides a ncurses terminal-based graphical user interface (GUI) for a hu-
man to enter fields of an DCCLmesssage (as given by its Message XML structure file). This
is primarly useful for generating commands for a vehicle, and requires no reconfiguration
when the structure (XML) of the message is changed (to add / change some field in the
message).

5 Example 1: Designing a simple Message (or learning libdccl)

I find the best way to learn something is to dive right in with an example. We will start
off with a very simple example: sending the boolean command ”DEPLOY” from oneMOOS
community (representing the topside or command computer on board the ship) to an-
other (representing the vehicle). This is provided as example1 within the pAcommsHan-
dler tutorial folder.
Wealways beginwith the standardXMLdeclaration and root tag (which is<message_set>):

<?xml version="1.0" encoding="UTF-8"?>
<message_set>

A message set may contain any number of messages. We will start with just one:

<message>

We need to pick a name for our message. This is used for debugging, but is also a valid
unique key to the message. Thus, no two messages in a network should have the same
name.

5

CCL ID

(0x20)

DCCL ID

<id>

time of day

<time>

source ID

<src_id>

destination ID

 <dest_id>

8 9 17 5 5 1 1 2 (<size> - 6)*8

�ags user data

<layout>

Figure 1: Layout of the DCCL header, showing the fixed size (in bits) of each header field.

<name>deploy_tutorial</name>

Now, we must decide when our messages should be encoded. We can either create
them on some time interval using the newest variables in the MOOSDB or triggered by a
publish to some MOOS variable. Here we choose the latter.

<trigger>publish</trigger>
<trigger_moos_var>DEPLOY_ALL</trigger_moos_var>

Because pAcommsHandler (by design) does not provide facilities for splitting mes-
sages into packets, we must specify a maximum size our message can be. Generally we
want to make this the same as the physical frame size for the Micro-Modem rate that we
plan to use. Since we’d like to use this with the lowest rate (FSK / 0) which has a single
frame of 32 bytes:

<size>32</size>

We can specify the values for some parts of the fixed size header, namely the DCCL
ID (<id>), source modem ID (<src_id>), destination modem ID (<dest_id>), and time
(<time>). Time is given as seconds since UNIX 1/1/1970 0:00 UTC, consistent with MOOS
conventions. The structure and fields of the header are given in Fig. 1. The DCCL ID (<id>)
must be unique within a network.

<header>
<id>1</id>

</header>

Now for the part of themessagewe get to controlmost. We can form themessage from
any number of <string>s, <int>s, <float>s, <enum>s, <bool>s, and <hex>s.
The difference from these DCCL types and normal C++ (or other programming language)
types is that DCCL types are strictly bounded (maximum / mininum values) for each in-
stantiation. We’ll see this later. For now, we use the simple<bool>:

<layout>
<bool>

<src_var>DEPLOY_ALL</src_var>
<name>value</name>

</bool>
</layout>

6

Technically, this is a ”tribool” (true / false / unknown) as all DCCL types support a ”un-
defined”, ”out of bound”, or ”NaN” value as well as the values given in their range. This
undefined value is always encoded as binary 0. <src var> indicates which MOOS vari-
able to grab the value for this field fromwhen encoding. If omitted, the<trigger var>
is used, so in this case I have redundantly defined it (since the <trigger var> and
<src var> are both DEPLOY ALL).
Finally, we decide what the recipient of themessage should do. We can have any num-

ber of publishes to the MOOSDB using some or all of the message fields (message vari-
ables or ”message vars”). A <message var> is the <nam> of any of the types given in
<layout> (<string>,<int>, etc.):

<on_receipt>
<publish>

<moos_var>DEPLOY</moos_var>
<format>%1%</format>
<message_var>value</message_var>

</publish>
</on_receipt>

Now, if all goes well, if we publish ”DEPLOY ALL: true” in one MOOS community, all
those within broadcast range of the sender will decode and publish ”DEPLOY: true” in
their communities. We’ll deal with directed (single destination) messages later.
We can test our message for syntax (against the DCCL XML schema14) and logic errors

using the analyze dccl xml tool. It will also give the exact sizes used by each message
variable:

cd example1
analyze_dccl_xml deploy.xml message_schema.xsd

Now, you can run the full MOOS example and use iCommander to publish the DE-
PLOY ALL command.

./README

6 Example 2: Replacing pMOOSBridge with pAcommsHandler in a
multi-vehicle simulation (or learning libqueue and more libdccl)

Iwill build offMikeBenjamin’s Bertamission15 that has two surface craft performing loiter
patterns and collision avoidance. Wewill do awaywith pMOOSBridge (which uses TCP/IP)
and instead use pAcommsHandler. This would allow this mission to be run on underwater
vehicles.

14Normally message schema.xsd is provided at moos-ivp-local/src/tes/goby/acomms/libdccl, but I have
copied it to example1 for convenience of this tutorial

15moos-ivp/ivp/missions/m2 berta

7

6.1 Augmenting our DEPLOY message (deploy.xml)

Looking at shoreside.moos, we see that there are several commands that pMOOSBridge
passes across to the vehicles. We have already replaced these lines in Example 1:

SHARE = [DEPLOY_ALL] -> henry @ localhost:9201 [DEPLOY]
SHARE = [DEPLOY_ALL] -> gilda @ localhost:9202 [DEPLOY]

We will need a similar message to enable the IvP Helm on Deploy and replace these
lines:

SHARE = [MOOS_MANUAL_OVERIDE_ALL] -> henry @ localhost:9201 [MOOS_MANUAL_OVERIDE]
SHARE = [MOOS_MANUAL_OVERIDE_ALL] -> gilda @ localhost:9202 [MOOS_MANUAL_OVERIDE]

Since it is similar, I added this message (manual override tutorial) to deploy.xml.
Also new is a<queuing> block:

<queuing>
<ttl>300</ttl>
<value_base>100</value_base>
<max_queue>1</max_queue>

</queuing>

This tells libqueue to how to prioritize different queues when the vehicle has a chance
to send an acoustic message. The time to live (<ttl>) governs both when a message is
discarded if not sent (in seconds) and how quickly the priority of that queue grows. The
base value governs the overall priority of the queue. Every DCCL type has its own queue
but all messages within a queue are considered equal.
The queue with the highest priority P at time t is popped and the next message is

sent. Priorities for each queue are computed as follows:

P (t) = Vbase
(t− tlast)

ttl
(1)

where ttl is<ttl>, Vbase is<value base> and tlast is the time a message was last sent
from this queue.
The basic idea is that messages with a shorter time-to-live and/or a higher base value

are sent first.

6.2 Adding a status message for NODE REPORTs (node report.xml)

To report theposition andother stats of the vehicles to the topside, weuse theNODE REPORT
message, which is a structure of key=value comma-delimited pairs. pAcommsHandler un-
derstands how to read such strings, looking for the <name> of a given field as the key
within the string.
An example NODE REPORT looks like

NAME=gilda,TYPE=KAYAK,MOOSDB_TIME=1.01,UTC_TIME=1282599270.36,X=80.00,Y=0.00,\
LAT=42.358418,LON=-71.086479,SPD=0.00,HDG=180.00,YAW=180.00000,DEPTH=0.00,\
LENGTH=4.0,MODE=DISENGAGED,ALLSTOP=unknown

Given this, I need to define a number of numeric fields such as

8

<float>
<name>X</name>
<precision>1</precision>
<min>-1000</min>
<max>1000</max>

</float>

<precision> is the number of decimal places to keep, and can be negative. <min>
and <max> should be self-explanatory. The encoded size (in bits) to store this field is
directly related to how loose these bounds are, so you want to make them as tight as (rea-
sonably) possible. Rather than 32 bits usually used to store a float, the variable above only
uses 15 bits because of bounding.
The other new thing here are algorithms, for example:

<int algorithm="angle_0_360">

Before encoding, any number is wrapped into the bounds [0, 360). That is, -170 is
converted to 190 before encoding.
pAcommsHandler provides a number of useful algorithms that applied to the value

before encoding (if given in the message variable declaration as above) or post decoding (if
given in the<publish><message var> section). For all supported algorithms see the
MOOS-IvP Communications Software Technical Memo16.

6.3 Commanding new loiter positions (update loiter.xml)

The final message needed was to command the vehicles to change their loiter positions.
This message is in update loiter.xml and should be fairly clear in light of what we’ve
learned so far.
The main difference is that these messages are directed. That is, they have a destina-

tion that is not broadcast. This is defined by the header message variable<dest id>:

<header>
...

<dest_id>
<name>destination</name>

</dest_id>
</header>

DCCL is looking for the key ”destination” inUP LOITER COMMAND. IfUP LOITER COMMAND
was ”destination=3,center x=200,center y=300”, the message would be sent to modem id
3.
Now we’re ready to run the mission:

cd example2
./README

16http://gobysoft.com/dl/comms_stack.pdf

9

http://gobysoft.com/dl/comms_stack.pdf

7 Designing your Network (Medium Access Control, libamac)

TheMediumAccess Control schemes provided by libamac are based on TimeDivisionMul-
tiple Access (TDMA) where different communicators share the same bandwidth but trans-
mit at different times to avoid conflicts. Time is divided into slots and each vehicle is given
a slot to transmit on. The set of slots comprising all the vehicles is referred to here as a
cycle, which repeats itself when it reaches the end. The three variations on this scheme
provided by libamac are:

• Decentralized (Auto discovery) TDMA (mac=slotted): Each vehicle has a single slot
in the cycle on which it transmits. Each vehicle initiates its own transmission at the
start of its slot. Collisions are avoided by each vehicle following the same rules about
slot placement within the time window (based on real time of day). This scheme
requires that each vehicle have reasonably accurate clocks (perhaps better than +/-
0.5 seconds). Vehicles are discovered by shifting a blank time in each cycle in a
pseudorandom place based on their knowledge of the world and the time of day. If
a new vehicle is heard from during the blank, it is added to the listening vehicle’s
knowledge of the world and hence their cycle. If you have synchronized clocks, this is
the easiest MAC to configure and works best with a small number of vehicles.
Example (at time 135 and beyond the two vehicles are synched)

ProcessConfig = pAcommsHandler
{
...

mac = slotted // or fixed_slotted, polled, none (default)
rate = 0
slot_time = 15

}

time vehicle 1 vehicle 2 result
0 send send collision
15 blank blank nothing
30 blank send success: 1 discovers 2
45 cycle wait blank nothing
60 cycle wait send success
75 cycle wait blank nothing
90 send blank success: 2 discovers 1
105 listen for 2 cycle wait nothing
120 blank cycle wait nothing
135 send listen for 1 success
150 listen for 2 send success
165 blank blank nothing
180 send listen for 1 success
195 blank blank nothing
210 listen for 2 send success

10

• Decentralized (Fixed Cycle) TDMA (mac=fixed slotted): Similar to the Auto dis-
covery TDMA but you set a fixed cycle on all the vehicles before they go in thewater.
This is less flexible to taking vehicles in and out of thewater, but guarentees no colli-
sions during the discovery time. If you have synchronized clocks and you cannot tolerate
collisions or want more control over the cycle, this is the best choice.

ProcessConfig = pAcommsHandler
{
...

// MAC
mac = fixed_slotted

// to = -1 means to query the queuing layer for the next destination
// before sending a message
// this is generally the best choice for decentralized MAC
// (unless a node always sends to the same recipient)

// you can always publish ACOMMS_MAC_CYCLE_UPDATE from
// elsewhere to the MOOSDB to change the TDMA cycle

initializer = ACOMMS_MAC_CYCLE_UPDATE destination=1,update_type=replace,
slot_1_type=data,slot_1_from=1,slot_1_to=-1,slot_1_rate=0,slot_1_wait=15,
slot_2_type=data,slot_2_from=2,slot_2_to=-1,slot_2_rate=0,slot_2_wait=15,

}

time vehicle 1 vehicle 2 result
0 send listen for 1 success
15 listen for 2 send success
30 send listen for 1 success
45 listen for 2 send success

• Centralized Polling (mac=polled on the topside, mac=none on the vehicles): The
TDMA cycle is set up and operated by a centralized modem (”poller”), which is usu-
ally the modem connected to the vehicle operator’s topside. The poller initiates
each transmission and thus the vehicles are not required to maintain synchronous
clocks. If you cannot guarantee synchronous clocks or youwant runtime control of theTDMA
cycle, this is the best MAC to use.

//topside.moos
ProcessConfig = pAcommsHandler
{
...

// MAC
mac = polled

initializer = ACOMMS_MAC_CYCLE_UPDATE destination=1,update_type=replace,
slot_1_type=data,slot_1_from=1,slot_1_to=-1,slot_1_rate=0,slot_1_wait=15,
slot_1_type=data,slot_1_from=2,slot_1_to=1,slot_1_rate=0,slot_1_wait=15,

11

slot_2_type=data,slot_2_from=3,slot_2_to=1,slot_2_rate=0,slot_2_wait=15,

}

//vehicle.moos
ProcessConfig = pAcommsHandler
{
...

// MAC
mac = none

}

time topside 1 vehicle 2 vehicle 3 result
0 send listen for 1 listen for 1 success
15 command 2 send to 1 send listen for 2 success
30 command 3 send to 1 listen for 3 send success

WhicheverMAC schemeyouuse, youmust pick a slot time (slot time=#orslot # wait=#).
10 to 15 seconds is a good choice, depending on how synchronized your clocks are and how
far you expect vehicles to be apart.
For a separation of 1500 meters, the math looks like this where t is the slot time:

t = 1.5 [cycle init $CCCYC]
+1 [travel time]
+3.5 [data packet]
+1 [travel time]
+1.5 [ack $CAACK]
+1 [travel time]

= 9.5 seconds

and you’ll want to add a little time for CPU processing on both ends (mostly within the
modem), DRQ, etc. (Advanced) If you’re using rate 2,3, or 5 (PSK) and you’re using the
Decentralized Polling, the cycle time is shorter by the cycle init time and propagation (2.5
seconds above) since this is sent with the message itself.
You also pick the rate (rate=#) to send with, which is an integer 0, 2, 3, or 5 that

indicates the bit rate. Lower rates are less susceptible to error and dropouts, but carry
less data.

• Rate 0 - 1 frame of 32 bytes = 32 bytes total

• Rate 2 - 3 frames of 64 bytes = 192 bytes total (requires coprocessor)

• Rate 3 - 2 frames of 256 bytes = 512 bytes total (requires coprocessor and receiving
array)

• Rate 5 - 8 frames of 256 bytes = 2048 bytes total (requires coprocessor and receiving
array)

12

Rates 0 and 2 are best to start out with, especially if you don’t own a buoy with a
receiving array.

8 Configuring the driver (libmodemdriver)
If your modem is connected directly to a serial port, all you need to specify in the .moos
file is

serial_port = /dev/ttyS0

All NVRAM (configuration) parameters of the modem are reset to factory defaults on
launch, except SRC which is set to the modem id given). If you need to configure other
settings, use

cfg = SNR,1
cfg = GPS,1
[...]

See theMicro-ModemSoftware InterfaceGuide17 for details on all of these parameters.
If you need the raw NMEA stream from the modem, subscribe to ACOMMS NMEA IN.

If you need to directly control the modem, publish to ACOMMS NMEA OUT.

9 Advanced features of note

The following features are described in more detail in the MOOS-IvP Communications
Software Technical Memo18 and/or in the Goby documentation19.

9.1 Initializers

If you need to initialize any MOOS variable at startup with pAcommsHandler, use the syn-
tax:

initializer.string = NAME1 = string_value
initializer.double = NAME2 = 3.23452

This is handy touse to give an initial cycle for themac=polledormac=fixed slotted
TDMA schemes

initializer.string=ACOMMS_MAC_CYCLE_UPDATE=destination=1,update_type=add,\
slot_1_type=data,slot_1_from=1,slot_1_to=-1,slot_1_rate=0,slot_1_wait=10\
slot_2_type=data,slot_2_from=3,slot_2_to=1,slot_2_rate=0,slot_2_wait=10

Of course, you can also update the cycles by publishing ACOMMS POLLER UPDATE at
runtime by any process. Destination of -1 means query the data (libqueue) for the desti-
nation of the highest priority message and begin a cycle to that destination. Destination
of 0 is a convention for a broadcast message (everyone decodes it). Thus, do not assign
any vehicle to modem id=0.

17http://acomms.whoi.edu/documents/uModem%20Software%20Interface%20Guide.pdf
18http://gobysoft.com/dl/comms_stack.pdf
19http://gobysoft.com/doc/

13

http://acomms.whoi.edu/documents/uModem%20Software%20Interface%20Guide.pdf
http://gobysoft.com/dl/comms_stack.pdf
http://gobysoft.com/doc/

9.2 Manipulators

pAcommsHandler supports loading XML files with certain manipulators disabling or en-
abling additional features. Instead of

message_file = deploy.xml

you can write

message_file = no_encode = deploy.xml

and the messages defined in deploy.xml will never be encoded on that vehicle (even if
the<trigger> conditions are met).
Another example is

message_file = loopback,no_queue = deploy.xml

which means that all messages generated locally are looped-back (i.e. decoded imme-
diately) and are not queued to send acoustically. This is somewhat analogous to localhost
(the lo interface on Linux).
Note that regardless of whether you use loopback or not, any messages addressed to

oneself (i.e. source and destination match modem id) are immediately looped-back and
not sent to the modem.

9.3 Crytography

AES encryption is enabled by providing some passphrase

crypto_passphrase = supersecret!

All receiving nodes must have the same crypto passphrase or they will decode mes-
sages completely incorrectly. You are, of course, responsible for the security of the .moos
file by using appropriate filesystem permissions.

9.4 Modem ID Lookup file

For some pAcommsHandler DCCL algorithms (namely modemid2name, modemid2type
and name2modemid), a lookup table must be provided. The file is a simple comma de-
limited file like:

// modemidlookup.txt
// modem id, vehicle name (should be community name), vehicle type
0, broadcast, broadcast
1, shoreside, topside
2, gilda, kayak
3, henry, kayak

and is included in the .moos file with

modem_id_lookup_path = modemidlookup.txt

14

	Background
	Philosophy
	Acoustic Communications are slow
	Efficiency to make messages small is good
	Total throughput unrealistic: prioritize data
	Despite all this, simplicity is good
	Build on high quality open source projects

	Configuration
	Complementary Applications
	pGeneralCodec
	iModemSim
	iCommander

	Example 1: Designing a simple Message (or learning libdccl)
	Example 2: Replacing pMOOSBridge with pAcommsHandler in a multi-vehicle simulation (or learning libqueue and more libdccl)
	Augmenting our DEPLOY message (deploy.xml)
	Adding a status message for NODE_REPORTs (node_report.xml)
	Commanding new loiter positions (update_loiter.xml)

	Designing your Network (Medium Access Control, libamac)

