
Unified Command and Control for Heterogeneous

Marine Sensing Networks

Toby Schneider∗ and Henrik Schmidt
Laboratory for Autonomous Marine Sensing Systems (LAMSS)

Center for Ocean Engineering
Department of Mechanical Engineering

Massachusetts Institute of Technology (MIT)
77 Massachusetts Ave
Cambridge, MA 02139

tes@mit.edu / henrik@mit.edu

Abstract

Successful command and control (C2) of autonomous vehicles poses challenges that are
unique to the marine environment, primarily highly restrictive acoustic communications
throughput. To address this, the Unified C2 architecture presented here uses a highly com-
pressed short message encoding scheme (Dynamic Compact Control Language or DCCL)
to transfer commands and receive vehicle status. DCCL is readily reconfigurable to pro-
vide the flexibility needed to change commands on short notice. Furthermore, operation of
multiple types of vehicles requires a C2 architecture that is both scalable and flexible to
differences amongst platform hardware and abilities. The Unified C2 architecture uses the
MOOS-IvP autonomy system to act as a “backseat driver” of the vehicle. This provides a
uniform interface to the control system on all the vehicles. Also, a hierarchical configura-
tion system is used to allow single changes in configuration to propagate to all vehicles in
operation. Status data from all vehicles are displayed visually using Google Earth, which
also allows a rapid meshing of data from other sources (sensors, AIS, radar, satellites) from
within, as well as outside of, the MOOS-IvP architecture. Results are presented throughout
from the CCLNET08, SQUINT08, GLINT08, GLINT09, SWAMSI09, and DURIP09 exper-
iments involving Robotic Marine surface craft (ASCs) and Bluefin, OceanServer, and NURC
underwater vehicles (AUVs).

1 Introduction

1.1 Overview of the Unified C2 architecture

Autonomous marine vehicles are becoming inexpensive enough (e.g. OceanServer’s sub-$100,000 Iver2 [Crow-
ell, 2006]) and mature enough as single platform systems that use of these vehicles in groups is increasingly
feasible. Groups of vehicles offer redundancy, specialization, and improved performance in certain underwa-
ter research tasks. However, even autonomous systems need to be commanded by a human, especially in
the process of developing such systems. The concept of unified command and control (Unified C2) arose

∗Also affiliated with the Applied Ocean Physics and Engineering Department at the Woods Hole Oceanographic In-
stitution (WHOI) through the MIT/WHOI Joint Program in Oceanography and Ocean Engineering. Personal website:
<http://aubergine.whoi.edu>.

from the authors’ need to deploy and command multiple autonomous underwater vehicles (AUVs) for target
detection and environmental sampling. Unified C2, described in this paper, was developed from experi-
ences during numerous field experiments involving AUVs and autonomous surface craft (ASCs) operated in
shallow water (depths on the order of 100 meters) from 2008 to 2009. Unified C2 is composed of three
major components:

1. Hierarchical configuration that is set before the vehicles are in the water, as described in section 2.

2. A network infrastructure that allows commands for an arbitrary number of vehicles to be sent by a
single operator and data to be received while the vehicles are in the water, outlined in section 3.

3. Data visualization by meshing the data with Google Earth satellite imagery and bathymetry. The
process of interfacing the Unified C2 network to Google Earth is discussed in section 4.

1.2 MOOS-IvP autonomy architecture

All the vehicles (and the operator topside computer) in the Unified C2 system run the MOOS-IvP autonomy
architecture [Benjamin et al., 2009]. MOOS-IvP is comprised of two components, written entirely in the C++
programming language:

1. MOOS, the Mission Oriented Operating Suite, which is a publish-subscribe infrastructure for asyn-
chronous interprocess communication between a number of discrete processes or MOOS Modules
(collectively, a MOOS Community). Each MOOS Module communicates only by publishing data to
the central data bus (the MOOSDB) and by receiving data from the MOOSDB for which it had previously
subscribed. No process communicates directly with another process. This allows for rapid prototyp-
ing by partitioning the vehicle software system into modules that can essentially be developed and
debugged individually.1

2. pHelmIvP, the Interval Programming Helm, which is a behavior-based decision engine that com-
mands the low level control by producing a desired heading, speed, and depth for the vehicle.
pHelmIvP allows for an arbitrary number of behaviors to compete for the vehicle’s action, producing
a “best option” by evaluating the entire objective function of each behavior over the entire (feasible)
heading-speed-depth space, rather than just arbitrating over a single desired heading, speed, and
depth from each behavior.2

Figure 1 models the subsystems for the topside operator MOOS community and a sonar AUV MOOS
community (“backseat” computer). Each subsystem is composed of one or more MOOS Modules (designated
by a name starting with a lower case ‘p’ or ‘i’) that communicate through the central data bus (the MOOSDB).
The desired actions produced by pHelmIvP are passed to the vehicle’s low level control computer (“frontseat”
computer, details of which vary depending on the vehicle and manufacturer) which is responsible for actuating
the commands. Precisely how the “frontseat” carries out the commands depends significantly on the details
of the individual vehicle design. For example, a heading change might be implemented on one vehicle by
tilting a single thruster but implemented on another vehicle by varying the thrust differential between two
thrusters distributed some distance from the vehicle’s center of gravity. By having this split “frontseat”-
“backseat” structure, Unified C2 can command potentially very different vehicles via a single abstracted
autonomy architecture (MOOS-IvP).

1MOOS is like an office where all the employees (MOOS Modules) never talk to each other but post papers of their work
(publish) and copy others’ papers (subscribe) as needed on a central bulletin board (the MOOSDB).

2pHelmIvP works something like this: two people (behaviors) are trying to pick a movie to watch (by analogy, choose a
heading, speed, and depth). If each tells only their top pick and, as is likely, these do not match, the best option is to pick
one person’s top choice at random, which leaves the other unhappy (50% utility). However, if both give a ranked list of their
choices (objective functions), then a match might be found slightly down the list that reasonably satisfies both people (say 80%
utility). pHelmIvP works like this second option; by looking at the entire utility function of all behaviors over the entire space,
compromises can be made and more work gets done.

Sonar AUV MOOS (Backseat) Computer

Hydrophone Array

Main Vehicle Computer

(Manufacturer Specific)

WHOI Micro-Modem

«subsystem»
Vehicle Autonomy Control
{components = pHelmIvP}

«subsystem»
Tracking

{components = p1BTracker,
pTrackQuality}

«subsystem»
Front Seat Interface

{components = iHuxley,
iOceanServerComms, or iOEX}

«subsystem»
Communications

{components = pAcommsHandler,
pMOOSBridge}

Environmental Sensor

(e.g. CTD)

«subsystem»
Sonar Interface and Processing

{components = iDAS,
pBearingTrack}

«subsystem»
Environmental Sampling

{components = iCTD, pEnvtGrad}

«executable»
MOOSDB

IEEE 802.11 Wifi

«subsystem»
Navigation

«subsystem»
Low level control

Topside MOOS Computer

WHOI Micro-Modem

«subsystem»
Communications

{components = pAcommsHandler,
pMOOSBridge}

Ship Sensors (e.g. GPS,

Radar)

«executable»
MOOSDB

IEEE 802.11 Wifi

«subsystem»
Command

{components = iCommander}

«subsystem»
Visualization

{components = pMarineViewer,
iMOOS2SQL} GEOV Server (Google

Earth Display)

Figure 1: Model of the subsystems of the operator topside (ship-based command computer) and a sonar
Autonomous Underwater Vehicle (AUV) (e.g. the Bluefin 21 Unicorn). Each subsystem is comprised of
one or more independent MOOS processes that communicate only through a central data bus (the MOOSDB).
While processes do not communicate directly, key implicit dependencies between subsystems are indicated
with dotted arrows.

Table 1: Summary of field trials during which Unified C2 was developed and tested. The column marked
Messages Used refers to Dynamic Compact Control Language message names unless specified. The exper-
iment datum is a location in the southwest corner of the operation region from which all vehicle positions
are referenced using the Universal Transverse Mercator projection with the WGS 84 ellipsoid [NIMA, 2000].

Name Dates Summary Vehicles Messages Used Experiment
Datum

CCLNET08 1.19.08 - 2.1.08 First Engineering
test for GLINT

AUV: 1 NURC OEX.
ASC: 2 Robotic Marine
Kayaks

PlusNet CCL (DCCL not devel-
oped)

44.08892◦N,
9.85054◦E

SQUINT08 5.19.08 - 5.23.08 Second Engineer-
ing test for GLINT

AUV: 1 NURC OEX.
ASC: 2 Robotic Marine
Kayaks

PlusNet CCL (DCCL not devel-
oped)

44.08892◦N,
9.85054◦E

GLINT08 7.22.08 - 8.14.08 Interoperability of
marine vehicles for
passive acoustic
target detection

AUV: 1 NURC OEX,
1 Bluefin 21 (Unicorn),
1 OceanServer Iver2.
ASC: 3 Robotic Marine
Kayaks

PlusNet CCL (DCCL not devel-
oped), compressed CTD mes-
sages (precursor to DCCL)

42.5◦N,
10.08333◦E

SWAMSI09 3.23.09 - 4.5.09 Mine detection us-
ing bistatic acous-
tics.

AUV: 2 Bluefin 21
(Unicorn, Macrura)

LAMSS DEPLOY,
LAMSS STATUS,
ACTIVE CONTACT,
ACTIVE TRACK, CTD

30.045◦N,
85.726◦W

GLINT09 6.29.09-7.21.09 Interoperability of
marine vehicles for
passive acoustic
target detection

AUV: 1 NURC OEX,
1 OceanServer Iver2.
ASC: 2 Robotic Marine
Kayaks

LAMSS DEPLOY,
SURFACE DEPLOY,
LAMSS STATUS,
LAMSS CONTACT,
LAMSS TRACK, CTD

42.47◦N,
10.9◦E

DURIP09 8.19.09 - 9.02.09 Engineering test
for collabora-
tive autonomy
and towed array
improvements

AUV: 2 Bluefin 21
(Unicorn, Macrura).
ASC: 2 Robotic Marine
Kayaks.

LAMSS DEPLOY,
SURFACE DEPLOY,
LAMSS STATUS,
LAMSS CONTACT,
LAMSS TRACK, CTD, BTR,
ACOUSTIC MOOSPOKE

42.35◦N,
70.95◦W

1.3 Field Exercises

All the work involved in developing Unified C2 was motivated by and tested at several field trials spanning
from 2008 to 2009. These exercises took place in shallow water (depths on the order of 100 meters) and
involved four different types of AUVs and ASCs, all running the MOOS-IvP autonomy in a frontseat-backseat
configuration as discussed in section 1.2. These trials are summarized in table 1 and experiences from them
will be referenced throughout the remainder of this paper.

1.4 Prior Art

Traditionally, underwater vehicles are controlled using platform specific interfaces where the vehicles com-
municate with the surfaced assets using dedicated wireless ethernet communication channels. Each mission
is configured before the dive is initiated. After the vehicle is submerged, status and contact reports are trans-
mitted via acoustic modem, and simple re-deploy commands are sent from the topside C2 console, provided
such maneuvers are allowed in the mission script and coded into the acoutic datagrams. The fixed message
set highly limits the ability of the human operator to command the vehicles while submerged. Also, almost
uniformly, the command and control infrastructures have been proprietary and manufacturer-specific. Thus,
there is little openly published literature on these systems.

For example, most REMUS vehicles (manufactured by Hydroid) are controlled within this paradigm using
the REMUS Vehicle Interface Program (VIP) software infrastructure. Similarly, Bluefin Robotics’ AUVs,
apart from the MIT LAMSS fleet, are controlled using the Bluefin proprietary topside. Although some
components of these systems are common, such as the CCL message coding, they are in general completely

#Communications
#Logging

Global

#Vehicle Autonomy Control

AUV

#Vehicle Autonomy Control

ASC

#Front Seat Interface

Bluefin AUV

#Front Seat Interface

OceanServer AUV

#Front Seat Interface

NURC AUV

#Front Seat Interface

Robotic Marine Kayak

+ship name : string

Topside

+name : string = Bobby

Kayak

+name : string = Dee

Kayak

#Tracking
#Sonar Interface

Sonar AUV

#Environmental Sampling

Environmental AUV

+name : string = OEX

Ocean Explorer

+name : string = Hammerhead

Iver2

+name : string = Unicorn

Bluefin 21

+name : string = Macrura

Bluefin 21

+name2id() : unsigned int
+id2name() : string
+id2type() : string

Cruise +datum lat : double = 42.47
+datum lon : double = 10.9
+safety behaviors

GLINT09

+datum lat : double = 30.045
+datum lon : double = -85.753
+safety behaviors

SWAMSI09

Figure 2: Hierarchy of classes representing the software configuration of a collection of Autonomous Surface
Craft (ASCs) and Autonomous Underwater Vehicles (AUVs) used in the field experiments summarized in
table 1. The open arrow indicates a generalization of another class. The bottom row of the hierachy represents
configuration for an actual vehicle; the rest of the hierarchy is abstract. By putting configuration as high
in this tree as possible, configuration redundancy is minimized and changes can be propagated easily to all
the leaves. Each of these classes represents one or more text files that are assembled by a text preprocessor
before being passed to the MOOS process launch manager (pAntler).

incompatible, requiring a separate topside C2 infrastructure for each vehicle type and often for each vehicle.

In contrast, the payload-centric autonomy and communication infrastructure integrated using MOOS-IvP

allows Unified C2 to be applied to controlling a completely heterogeneous network of vehicles and fixed
nodes, all from a single topside command and control console on a surface ship or on shore. Furthermore,
the Dynamic Compact Control Language (DCCL) messaging (detailed in section 3.2) allows for a much
richer and more quickly reconfigurable set of commands to be sent to the vehicles while in operation (i.e.
underwater and out of reach of wireless ethernet).

2 Hierarchical configuration

MOOS-IvP, like many software systems, requires configuring all the processes with some initial state. Config-
uration values range from hardware settings (e.g. serial port names) to autonomy settings (e.g. behaviors)
that govern the vehicles’ initial mission and all possible states that can be commanded during runtime. In a
research environment, many processes expose a good deal of initial state to the prelaunch configuration since
optimum defaults are unknown a priori and are the subject of research themselves. This means there are a
large number of prelaunch configuration values, many of which need to be consistent across vehicles. Further-
more, it is often desirable that changes to the configuration be able to be easily propagated throughout the
set of vehicles without changing the value in more than one place. With a single vehicle, a single file defining
the configuration is manageable, but as the number of vehicles grows, the authors have found that making
sure that changes propagate is a logistical difficulty. The Communications subsystem is an example of one
that requires a significant amount of consistent configuration throughout the network. If encoding/decoding
templates (DCCL XML files: see section 3.2) are inconsistent between vehicles, the messages may not be
decoded properly.

To address this issue, a hierarchical configuration system was implemented where each vehicle’s configuration
is inherited from a number of parents up the “tree” of the hierarchy. Figure 2 diagrams this hierarchy for
a number of the vehicles used in the field exercises tabulated in table 1. The configuration for each vehicle

can be thought of as a class that inherits configuration much in the same way as public class inheritance
(which expresses an “is-a” relationship) works in object-oriented programming languages (such as C++).
For example, in Figure 2, the Ocean Explorer (OEX) is a NURC AUV which is a Sonar AUV, etc. Any
configuration for a Sonar AUV is inherited by all NURC AUVs which is then in turn inherited by the OEX.

Examples of the subsystems that are typically configured at each level are given in Figure 2. Cruises
are handled as a class that the Global configuration (i.e., the root of the tree) depends on. Information
contained in each cruise is specific to the operations of that experiment such as a local datum for geodesic
conversions, local obstacles to avoid, and a mapping of the vehicle names to a numeric id number for acoustic
communications.

Since MOOS is limited to accepting plain text configuration files with key/value pairs, this hierarchical config-
uration structure is implemented through a series of small text files (that represent each “class” in Figure 2)
that are included to the main configuration file via a text preprocessor (splug), which is very similar to the
C Preprocessor (cpp). The configuration is kept consistent throughout the vehicles by using version control
software (in our case, Subversion) in the same manner that the source code is kept consistent.

This type of configuration was first developed and tested on ASCs at GLINT08 and then migrated to AUVs
by SWAMSI09. The authors have found that ASCs make excellent testbeds for changes to the Unified C2

architecture as they can be reprogrammed while deployed and are at less risk of loss due to errors in the
new system as they do not dive.

3 Network

3.1 Subsea and surface networking

Reliable communications between underwater and surface nodes in the ocean are at best an uncertainty.
Underwater communications are only practical using an acoustic carrier due to the rapid attenuation of most
electromagnetic wavelengths in sea water [Clay and Medwin, 1977]. Acoustics are subject to the variations of
the physical propagation of sound, are slow (over five orders of magnitude slower than light), and have little
usable bandwidth due to the low frequencies of the carriers, leading to unpredictability and low throughput
when sending messages below the surface. Above-surface wireless ethernet (wifi) affords much higher bitrates
but is subject to antennae line of sight issues, especially with small masted vehicles bouncing in the waves.
In the field trials given in table 1, the authors have found the range of acoustic communications to often be
substantially better (factor of two or more) than the wifi connection to Bluefin 21 AUVs. However, ship-
to-ship or ship-to-buoy networking over ranges of several kilometers can be reasonably reliable if properly
installed. In the authors’ experience, reliable communications are much more important to successful field
operation of robotic vehicles than fast communications.

Unified C2 networking has evolved from a single-hop underwater network to a single-hop underwater net-
work with (potentially) multi-hop above-water network. This allows the operator’s commands to a subsurface
node to be forwarded to the nearest “gateway,” which is either an acoustic modem on the ship, or a buoy or
autonomous surface craft (ASC) with a modem. The last option allows the most flexibility, as the ASC can
transit to improve its range to the underwater vehicle and improve the chance of reception.

One behavior that works well for cases when high throughput from the underwater vehicle is needed is to
have an ASC trail the AUV by a short distance, making the acoustic transmission closer to vertical (as well
as a shorter distance) and reducing the refraction (since the water is much more stratified in the vertical
than the horizontal) and multiple reflections (multipath) that destroy acoustic packets. Figure 3 shows two
scenarios for a ship (topside), an AUV and an ASC, where the topside commander wishes to send a command
to the AUV as well as receive a status message (e.g., position, orientation, speed, health) from the AUV.

Topside
ASCASCASC

AUV

Topside
ASCASCASCASCASCASCASCASC

Topside
ASCASCASCASC

AUVAUV

AUV TopsideASC

«acoustic» DCCL Status«acoustic» DCCL Status

«wifi» DCCL Status (forward)
Duplicate Status is ignored.

«acoustic» DCCL Command

Topside

ASCASCASC

AUV

TopsideTopside

ASCASCASCASCASCASCASCASC

TopsideTopsideTopside

Wi

Acoustic

AUV TopsideASC

«acoustic» DCCL Status

«wifi» DCCL Status (forward)

«wifi» DCCL Command

«acoustic» DCCL Command (forward)

Figure 3: Transmission coverage diagram (top) and sequence diagram for sending a command and receiving
a status message from the topside to an underwater vehicle (below). On the left the AUV is within range of
the topside for both networks but since the AUV is below the surface only the acoustic message is received.
In the second scenario the AUV is out of communication directly with the topside so the messages are passed
through a surface craft (ASC).

In the first scenario (on the left), the AUV is in direct acoustic communication with the ship modem so that
the messages pass directly between the topside and the AUV. In the second scenario (right side of Figure 3),
the AUV is out of acoustic range of the ship, but within the range of the ASC. The ASC is in range above the
surface with the ship so that it can forward the messages between the two. This is a somewhat brute force
technique to routing (all important packets are forwarded), but removes the need to maintain a very rapidly
changing routing table (since almost everything is in motion) and since the bandwidth available above the
sea is so much higher (three to four orders of magnitude above the acoustic underwater communications),
there is no risk of saturating the wifi network. This trailing behavior as part of the Unified C2 network was
first successfully demonstrated at the CCLNET08 experiment in January 2008 (see Figure 4). The Robotic
Marine kayaks Dee and Bobby trailed both the research vessel (Leonardo) and the OEX AUV, forwarding
acoustic messages to the topside. Similar behavior was used as part of the GLINT08 and GLINT09 networks.

The underwater network can be thought of as a local network broadcast, where every vehicle hears every
transmission within range (a few kilometers for the 25 kHz WHOI Micro-Modem (see [Freitag et al., 2005])
employed in all the authors’ experiments, though highly variable within the spatial and temporal environ-
ment). The above sea network is based off TCP/IP and UDP protocols, the latter used for cases when
throughput is so bad that TCP/IP does not adequately handle all the missed packets and what is most
desirable is the newest message rather than all the messages.

In fact, throughput of all messages is rarely achievable. Using the Band C WHOI Micro-Modem with a
carrier of 25 kHz, the authors have observed that actual throughput in good conditions ranges from about
20 bits-per-second (bps) using the low-rate frequency-shift keying (FSK rate 0) modulation to 2000 bps using
the high-rate phase shift keying (PSK rate 5) modulation. However, this throughput is highly dependent
on the environmental conditions (sound speed profile, water depth, surface waves), with the higher rates
the most sensitive.. It is also dependent on the orientation of the vehicle and the mounting position of the
modem. Communication performance can change substantially over the course of one day to the next due to
changes in the environment. Communication in very shallow water (∼20 meters depth), such as that in the
operation region of SWAMSI09, posed the most difficulty. Communications would fail for tens of minutes at

Figure 4: GEOV screenshot showing ASCs Bobby and Dee trailing the OEX AUV to improve networking
throughput at the CCLNET08 experiment. Acoustic communications are only robust over short distances
with largely vertical propagation, which makes these “mobile gateways” effective, as they can always maintain
a relatively short distance to the AUV. The ASCs were commanded to trail at 100 meters behind the AUV
at 170◦ and 190◦ relative to the AUV’s bow. The ASCs were also running a high priority collision avoidance
behavior with the RV Leonardo (“leo”), which accounts for the shift to port from the normative tracking
positions.

a time, especially at ranges of more than several hundred meters. However, in GLINT08 with a water depth
of 100 meters, even high rate (PSK rate 5) transmissions would occur successfully at ranges up to 1.6 km.
To maximize the throughput, but ensure some consistent messaging, the authors will command the vehicles
to alternatingly send messages at low and high rates.

All messages are prioritized to compensate for the reality of low and variable throughput. The message with
the highest priority is sent at each opportunity provided by the medium access control (MAC) scheme. The
priorities grow in the time since the last message of that type was sent. Thus, higher priority messages
do not continuously overwhelm lower priority messages. This is implemented through a set of queues: one
queue for each DCCL message (e.g. LAMSS STATUS has one queue, ACTIVE CONTACTS has another).
Each queue i has a priority value (Pi(t)) which is calculated using

Pi(t) = Vi

(

t− τi

ttli

)

(1)

where Vi is the base value of the queue (i.e. the importance of that type of message), ttli is the time-to-live
(in seconds) of messages in that queue, τi is the last time a message was sent from the ith queue and t is the
current time. Messages with a short ttl are presumably more time sensitive, so their priorities grow faster
than messages with a longer ttl. When the MAC scheme permits a message to be sent, the queue is chosen
with the highest P (t).

One example of why this dynamic growth of priorities is desirable is during a subsea detection. The AUV
generates track and contact reports (high priority messages) for the detected object, but the operator still
desires an occasional lower priority status message to ensure the vehicle is performing correctly. Were
priorities not to grow, the operator would never receive a status message while track reports were being
generated.

Messages received from underwater nodes are forwarded by the surface nodes so that all interested parties
(typically all the assets in the experiment) can log and use these data. This allows for redundancy when
certain vehicles are out of range of the initial sender.

3.2 Dynamic Compact Control Language (DCCL)

The Dynamic Compact Control Language (DCCL) provides a structure language for defining fixed-length
short messages primarily to be sent through an acoustic modem (but which can be sent through TCP/IP
or UDP as well). The messages are configured in XML and are intended to be easily reconfigurable, unlike
the original CCL framework (see [Stokey et al., 2005]) used in the REMUS vehicles that DCCL aims to
replace. DCCL can operate within a CCL network, as the most significant byte (or CCL ID) is 0x20. DCCL
messages can be easily reconfigured because they are defined in plain text XML files which are encoded using
a set of standard rules given in Table 2. Creating a new CCL message, on the other hand, requires defining
each field and its encoding in software code and then testing to ensure its correctness. By using an XML
schema and other structural checks, DCCL greatly reduces the chance of undetected error when defining new
messages. A more in-depth explanation of DCCL, including example XML files, can be found in [Schneider
and Schmidt, 2010]. The source code and documentation for DCCL, provided as the C++ library libdccl, is
available as part of the open-source goby-acomms project at http://launchpad.net/goby.

One example that demonstrates the flexibility of DCCL occured in SWAMSI09. In this experiment, two
AUVs were to perform bistatic acoustic detection of mine-like targets on the seafloor. In order to do this,
both AUVs needed to traverse a circular pattern around the potential target, maintaining a constant bistatic
angle. However, entering into this collaboration and maintaining the correct angle required handshaking and
data transfer between both vehicles. At the time of the experiment there was no available fields in the current
message set to perform this handshake. By adding some new fields (i.e. several lines of XML text) to the
LAMSS STATUS message, the vehicles were able to perform the handshake underwater as needed. This would
not have been possible with the hard-coded CCL messages without substantially more planning, coding, and
testing.

DCCL is similar to the ASN.1 unaligned Packed Encoding Rules [Dubuisson and Fouquart, 2000]. DCCL
messages are packed based on bit boundaries (as opposed to bytes or words) determined with knowledge of
the XML file. They are not self-describing, as this would be prohibitively expensive in terms of data use.
Thus, the sender and receiver must have a copy of the same XML file for decoding a given message. Also,
each message is defined by an identification number that must be unique within a network.

DCCL messages can be used for any kind of data expressible as a combination of one or more customizably
bounded integers or fixed point real numbers, strings, enumerations, booleans, or uncategorized hexadecimal.
Thus, among other uses, they can be used to encode commands and status messages for AUVs. The
algorithms used for encoding the DCCL types are provided in Table 2. DCCL is currently limited to these
data types, which cover the needs for vehicle status, command, and collaboration messages. However, it
is not well suited for large vectors or arrays of data, since each field must be specified separately in the
XML file. Presently, other processes are used, such as pCTDCodec, to encode data messages into hexadecimal
that can form part or all of a DCCL message. pCTDCodec uses delta-difference encoding to compactly store
samples from a Conductivity-Temperature-Depth (CTD) sensor. Delta-difference encoding makes use of the
correlation between samples by sending only the difference values from an initial “key” sample.

Within the MOOS-IvP autonomy infrastructure, all the acoustic communications are handled by a process
called pAcommsHandler. This involves encoding/decoding (using DCCL), message queuing and transmission
by priority, and interaction with the modem firmware (driver). The sequence for sending a command
underwater is modeled in Figure 5. Above the surface, over wifi, the process is simpler since most of the
networking is handled by TCP/IP (see figure 6). Here, pAcommsHandler is used just for encoding and
decoding (again with DCCL). DCCL is perhaps unnecessary with the higher rate wifi connectivity, but
by encoding all messages with the same scheme, a vehicle can switch easily and seamlessly from being

Table 2: Formulas for encoding the DCCL types.

DCCL Type Size (bits) Encodea

<bool> 2 xenc =

{

2 if x is true
1 if x is false
0 if x is undefined

<enum> ⌈log2(1 +
∑

ǫi)⌉ xenc =

{

i+ 1 if x ∈ {ǫi}
0 otherwise

<string> length · 8 ASCIIb

<int> ⌈log2(max−min+ 2)⌉ xenc =

{

nint(x−min) + 1 if x ∈ [min,max]
0 otherwise

<float> ⌈log2((max−min) · 10precision + 2)⌉ xenc =

{

nint((x−min) · 10precision) + 1 if x ∈ [min,max]
0 otherwise

<hex> num bytes · 8 xenc = x

· x is the original (and decoded) value; xenc is the encoded value.
· min, max, length, precision, num bytes are specified for each relevant field in the XML file. ǫi is the ith enumeration value
(where i = 0, 1, 2, . . .).
· nint(x) means round x to the nearest integer.

a for all types except <string> and <hex>, if data are not provided or they are out of range (e.g. x > max), they are encoded
as zero (xenc = 0) and decoded as not-a-number (NaN).

b the end of the string is padded with zeros to length before encoding if necessary.

commanded on the surface to being commanded below the surface.

The command process (iCommander) is an NCurses terminal graphical user interface that allows a user to
type in values for the fields for any number of DCCL messages. Since the fields displayed to the human
operator for entry are directly read from the XML message files, any change to the command message contents
are immediately available to the operator without changing software code. In the authors’ experience it is
preferable to avoid changing code on experiments whereever possible without sacrificing the ability to make
changes to the messages (e.g., to allow a new experiment to take place).

DCCL loads the message configuration (given as XML) into C++ objects at runtime. Thus, when a mes-
sage is changed, the vehicle and topside software needs merely to be restarted, not recompiled, for the
change to propagate through the communications software (pAcommsHandler) and the command software
(iCommander). This is advantageous for embedded computers, such as those deployed on marine vehicles,
since compilation can be a time consuming process.

The authors have developed about a dozen DCCL messages that are widely used in our experiments, as well
a number of test messages. The messages used in field trials are summarized in Table 3. They are broken
into three rough categories: Data, Command, and Collaboration. Data messages are sent from the vehicles
to the topside operator with some type of measured or calculated data. Commands are sent to change the
mission state of the vehicles. Collaboration messages are sent between robots to provide data or handshaking
relevant to a multi-vehicle experiment.

3.3 Network examples

Figure 7 shows the network connectivity for a simple two-AUV / no-ASC experiment (SWAMSI09). The
topside (through a buoy) is connected to the vehicles by an acoustic network using the WHOI Micro-Modem.
A wifi network (not shown) is used to upload configuration and code changes and download data logs, but
this is primarily done before the day’s operations. Once the vehicle is underway, the vehicles are deployed
and redeployed through the acoustic network alone.

Figure 8 gives the network connectivity for a larger experiment with both surface and subsea nodes
(GLINT08/09). This network allows forwarding of messages through mobile gateways (the ASCs) and
visualization of data shoreside via the internet and GEOV.

Topside MOOS Computer AUV MOOS Computer

iCommander MOOSDB pAcommsHandler WHOI Micro-Modem pAcommsHandlerWHOI Micro-ModemOperator pAcommsPoller

types commands

OUT_COMMAND

OUT_COMMAND

$CCCYC (Poll)

$CADRQ (Data request)

$CCTXD (Transmit data)

Acoustic PSK/FSK Data

Acoustic Ack

$CAACK (Acknowledgement)

$CARXD (Receive data)

pHelmIvP

ACOMMS_ACK

ACOMMS_ACK
display ack

IN_COMMAND

DCCL Message encoded
and queued.

MOOSDB

Message decoded.

IN_COMMAND

Message flushed

Figure 5: Sequence diagram for sending a command to an AUV using the Unified C2 infrastructure. The
operator types a command into the iCommander application, which is configured with the desired set of
DCCL messages (defined in XML). This message is encoded using DCCL, queued by pAcommsHandler, and
sent through the water using a 25 kHz acoustic carrier (the WHOI Micro-Modem). On the receiving end,
the message is decoded and an acknowledgment is generated and displayed to the operator. pAcommsPoller
handles access of the acoustic channel by a centralized time division MAC scheme.

Topside MOOS Computer ASC MOOS Computer

iCommander MOOSDB pAcommsHandler pAcommsHandlerOperator

types commands

OUT_COMMAND

OUT_COMMAND

IN_COMMAND_HEX

pHelmIvP

IN_COMMAND

MOOSDB

Message decoded.

IN_COMMAND

OUT_COMMAND_HEX

pMOOSBridge

DCCL Message encoded.

pMOOSBridge

IEEE 802.11b 2.4 GHz

Figure 6: Sequence diagram for sending a command to an ASC using the Unified C2 infrastructure. The
TCP transport layer handles reliability so no acknowledgment is produced for the operator.

Table 3: Partial summary of DCCL Messages used in field experiments

Message Name Category
Experiments
Useda

Size
(bytes)

Field
Count

Description

ACTIVE CONTACTS Data SWAMSI09 32 22 Active acoustic contact report message.

ACTIVE TRACKS Data SWAMSI09 32 20 Active acoustic tracking message.

LAMSS DEPLOYb Command
All since
GLINT08

31 22 Underwater vehicle command message.

LAMSS STATUSb
Data / Col-
laboration

All since
GLINT08

26 20
Vehicle Status message (position, speed, Euler
angles, autonomy state)

LAMSS CONTACT Data GLINT09 29 24 Passive acoustic contact report message.

SURFACE DEPLOY Command
GLINT09,
DURIP09

13 10 Command message for surface vehicles.

ACOUSTIC MOOS POKE Command
GLINT09,
DURIP09

32 3 Underwater debugging / safety message.

SOURCE ACTIVATION Collaboration GLINT09 5 2 Vehicle to buoy source command message.

WINCH CONTROL Collaboration GLINT09 3 1
Underwater vehicle to surface vehicle command
message.

BTR Data
GLINT09,
DURIP09

256 Varies
Beam-Time Record Data from a towed passive
acoustic array. Requires pBTRCodec.

CTD Data
All since
GLINT08

256 Varies
Salinity, temperature, depth data from a
CTD instrument (delta-encoded). Requires
pCTDCodec.

a See Table 1 for a list of the experiments.

Subsea RV Endeavor

Topside MOOS Computer

«executable»
GEOV Server

Lab Display Computer

«executable»
Google Earth

Bluefin 21 AUV

(Unicorn) MOOS

Computer
GPS

«serial»

Bluefin 21 AUV

(Macrura) MOOS

Computer

«acoustic»
Micro-Modem

«wired»
ethernet

Figure 7: Network structure for the SWAMSI09 experiment in Panama City, FL.

Subsea

Surface

RV Alliance

RV Leonardo Internet

http://aubergine.whoi.edu

Topside MOOS Computer

«executable»
GEOV Server

Lab Display Computer

Bridge Display Computer

«executable»
Google Earth

«executable»
Google Earth

«wired»
ethernet

Kayak (Elanor)

MOOS Computer

Kayak ASC (Dee)

MOOS Computer

Bluefin 21 AUV

(Unicorn) MOOS

Computer

NURC AUV (OEX)

MOOS Computer

Topside MOOS Computer

«wifi»
5.0GHz WiLan

«acoustic»
Edgetech

GPS

«serial»

GPSRadar

«serial» «serial»

«executable»
GEOV Server

Any Computer

«executable»
Google Earth

OceanServer

Iver2 AUV MOOS

Computer

«wifi»
IEEE 802.11

«acoustic»
Micro-Modem

Figure 8: Collective network structure of the GLINT08 and GLINT09 experiments south of Elba, Italy.
GLINT08 did not have the RV Leonardo-to-Internet connection in place and GLINT09 did not have the
Unicorn AUV present.

GEOV Client

GEOV Server

«executable»
Web Server (Apache 2)

«executable»
Web Scripting (php 5)

«executable»
Database (MySQL 5)

«executable»
Web Browser (e.g. Firefox)

«executable»
Google Earth

Other Google

Earth Content

«html» «kml»

«kml»

Figure 9: Model of the client/server interaction for the Google Earth interface for Ocean Vehicles (GEOV).

4 Google Earth interface for Ocean Vehicles (GEOV)

Visual feedback for the AUV operators is provided through a set of continually updated Keyhole Markup
Language (KML) files in Google Earth. This Google Earth Interface for Ocean Vehicles (GEOV) provides a
database for vehicle positions, speeds, headings and depths as well as a set of add-on modules for displaying
other types of data (e.g, an operational grid, target track lines). GEOV is a client/server architecture (see
Figure 9) where the user configures what data he or she wishes to display from a web browser. Then any
number of clients running Google Earth can see these data. GEOV has three modes of operation:

1. Realtime: displays up-to-date position and position history for vehicles selected. For an example
from the SWAMSI09 experiment, see Figure 10.

2. Playback: similar to the realtime display but for a chosen period of time in the past. Also allows
for playback at faster than real speed.

3. History: displays the vehicle tracks for a period of time in the past. This differs from playback in
that the history is incorporated into the KML file information, allowing history files to be saved
and used separately from the GEOV server. The other two modes (realtime and playback) require
a continuous connection to the GEOV server.

Google Earth was chosen due to its ubiquity, availability of continuously updated satellite data, and ease
of meshing data from numerous sources. On collaborative experiments, it is possible to display other KML
data along with GEOV data, allowing several research groups to work off the same display with minimal
integration effort. In the field experiment SQUINT08 (May 2008: La Spezia, SP, Italy), data from a sidescan
sonar on a surface craft were displayed using the manufacturer’s KML parser on top of GEOV position data.
In GLINT08 (Pianosa Island, LI, Italy), Automatic Identification System (AIS) data for nearby ships was
displayed using a collaborator’s Perl script to convert AIS to KML, again along with the GEOV data (see
Figure 11 for an example).

The ability to have any number of clients for a given GEOV server allows individual scientists to visualize
data on their own laptops while not disturbing the main lab display. Furthermore, AUV operations requires
significant interaction with the bridge of the research vessel. Having a GEOV display on the bridge gives
the officers a much better sense of what is happening underwater and allows for safer and more efficient
operations.

Figure 10: Screenshot of GEOV from the SWAMSI09 experiment. Bluefin 21 AUVs Unicorn and Macrura

are performing a synchronized racetrack maneuver for bistatic acoustics (both vehicles have sources and nose
arrays). This synchronized behavior was commanded using the LAMSS DEPLOY DCCL message and is
autonomously coordinated using the LAMSS STATUS message. The history of the vehicles is also provided
by the LAMSS STATUS message. The subsea targets are represented by purple arrows and each grid box is
25 meters square. The solid colored lines indicate the position history of each vehicle, while the name and
icon show the current location.

Figure 11: Target tracking by the AUV Unicorn at the GLINT08 experiment visualized using GEOV. The
pink lines indicate the direction of a detected source (the RV Leonardo was towing an acoustic source).
These contact data are provided from the vehicles acoustically by the DCCL LAMSS CONTACT message.
Vehicles in capital letters were merged onto the GEOV display using AIS reports through a separate data
feed.

5 Summary

In summary, the authors have found through numerous field trials that successful command and control
of multiple research marine vehicles requires several components which are addressed by the Unified C2

architecture:

• Abstraction of the differences between vehicle types (each manufacturer is different) - This
is accomplished through the “frontseat”-“backseat” operation paradigm. After this abstraction, to
the system designer, each vehicle is similar: a MOOS community running pHelmIvP.

• Hierarchical configuration - Changes in configuration must be propagated throughout the net-
work of vehicles, ideally by making a change in a single location. By organizing the vehicle configu-
ration into a hierarchy, much redundant configuration is removed.

• Sufficiently robust but flexible communications - Acoustic communications are often unre-
liable due to the physical constraints of the medium. To compensate for this reality, the subsea
network can be connected to the more robust surface network by means of mobile gateways (sur-
face craft). Very small messages are provided by DCCL, whose XML configuration allows for rapid
reconfiguration when new data or commands need to be sent. Time-varying priorities allow for
messages to be sent based on importance, while allowing for all message types to have some access
to the communications channel.

• Meshed visualization - GEOV allows for visualization of vehicle data for runtime performance
evaluation and safety. Google Earth allows easy meshing of data from multiple sources, allowing
GEOV to interface with data from collaborators who do not need to be running the same MOOS-IvP
infrastructure and display everything on a single display.

Together these elements fight the ever increasing complexity inherent in multi-vehicle robotic systems to
create a manageable, yet readily reconfigurable, system.

Acknowledgments

This work was supported by the Office of Naval Research, Grants N00014-1-08-1-0011 (B. Headrick, Program
Manager) and N00014-1-08-1-0013 (E. Livingston, Program Manager). The authors also greatly appreciate
the contributions by NURC of logistics support and ship time, without which these experiments would not
have been possible.

The authors acknowledge the crews of the CRV Leonardo, NRV Alliance, RV Endeavor, and RV Resolution

for their excellent operations support. They also thank the many collaborators in these field exercises from
NUWC, NURC, and WHOI.

References

Benjamin, M. R., Leonard, J. J., Schmidt, H., and Newman, P. M. (2009). An overview of moos-ivp and a
brief users guide to the ivp helm autonomy software. Technical Report MIT-CSAIL-TR-2009-028, MIT.
Available at http://hdl.handle.net/1721.1/45569, accessed December 1, 2009.

Clay, C. and Medwin, H. (1977). Acoustical oceanography: Principles and applications. John Wiley & Sons,
Inc.

Crowell, J. (2006). Small auv for hydrographic applications. In Proceedings of the IEEE Oceans Conference

2006, Boston, MA.

Dubuisson, O. and Fouquart, P. (2000). ASN. 1: communication between heterogeneous systems. Morgan
Kaufmann Pub.

Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., and Ball, K. (2005). The WHOI Micro-Modem:
an acoustic communications and navigation system for multiple platforms. In Proceedings of the IEEE

Oceans Conference 2005, Washington, DC.

NIMA (2000). Department of defense world geodetic system 1984: Its definition and relationships with
local geodetic systems. second edition, amendment 1. Technical Report TR8350.2, NIMA. Available at
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf, accessed January 3, 2010.

Schneider, T. and Schmidt, H. (2010). The Dynamic Compact Control Language: A compact marshalling
scheme for acoustic communications. In Proceedings of the IEEE Oceans Conference 2010, Sydney,
Australia.

Stokey, R., Freitag, L., and Grund, M. (2005). A Compact Control Language for AUV acoustic communi-
cation. In Proceedings of the IEEE Oceans Conference 2005, Brest, France.

