
Goby Underwater Autonomy Project

User Manual for Version 1.1
<https://launchpad.net/goby>

Contents

Contents 1

1 Introduction 3
1.1 What is Goby? . 3
1.2 Structure of this Manual . 3
1.3 How to get help . 3

2 Goby MOOS Modules 5
2.1 Unified Command andControl for SubseaAutonomous SensingNet-

works . 5
2.2 Overview of the LAMSS Communication Stack 7
2.3 pAcommsHandler . 10
2.4 iCommander . 53
2.5 pREMUSCodec . 59
2.6 iMOOS2SQL . 62
2.7 pGeneralCodec . 62
2.8 pBTRCodec . 62
2.9 pCTDCodec . 63
2.10 pAcommsPoller . 63

1

https://launchpad.net/goby

CONTENTS 2

3 What’s next 64

Glossary 65

Bibliography 66

1Introduction
1.1 What is Goby?

The Goby Underwater Autonomy Project is an autonomy architecture tailored for
marine robotics with a focus on intervehicle communication.
Currently, Goby has two major parts:

• Goby-Acomms: The Goby Acoustic Communications libraries (goby-acomms)
are provided for Version 1.1. See the Developers’ documentation for details
on these libraries at [1]. Users of theMOOS application pAcommsHandler should
see Chapter 2.

• Goby-Core: An autonomy architecture that ties together variousmarshalling
schemes (Google Protocol Buffers, MOOS, LCM, etc.) and provides a mes-
sage passingmiddleware based on ZeroMQ (for ethernet) and Goby-DCCL (for
acoustic communications). Goby-Core will be provided in release version 2.0.

1.2 Structure of this Manual

This manual covers the MOOS Applications that use Goby-Acomms release version
1.1. If you are interested in the C++ Goby-Acomms libraries directly, please read the
online Developers’ documentation at [1] In fact, you may want to go download and
install Goby now before reading further: https://launchpad.net/goby.

1.3 How to get help

The Goby community is here to support you. This is an open source project so we
have limited time and resources, but you will find that many are willing to con-
tribute their help, with the hope that you will do the same as you gain experience.
Please consult these resources and people, probably in this order of preference:

1. This user manual.

2. Questions andAnswers onLaunchpad: https://answers.launchpad.net/
goby.

3. The developers’ documentation: http://gobysoft.com/doc.

4. Email the listserver goby@mit.edu. Please sign up first: http://mailman.
mit.edu/mailman/listinfo/goby.

3

https://launchpad.net/goby
https://answers.launchpad.net/goby
https://answers.launchpad.net/goby
http://gobysoft.com/doc
mailto:goby@mit.edu
http://mailman.mit.edu/mailman/listinfo/goby
http://mailman.mit.edu/mailman/listinfo/goby

CHAPTER 1. INTRODUCTION 4

5. Email the lead developer (T. Schneider): tes@mit.edu.

mailto:tes@mit.edu

2Goby MOOS Modules
The acoustic communications portionofGobywas developedoriginally for theMOOS
autonomy architecture. Thus, the relevant MOOSmodules pAcommsHandler and oth-
ers are still maintained (in goby/src/moos) for the use of the MOOS-IvP commu-
nity. MOOS-IvP is explained in [2] and is available at http://moos-ivp.org. The
usage of these modules is documented here. See http://gobysoft.org/wiki/
InstallingGoby for how to install Goby.
The beginning of this chapter motivates the design, followed by a detailed user

manual for the individual MOOS processes.

2.1 Unified Command and Control for Subsea Autonomous
Sensing Networks

The process of undersea observation, mapping, and monitoring is experiencing a
dramatic paradigm shift away from platform-centric, human-controlled sensing,
processing and interpretation. Rather, distributed sensing using networks of au-
tonomous platforms is becoming the preferred technique. An optimal platform
suite is often highly heterogeneous with large differences in mobility, maneuver-
ability, sensing capability, and communication connectivity. The sensor systems
have different constraints on platform mobility and communication capacity, and
some network operations require highly coordinated maneuvering of heteroge-
neous platforms. Unified Command and Control [3] is a new command and control
paradigm inherently suited for such heterogeneous networks. Implemented using
MOOS-IvP, Unified C2 provides the fully integrated sensing, modeling and control
that allows each platform, on its own or in collaboration with partners of opportu-
nity, to autonomously detect, classify, localize and track (DCLT) an episodic, natural
or human-created event, and subsequently report back to the operators.
A robust undersea communication infrastructure is crucial to the operation of

such networks. In contrast to air and land-based equivalents, the extremely lim-
ited bandwidth, latency and intermittency of underwater acoustic communication
imposes severe requirements to the selectivity of message handling. Thus, contact
and track reports for high-priority event, such as a detected chemical plume from
a deep ocean vent, which may indicate an imminent volcanic eruption, must be
transmitted to the system operators without delay. On the other hand, reports con-
cerning less important events and platform status reports may be delayed without
significant effects. Previous message handling systems for underwater communi-
cations have only a rigid, hard-coded queuing infrastructure, and do not support
such advanced priority-based selectivity, hampering the type and amount of infor-

5

http://moos-ivp.org
http://gobysoft.org/wiki/InstallingGoby
http://gobysoft.org/wiki/InstallingGoby

CHAPTER 2. GOBY MOOS MODULES 6

Figure 2.1: Collaborative autonomy demonstrated in SWAMSI09 using MIT LAMSS
communication stack. The two BF21 AUVs Unicorn and Macrura perform synchro-
nized swimming maintaining a constant bistatic angle of 60◦ relative to a proud
cylindrical target (cp).

mation that can be passed between cooperating nodes in the network. This severely
limits the level of autonomy that can be supported on the network nodes.
In response to this problem, a new MOOS-IvP communication software stack was

developed at theMIT Laboratory for AutonomousMarine Sensing Systems (LAMSS)
[4], in support of autonomous sensingprograms such as theONRASAPMURI, GOATS,
and SWAMSI. This new stack has enabled the operation of a communication infras-
tructure which provides robust message handling for collaborative autonomous
sensing byheterogeneous, undersea autonomous assets, as demonstrated in ahand-
ful of major recent field experiments. As an example, Fig. 2.1 shows the collab-
orative, multistatic MCM mission by the Unicorn and Macrura BF21 AUVs during
SWAMSI09 in Panama City, FL. The two vehicles are circling a proud cylinder (cp) at
a distance of 80 mmaintaining a constant bistatic angle of 60 degrees. The collabo-
rationwas achieved fully autonomouslywithout any intervention by the operators,
with each vehicle adapting its speed based on its current position and the position
of the other vehicle extrapolated from the latest status, contact or track report.
Such collaborative maneuvers would not be possible using traditional communica-
tion schemes, where navigation packets must be rigidly interleaved with messages
containg data and command and control sequences. In contrast, the Dynamic Com-
pact Control Language (DCCL) used by the LAMSS communication stack allows for
adequate navigation information to be packedwith all other requiredmessage con-
tent.

CHAPTER 2. GOBY MOOS MODULES 7

Being based on the established open source goby-acomms libraries of message
handling software, the open source architecture of this newMOOS communication
stack (embodied primarily in the MOOS application pAcommsHandler lends itself di-
rectly to a wide range of military and civilian applications. It supports an arbitrary
message suite and content without requirement of modifying software. All mes-
sage encoding and decoding information is specified in a mission-unique configu-
ration file written in the standard XML format. Not only does this ensuremaximum
flexibility in regard to message design, but it inherently enables arbitrary levels of
encryption for LPI/LPD communication networks.

2.2 Overview of the LAMSS Communication Stack

MIT LAMSS [4] has over the last decade focused its research on the development
of sensor-adaptive, collaborative, autonomous sensing concepts for the capture of
episodic undersea events, including themappingof coastal fronts, chemical plumes,
and natural and man-made underwater acoustic sources. All these applications in-
volve the Detection, Classification, Localization and Tracking (DCLT) of the event.
To exploit the benefits of havingmultiple platforms involved in tracking the event,
an underwater robust communication system is obviously a requirement. On the
other hand, the communication capacity of such systems is many orders of magni-
tude below land- and air-based equivalents, requiring a much higher level of data
compression and on-board processing and decision-making than is required in air-
based systems. Unified C2 [3], developed over the last decade by LAMSS, is an exam-
ple of such an autonomy-driven undersea sensing concept. Although this concept
is based on the philosophy that the systemmust be able to achieve itsmission objec-
tive even during periods with no or limited communication, there is obviously still
a need for occasional communication, e.g. for reporting detected events of interest.
The new MOOS-IvP communication stack alleviates some of the problems and

limitations of the existing software stacks in this regard. These software stacks
in general were designed to sequentially transmit all messages generated by the
autonomy system, with only a rigid, hard-coded priority-based message queuing
infrastructure.
In undersea autonomous systems the priorities of information generated by the

on-board processing are highly dynamic, depending on the tactical situation and
the criticality of the generated information. Thus, for example, a contact report for
a target of interest obviouslymust bypass queued contact reports for less significant
targets. Also, in high-clutter environments, the number of contact reports may
by far exceed the communication capacity and on-board priority-based filtering is
required.

CHAPTER 2. GOBY MOOS MODULES 8

MOOS Computer

«executable»

pAcommsHandler

{responsibility = Message Manager}

«executable»

pHelmIvP

{responsibility = Backseat Control}

«executable»

iREMUS

{responsibility = Frontseat Control}

«executable»

MOOSDB

«file»

XML ConfigurationOpen Source

(GPL License)
UCII Specific

C2

Sensor«executable»

iSensor

{responsibility = Sensor Interface}

Recon

«executable»

pContactManager

{responsibility = Contact Manager}

«executable»

pMissionMonitor

{responsibility = Mission Manager}

Figure 2.2: Incorporation of the open source LAMSS communication stack into a
MOOS-IvPDCLT Autonomy System. The green boxes identify the open sourcemod-
ules, including the IvPHelm, the genericmissionmanagermodule, and the commu-
nication stack. The red modules are project specific, including the frontseat driver
module, and the sensor modules. Also the message configuration specifying the
message content and the coding, is project specific.

CHAPTER 2. GOBY MOOS MODULES 9

MOOS (Backseat) Computer

Hydrophone Array

Main Vehicle

Computer

WHOI Micro-Modem

«subsystem»

Vehicle Autonomy Control

{components = pHelmIvP}

«subsystem»

Tracking

{components = p1BTracker, pTrackQuality}

«subsystem»

Front Seat Interface

{components = pHuxley}

«subsystem»

Acoustic Communications

{components = pAcommsHandler,

pREMUSCodec, pBTRCodec, pCTDCodec,

pGeneralCodec, pAcommsPoller}

Environmental

Sensor (e.g. CTD)

«subsystem»

Sonar Interface and Processing

{components = iDAS, pBearingTrack}

«subsystem»

Environmental Sampling

{components = iCTD, pEnvtGrad}

«executable»

MOOSDB

Figure 2.3: MOOS-IvP community for MIT sonar AUVs, with the autonomous com-
munication, command and control modules highlighted in gold.

CHAPTER 2. GOBY MOOS MODULES 10

Vehicle MOOS ComputerTopside MOOS Computer

«MOOS process»
iCommander

«MOOS process»
MOOSDB

«MOOS process»
pAcommsHandler

«firmware»
WHOI Micro-Modem

«MOOS process»
pAcommsHandler

«firmware»
WHOI Micro-Modem

«human»
Operator

«MOOS process»
pAcommsPoller

types commands

OUT_COMMAND

OUT_COMMAND

$CCCYC (Poll)

$CADRQ (Data request)

$CCTXD (Transmit data)

Acoustic PSK/FSK Data

Acoustic Ack

$CAACK (Acknowledgement)

$CARXD (Receive data)

«MOOS process»
pHelmIvP

ACOMMS_ACK

ACOMMS_ACK

display ack

IN_COMMAND

Message encoded
and queued.

«MOOS process»
MOOSDB

Message decoded.

IN_COMMAND

Message flushed

Figure 2.4: UML Sequence diagram for sending a command to anAUVvia the LAMSS
Acoustic Communications Modules.

The incorporation of the MIT LAMSS communication stack into a MOOS-IvP
DCLT Autonomy System is illustrated in Fig. 2.2. The green boxes identify the Open
Source modules, including the helm pHelmIvP, the generic mission manager mod-
ule pMissionMonitor, and the communication stack. The red modules are project-
specific, including the frontseat driver module iRemus, the sensor modules, and
the contact manager process pContactManager. Also the message configuration files
specifying the message content and the coding specifics, are project-specific and
not hard-wired into the communication stack.
Figure 2.3 shows the communications subsystemaspart of thewholeMITLAMSS

AUV MOOS community.
Figure 2.4 shows the sequence of commands for a single operator command

message sent using iCommander.
The structure of the MIT LAMSS communication stack is illustrated in Fig. 2.5.

2.3 pAcommsHandler

2.3.1 Problem

Acoustic communications are highly limited in throughput. Thus, it is unreason-
able to expect “total throughput” of all communications data. Furthermore, even
if total throughput is achievable over time, certain messages have a lower toler-
ance for delay (e.g. vehicle status) than others (e.g. CTD sample data). Refer-

CHAPTER 2. GOBY MOOS MODULES 11

MOOS (Backseat Computer)

Acoustic Communications Subsystem

WHOI Micro-Modem

«executable»

pAcommsHandler

«executable»

pREMUSCodec

«executable»

pBTRCodec

«executable»

pCTDCodec

«executable»

pGeneralCodec

«executable»

pAcommsPoller

«subsystem»

Vehicle Autonomy Control

{components = pHelmIvP}

«executable»

MOOSDB

«CCL» «DCCL» «DCCL» «DCCL»

Figure 2.5: UML Component Model of the MIT LAMSS communication stack. The
principal message handler module is pAcommsHandler, which communicates di-
rectly with the modem using built-in drivers, and thus not dependent on third-
party MOOS modem drivers. It also manages the message stream by a dynamic,
priority-based queuing system. The message coding and decoding is performed by
pGeneralCodec based on the rules set out in the configuration file, and dedicated
DCCL codecs for transmitting various data streams.The stack also supports stan-
dard fixed Compact Control Language (CCL) messages such as the State message
used by the Remus AUV, using dedicated codecs. Dashed line indicate dependen-
cies between components.

CHAPTER 2. GOBY MOOS MODULES 12

ence http://acomms.whoi.edu/umodem/documentation.html for more infor-
mation on the WHOI Micro-Modem.
Also, in order to make the best use of this available bandwidth, messages need

to be compacted to a minimal size before sending (effective encoding). To do this,
pAcommsHandler provides an interface to the Dynamic Compact Control Language
(DCCL1.) encoder/decoder. Furthermore, DCCL has powerful parsing abilities (“al-
gorithms”) for both encoding and decoding, including the ability to perform cer-
tain geodesic conversions (e.g. latitude, longitude↔ UTM x,y) and lookups (e.g.
modem_id↔ vehicle name) on data.
pAcommsHandler roughly performs the same functions of pFramer, pRouter,

pAcommsPoller, and iMicroModem but generalized to handle any number of mes-
sage queues and extended to give more control over queue parameters. The DCCL
encoding is much more flexible and more compact than the CCL encoding used by
these older processes.

2.3.2 Solution

pAcommsHandler provides a(n):

1. Encoder/decoder unit (codec): encodes and decodes messages using DCCL
(goby-acomms dccl library), which reduces the data required to be sent by:

• Predefined messages: the user must specify a message structure what
specifieswhat fields themessage contains andhow large each field should
be (in an intuitive fashion that DCCL turns into bits). Both the sender
and receiver have preshared knowledge of themessage structure. From
this knowledge, no meta information about the message (beyond an
identifier) needs to be sent, simply the data.
• Custom field sizes: message fields are defined with custom tolerances
(ranges and precisions) that are tighter than those given by the IEEE
standards for floating point and integer numbers. For example, if a field
needs to hold an integer that will never range outside [0, 1000] that field
in the message will only be 10 bits long (ceil(log2 1001)).

2. Priority Queuing System: maintains an arbitrary number of message queues
(each tied to a different MOOS variable) for hexadecimal data strings. (goby-
acomms queue library)

1the name comes from the original CCL written by Roger Stokey for the REMUS AUVs, but with
the ability to dynamically reconfigure messages based on mission need. DCCL is backwards compati-
ble with a CCL network as it uses CCL message number 32

http://acomms.whoi.edu/umodem/documentation.html

CHAPTER 2. GOBY MOOS MODULES 13

• allows configuration of the queue priorities and dynamic growth of the
priority over the time since the last sent message.
• allows management of WHOI CCL message types as well as DCCL queu-
ing.

3. Modem Driver: handles all Micro-Modem serial communications. The driver
(goby-acomms modemdriver library) can be used with other modems besides
theWHOIMicro-Modem (seehttp://gobysoft.com/doc/1.0/acomms__driver.
html#acomms_writedriver for information on writing a new driver).

4. MAC Manager: provides medium access control in the form of a simple slot-
ted timedivision-multiple access (TDMA) schemeor flexible centralizedpolling
(goby-acomms amac library).

2.3.3 Limitations

pAcommsHandler does not:

• presently provide any multi-hop routing. The sender and receiver must be
directly connected acoustically.

• split user messages into packets. The user must provide data that are small
enough to fit into the modem frame desired (32 - 256 bytes for the WHOI
Micro-Modem).

2.3.4 Compilation

pAcommsHandler depends on theGoby andMOOS libraries. See goby/DEPENDENCIES
for help resolving the dependencies on your system.

2.3.5 Parameters for the pAcommsHandler Configuration Block

Example moos file

You can always get a complete listing of MOOS file parameters with their syntax by
running

> pAcommsHandler --example_config

This is a complete list of all the configuration values pAcommsHandler accepts.
Most of the time you will need far fewer configuration options to use it.

http://gobysoft.com/doc/1.0/acomms__driver.html#acomms_writedriver
http://gobysoft.com/doc/1.0/acomms__driver.html#acomms_writedriver

CHAPTER 2. GOBY MOOS MODULES 14

1 ProcessConfig = pAcommsHandler
2 {
3 common { # Configuration common to all Goby MOOS applications
4 # (opt)
5 log: true # Should we write a text log of the terminal
6 # output? (opt) (default=true) (can also set MOOS
7 # global "log=")
8 log_path: "./" # Directory path to write the text log of the
9 # terminal output (if log=true) (opt)
10 # (default="./") (can also set MOOS global
11 # "log_path=")
12 community: "AUV23" # The vehicle's name (opt) (can also set
13 # MOOS global "Community=")
14 lat_origin: 42.5 # Latitude in decimal degrees of the local
15 # cartesian datum (opt) (can also set MOOS
16 # global "LatOrigin=")
17 lon_origin: 10.9 # Longitude in decimal degrees of the local
18 # cartesian datum (opt) (can also set MOOS
19 # global "LongOrigin=")
20 app_tick: 10 # Frequency at which to run Iterate(). (opt)
21 # (default=10)
22 comm_tick: 10 # Frequency at which to call into the MOOSDB
23 # for mail. (opt) (default=10)
24 verbosity: VERBOSITY_VERBOSE # Verbosity of the terminal
25 # window output (VERBOSITY_QUIET,
26 # VERBOSITY_WARN,
27 # VERBOSITY_VERBOSE,
28 # VERBOSITY_DEBUG, VERBOSITY_GUI)
29 # (opt)
30 # (default=VERBOSITY_VERBOSE)
31 initializer { # Publish a constant value to the MOOSDB at
32 # startup (repeat)
33 type: INI_DOUBLE # type of MOOS variable to publish
34 # (INI_DOUBLE, INI_STRING) (req)
35 moos_var: "SOME_MOOS_VAR" # name of MOOS variable to
36 # publish to (req)
37 global_cfg_var: "LatOrigin" # Optionally, instead of
38 # giving `sval` or `dval`, give
39 # a name here of a global MOOS
40 # variable (one at the top of
41 # the file) whose contents
42 # should be written to
43 # `moos_var` (opt)
44 dval: 3.454 # Value to write for type==INI_DOUBLE (opt)
45 sval: "a string" # Value to write for type==INI_STRING
46 # (opt)

CHAPTER 2. GOBY MOOS MODULES 15

47 }
48 }
49 modem_id: 1 # Unique number 1-31 to identify this node (req)
50 driver_type: DRIVER_NONE # Corresponding driver for the type
51 # of physical acoustic modem used
52 # (DRIVER_NONE, DRIVER_WHOI_MICROMODEM,
53 # DRIVER_ABC_EXAMPLE_MODEM) (opt)
54 # (default=DRIVER_NONE)
55 driver_cfg { # Configure the acoustic modem driver (opt)
56 modem_id: 1 # Unique number 1-31 to identify this node (req)
57 connection_type: CONNECTION_SERIAL # Physical connection
58 # type from this computer
59 # (running Goby) to the
60 # acoustic modem
61 # (CONNECTION_SERIAL,
62 # CONNECTION_TCP_AS_CLIENT,
63 # CONNECTION_TCP_AS_SERVER,
64 # CONNECTION_DUAL_UDP_BROADC
65 # AST) (opt)
66 # (default=CONNECTION_SERIAL
67 #)
68 line_delimiter: "\r\n" # String used to delimit new lines
69 # for this acoustic modem (opt)
70 # (default="\r\n")
71 serial_port: "/dev/ttyS0" # Serial port for
72 # CONNECTION_SERIAL (opt)
73 serial_baud: 19200 # Baud rate for CONNECTION_SERIAL (opt)
74 tcp_server: "192.168.1.111" # IP Address or domain name for
75 # the server if
76 # CONNECTION_TCP_AS_CLIENT (opt)
77 tcp_port: 50010 # Port to serve on (for
78 # CONNECTION_TCP_AS_SERVER) or to connect to
79 # (for CONNECTION_TCP_AS_CLIENT) (opt)
80 }
81 mac_cfg { # Configure the acoustic Medium Access Control (opt)
82 modem_id: 1 # Unique number 1-31 to identify this node (req)
83 type: MAC_NONE # The type of TDMA MAC scheme to use
84 # (MAC_NONE, MAC_FIXED_DECENTRALIZED,
85 # MAC_AUTO_DECENTRALIZED, MAC_POLLED) (opt)
86 # (default=MAC_NONE)
87 slot { # Configure a slot in the communications cycle. Slots
88 # are run in the order they are declared. Omit for
89 # MAC_AUTO_DECENTRALIZED. (repeat)
90 src: 1 # source modem id for this transmission (initiating
91 # platform) (req)
92 dest: -1 # destination modem id for this transmission; 0

CHAPTER 2. GOBY MOOS MODULES 16

93 # means broadcast, -1 means query the queuing layer
94 # for next available message (opt) (default=-1)
95 rate: 0 # bit rate (integer from 0-5, 0 is slowest) (opt)
96 # (default=0)
97 type: SLOT_DATA # type of message to initiate in this slot
98 # (SLOT_DATA, SLOT_PING, SLOT_REMUS_LBL)
99 # (req) (default=SLOT_DATA)
100 slot_seconds: 15 # length of this slot in seconds (opt)
101 last_heard_time: "" # used internally, no need to
102 # configure manually (opt)
103 }
104 rate: 0 # Set rate to use for MAC_AUTO_DECENTALIZED. Use
105 # `slot` for other MACTypes (opt) (default=0)
106 slot_seconds: 15 # Set duration of the slot for
107 # MAC_AUTO_DECENTRALIZED. Use `slot` for
108 # other MACTypes (opt) (default=15)
109 expire_cycles: 30 # Set number of quiet cycles for
110 # discarding a node from the cycle for
111 # MAC_AUTO_DECENTRALIZED. (opt) (default=30)
112 }
113 queue_cfg { # Configure the Priority Queuing layer (opt)
114 modem_id: 1 # Unique number 1-31 to identify this node (req)
115 message_file { # XML message file containing one or more
116 # DCCL message descriptions. Use for specifying
117 # DCCL queues. (repeat)
118 path: "/home/toby/goby/src/acomms/examples/chat/chat.xml"
119 # path to the
120 # message XML file
121 # (req)
122 manipulator: NO_MANIP # manipulators to modify the
123 # encoding and queuing behavior of the
124 # messages in this file (NO_MANIP,
125 # NO_ENCODE, NO_DECODE, NO_QUEUE,
126 # LOOPBACK, ON_DEMAND, TCP_SHARE_IN)
127 # (repeat)
128 }
129 queue { # Use for specifying CCL queues; use message_file
130 # for DCCL queues. (repeat)
131 ack: true # Require acoustic acknowledgments of messages
132 # sent from this queue (opt) (default=true)
133 blackout_time: 0 # Time in seconds to ignore this queue
134 # after the last send from it. (opt)
135 # (default=0)
136 max_queue: 0 # Maximum allowed messages in this queue (0
137 # means infinity). (opt) (default=0)
138 newest_first: true # true = FILO queue, false = FIFO queue

CHAPTER 2. GOBY MOOS MODULES 17

139 # (opt) (default=true)
140 value_base: 1 # Base value (general importance) of the
141 # messages in this queue (opt) (default=1)
142 ttl: 1800 # Time to live in seconds; messages exceeding
143 # this time are discarded. Also factors into
144 # priority equation (opt) (default=1800)
145 key { # (opt)
146 type: QUEUE_DCCL # Type of messages in this queue
147 # (QUEUE_DCCL, QUEUE_CCL) (req)
148 # (default=QUEUE_DCCL)
149 id: 14 # DCCL ID for QUEUE_DCCL, CCL Identifier (first)
150 # byte for QUEUE_CCL (req)
151 }
152 name: "Remus_State" # Human readable name for this queue
153 # (req)
154 in_pubsub_var: "REMUS_STATE_RAW_IN" # Publish subscribe
155 # architecture variable
156 # for posting incoming
157 # data to (opt)
158 out_pubsub_var: "REMUS_STATE_RAW_OUT" # Publish subscribe
159 # architecture
160 # variable for
161 # fetching outgoing
162 # data from (opt)
163 }
164 }
165 dccl_cfg { # Configure the Dynamic Compact Control Language
166 # Encoding/Decoding unit (opt)
167 modem_id: 1 # Unique number 1-31 to identify this node (req)
168 message_file { # XML message file containing one or more
169 # DCCL message descriptions (repeat)
170 path: "/home/toby/goby/src/acomms/examples/chat/chat.xml"
171 # path to the
172 # message XML file
173 # (req)
174 manipulator: NO_MANIP # manipulators to modify the
175 # encoding and queuing behavior of the
176 # messages in this file (NO_MANIP,
177 # NO_ENCODE, NO_DECODE, NO_QUEUE,
178 # LOOPBACK, ON_DEMAND, TCP_SHARE_IN)
179 # (repeat)
180 }
181 crypto_passphrase: "twinkletoes%24" # If given, encrypt all
182 # communications with this
183 # passphrase using AES.
184 # Omit for unencrypted

CHAPTER 2. GOBY MOOS MODULES 18

185 # communications. (opt)
186 }
187 modem_id_lookup_path: "" # Path to file containing mapping
188 # between modem_id and vehicle name &
189 # type (opt) (can also set MOOS global
190 # "modem_id_lookup_path=")
191 tcp_share_enable: false # Enable TCP Sharing (Experimental)
192 # (opt) (default=false)
193 tcp_share_port: 11000 # Port to listen on for TCP Sharing
194 # (Experimental) (opt) (default=11000)
195 tcp_share_to_ip: "" # internet_address:port to share incoming
196 # messages to (Experimental). (repeat)
197 }

Filling out the .moos file

Many of the parameters are sufficiently explained in the above list of configuration
parameters. What follows is a detailed explanation of the parameters that need
further explanation.

• common: Parameters that can be set for any of the Goby MOOS applications.
Here you can control logging to a text file, terminal verbosity. You can also
initialize a variable in the MOOS database at startup. Many of these parame-
ters will automatically be set to a global MOOS variable (specified outside any
ProcessConfig block) if left empty. For example, the global MOOS variable
LatOriginwill set the pAcommsHandler variable common::lat_origin. This al-
lows pAcommsHandler to conform to MOOS de facto conventions.

– verbosity: choose VERBOSITY_VERBOSE for full text terminal output, VERBOSITY_WARN
forwarnings only, and VERBOSITY_QUIET for no terminal output. VERBOSITY_GUI
opens an NCurses GUI helpful to debugging and visualizing the many
data flows of pAcommsHandler.

– initializer: since many times it is useful to have a MOOS variable in-
cluding in a message that remains static for a given mission (vehicle
name, etc), we give the option to publish initialMOOSvariables here (for
later use in messages [until overwritten, of course]). If global_cfg_var
is set, pAcommsHandler looks for a global (i.e. specified at the top of
the MOOS file or outside any ProcessConfig blocks) value in the .moos
file with the name to the right of the colon and publishes it to a MOOS
variable with the name to the left of the colon. For example:
initializer { global_cfg_var: "LatOrigin" moos_var: "LAT_ORIGIN" }

CHAPTER 2. GOBY MOOS MODULES 19

looks for a variable in the .moos file called LatOrigin and publishes it
to the MOOSDB as a double variable LAT_ORIGIN with the value given by
LatOrigin.

– log_path: folder to log all terminal output to for later debugging. Similar
to system logs in /var/log.

– log: boolean to indicate whether to log terminal output or not to files
in the path by log_path.

• modem_id: integer that specifies the modem_id of this current vehicle / commu-
nity. For the WHOI Micro-Modem this is the Micro-Modem “SRC” configura-
tion parameter (as set by \$CCCFG,SRC,# to check). For the remainder of the
document, modem_id refers to the value \$CCCFG,SRC,modem_id. This configura-
tion parameter will be set on startup. Setting this within the main block for
pAcommsHandler sets it for all the modules (driver_cfg, dccl_cfg, queue_cfg,
mac_cfg)

• modem_id_lookup_path: path to a text file giving themapping between modem_id
and vehicle name and type for a given experiment. This file should look like:

1 // modem id, vehicle name (should be community name), vehicle type
2 0, broadcast, broadcast
3 1, endeavor, ship
4 3, unicorn, auv
5 4, macrura, auv

Encoding/Decoding (DCCL) Parameters (dccl_cfg)

• modem_id: Will be set to the same as ProcessConfig { modem_id: } . There is
no need to set it again here.

• message_file: path to an XML file containing a message set of one or mes-
sages. If you want, you can insert one or more manipulators that change the
behavior of pAcommsHandler for messages defined in that file. Allowed ma-
nipulators:

– NO_MANIP: blank manipulator (behavior is not modified by this manipu-
lator)

– NO_ENCODE: do not encode this message
– NO_DECODE: do not decode this message

CHAPTER 2. GOBY MOOS MODULES 20

– NO_QUEUE: do not queue this message
– LOOPBACK: decode thismessage internally immediately following encode.
Note that messages addressed to the local vehicle are looped back re-
gardless of the value of this manipulator.

– ON_DEMAND: encode immediately preceding a data request command (use
for time sensitivemessages like STATUS). This only works if all themes-
sage variables are always assumed fresh in the MOOSDB.

• crypto_password: optionally provide a password here to encrypt all commu-
nications using AES. All receiving nodes must have the same password.

Queuing Parameters (queue_cfg) All queue configuration for DCCL messges must
be configuredwithin theXML files <queuing /> tag and includedwith message_file: {path: "message.xml"}.
Any message_files specified for dccl_cfg are copied to queue_cfg and vice-versa, so
you don’t need to specify them in two places.
CCL messages are configured using the queue { } object. The fields for queue

correspond to the XML <queuing /> tags:

• id: DCCL: a unique ID for this message (in the range 0-511). CCL: The decimal
representation of the first byte of the CCL message to be queued.

• ack: boolean flag (1=true, 0=false) whether to request an acoustic acknowl-
edgment on all sent messages from this field. If omitted, default of 0 (false,
no ack) is used.

• blackout_time: time in seconds after sending a message from this queue for
which no more messages will be sent. Use this field to stop an always full
queue fromhogging the channel. If omitted, default of 0 (no blackout) is used.

• max_queue: number of messages allowed in the queue before discarding mes-
sages. If newest_first is set to true, the oldest message in the queue is dis-
carded to make room for the newmessage. Otherwise, any newmessages are
disregarded until the space in the queue opens up.

• newest_first: boolean flag (1=true=FILO, 0=false=FIFO)whether to sendnewest
messages in the queue first (FILO) or not (FIFO).

• ttl: the time (in seconds) the message is allowed to live before being dis-
carded. This also factors into the priority calculation as messages with a
lower time-to-live (ttl) grow in priority faster.

CHAPTER 2. GOBY MOOS MODULES 21

• value_base: Each queue has a base value (Vbase) and a time-to-live (ttl) that
create the priority (P (t)) at any given time (t):

P (t) = Vbase
(t− tlast)

ttl

where tlast is the time of the last send from this queue.
This means for every queue, the user has control over two variables (Vbase

and ttl). Vbase is intended to capture how important the message type is in
general. Higher base values mean the message is of higher importance. The
ttl governs the number of seconds the message lives from creation until it is
destroyed by libqueue. The ttl also factors into the priority calculation since
all things being equal (sameVbase), it is preferable to sendmore time sensitive
messages first. So in these two parameters, the user can capture both overall
value (i.e. Vbase) and latency tolerance (ttl) of the message queue.

• in_pubsub_var: name of the moos variable that is published for received mes-
sages to this queue. Not used for DCCL queuing.

• out_pubsub_var: name of the moos variable to subscribe to for messages to
add to this queue. Not used for DCCL queuing.

An example queuing block (for DCCL messages):

1 <message_set>
2 <message>
3 <id>23</id>
4 ...
5 <queuing>
6 <ack>false</ack>
7 <blackout_time>0</blackout_time>
8 <max_queue>1</max_queue>
9 <newest_first>true</newest_first>
10 <value_base>4</value_base>
11 <ttl>1000</ttl>
12 </queuing>
13 </message>
14 ...
15 </message_set>

Modem Driver Parameters (driver_cfg)

CHAPTER 2. GOBY MOOS MODULES 22

• driver_type: The only real driver implemented is the DRIVER_WHOI_MICROMODEM.
DRIVER_ABC_EXAMPLE_MODEM is a simple test “modem”. DRIVER_NONE disables the
modem driver.

• connection_type: type of connection tomake to themodem (CONNECTION_SERIAL,
CONNECTION_TCP_AS_CLIENT, CONNECTION_TCP_AS_SERVER).

• serial_port: serial port to which the modem is connected.

• serial_baud: baud rate to use. Should be set to 19200 for the WHOI Micro-
Modem.

• tcp_port: networking port to use.

• tcp_server: IPv4 networking address of the server to connect to.

Extensions for the WHOI Micro-Modem

• [MicroModemConfig.nvram_cfg]: set some modem NVRAM setting to a value.
Set [MicroModemConfig.reset_nvram]: true to reset all NVRAM (CFG) parame-
ters on startup (\$CCCFG,ALL,0). All the [MicroModemConfig.nvram_cfg] values
are sent after this reset. You do not need to send SRC as this is set to the
modem_id.

• [MicroModemConfig.hydroid_gateway_id]: Set to the HYDROID gateway id (1
or 2) only if using a HYDROID gateway buoy. Omit for a normal WHOI Micro-
Modem.

Medium Access Control (MAC) Parameters (mac_cfg)

• type: type of Medium Access Control. See http://gobysoft.com/doc/1.
0/acomms__mac.html#amac_schemes for an explanationof the variousMAC
schemes.

• slot_seconds: length, in seconds, of each communication slot for the type: MAC_AUTO_DECENTRALIZED
MAC option.

• rate: rate for the type: MAC_AUTO_DECENTRALIZED MAC option. For the WHOI
Micro-Modem 0 is a single 32 byte packet (FSK), 2 is three frames of 64 bytes
(PSK), 3 is two frames of 256 bytes (PSK), and 5 is eight frames of 256 bytes
(PSK)

• expire_cycles: number of consecutive cycles in which a vehicle can be silent
before being removed from the cycle for the type: MAC_AUTO_DECENTRALIZED
MAC option.

http://gobysoft.com/doc/1.0/acomms__mac.html#amac_schemes
http://gobysoft.com/doc/1.0/acomms__mac.html#amac_schemes

CHAPTER 2. GOBY MOOS MODULES 23

• slot: use this repeated field to specify a manual polling or fixed TDMA cycle
for the type: MAC_FIXED_DECENTRALIZED and type: MAC_POLLED.

– src: The sending modem_id for this slot.
– dest: The receiving modem_id for this slot.
– rate: Bit-rate code for this slot (0-5).
– type: Type of transaction to occur in this slot. Can be SLOT_DATA (send
a datagram), SLOT_PING (send a ranging two-way ping to another mo-
dem), SLOT_REMUS_LBL (ping a REMUS LBL network (WHOIMicro-Modem
only)).

– slot_seconds: The duration of this slot, in seconds.

2.3.6 MOOS variables subscribed to by pAcommsHandler

Except for DCCL <src_var>s and <trigger_var>s, pAcommsHandler uses the
Google Protocol Buffers TextFormat class for parsing fromMOOS strings. This saves
significant effort in manually parsing strings. You should use these same facilities
for creating and reading messages. Two helper functions are provided in
goby/moos/libmoos_util/moos_protobuf_helpers will help you serialize and parse
these messages. See http://gobysoft.com/doc/1.0/acomms.html#protobuf
for a brief overview of Google Protocol Buffers as used in Goby.

• DCCL: Most variables subscribed to by pAcommsHandler are configured in the
message XML files and are designated by the tags<src_var> (used to fetch
data for a particular message_varwithin aDCCLmessage) and<trigger_var>
(used to trigger the creatinon of a particular DCCL message and possibly pro-
vide some data for that message. See 2.3.8 for details on the XML configura-
tion.

• Queue:

– Subscribes to the variables given in queue_cfg.queue.in_pubsub_var for
CCL queue sending. The contents of this MOOS variable should be a se-
rialized ModemDataTransmission).

– ACOMMS_RANGE_COMMAND (type: ModemRangingRequest): You write this to
initiate a ranging request outside the MAC schedule. Note in general it
is preferable to use the MAC cycle to coordinate data and ranging.

• MAC: ACOMMS_MAC_CYCLE_UPDATE (type: MACUpdate) You write this to update the
MAC cycle for MAC_FIXED_DECENTRALIZED and MAC_POLLEDmodes of operation.

http://code.google.com/apis/protocolbuffers/docs/reference/cpp/google.protobuf.text_format.html
http://gobysoft.com/doc/1.0/moos__protobuf__helpers_8h.html
http://gobysoft.com/doc/1.0/acomms.html#protobuf
http://gobysoft.com/doc/1.0/modem__message_8proto_source.html
http://gobysoft.com/doc/1.0/modem__message_8proto_source.html
http://gobysoft.com/doc/1.0/amac_8proto_source.html

CHAPTER 2. GOBY MOOS MODULES 24

For example, to publish a ACOMMS_MAC_CYCLE_UPDATE, youwould use code like this:

1 // provides serialize_for_moos
2 #include <goby/moos/libmoos_util/moos_protobuf_helpers.h>
3 // provides goby::acomms::protobuf::MACUpdate
4 #include <goby/protobuf/amac.pb.h>
5
6 ...
7
8 MyMOOSApp::Iterate()
9 {
10 if(do_update_mac)
11 {
12 using namespace goby::acomms::protobuf;
13 MACUpdate mac_update;
14 mac_update.set_dest(1); // update for us if modem_id == 1
15 // add slot to end of existing cycle
16 mac_update.set_update_type(MACUpdate::ADD);
17 Slot* new_slot = mac_update.add_slot();
18 new_slot->set_src(1); // send from us
19 new_slot->set_dest(3); // send to vehicle 3
20 new_slot->set_rate(0);
21 new_slot->set_slot_seconds(15);
22 new_slot->set_type(SLOT_DATA);
23
24 std::string serialized;
25 serialize_for_moos (&serialized, mac_update);
26 m_Comms.Notify("ACOMMS_MAC_CYCLE_UPDATE", serialized);
27 }
28 }

2.3.7 MOOS variables published by pAcommsHandler

Except forDCCL<publish_var>s (whichuse aprintf style syntax), pAcommsHan-
dler uses theGoogle Protocol Buffers TextFormat class for serializing toMOOS strings.

• DCCL: Most variables published by pAcommsHandler are configured in the
message XML files and are designated by the tags <publish_var> within
a<publish> block. See 2.3.8 for details on the XML configuration.

• Queue:

– ACOMMS_INCOMING_DATA (type: ModemDataTransmission) written for all
received messages containing a data payload

http://gobysoft.com/doc/1.0/modem__message_8proto_source.html

CHAPTER 2. GOBY MOOS MODULES 25

– ACOMMS_OUTGOING_DATA (type: ModemDataTransmission) written for all
queued messages containing a data payload

– ACOMMS_RANGE_RESPONSE (type: ModemRangingReply)written in response
to ranging request (to another modem or LBL beacons)

– ACOMMS_ACK (type: ModemDataAck) written when received data is ac-
knowledged acoustically by a third party. Contains the original mes-
sage.

– ACOMMS_EXPIRE (type: ModemDataExpire) written when a message ex-
pires (time-to-live [ttl] exceeded) from the queue before being sent (ack
= false) or acknowledged (ack = true)

– ACOMMS_QSIZE (type: QueueSize) written when a queue changes size (pop
or push) with the new size of the queue.

• MAC: Does not publish anything.

• ModemDriver:

– ACOMMS_NMEA_IN (type: string), ModemMsgBase::raw() for all incoming
messages (”$CA...” for WHOI Micro-Modem)

– ACOMMS_NMEA_OUT (type: string), ModemMsgBase::raw() for all outgoing
messages (”$CC...” for WHOI Micro-Modem)

For example, to read an ACOMMS_RANGE_RESPONSE, you would use code like this:

1 // provides parse_for_moos
2 #include <goby/moos/libmoos_util/moos_protobuf_helpers.h>
3 // provides goby::acomms::protobuf::ModemRangeReply
4 #include <goby/protobuf/modem_message.pb.h>
5
6 ...
7
8 MyMOOSApp::OnNewMail()
9 {
10 ...
11 if(moos_msg.GetKey() == "ACOMMS_RANGE_RESPONSE")
12 {
13 using namespace goby::acomms::protobuf;
14 ModemRangeReply range_response;
15 parse_for_moos (serialized, &range_response);
16
17 // now do what you want to with the nice `range_response` object

http://gobysoft.com/doc/1.0/modem__message_8proto_source.html
http://gobysoft.com/doc/1.0/modem__message_8proto_source.html
http://gobysoft.com/doc/1.0/modem__message_8proto_source.html
http://gobysoft.com/doc/1.0/modem__message_8proto_source.html
http://gobysoft.com/doc/1.0/queue_8proto_source.html

CHAPTER 2. GOBY MOOS MODULES 26

18 std::cout << "one way travel time to " << range_response.base().dest()
19 << " is " << range_response.one_way_travel_time(0) << std::endl;
20 }
21 }

2.3.8 DCCL Encoding/Decoding Unit: Overview

Example message XML file

First, let us give a brief background on XML (eXtensible Markup Language). XML
files contain tags (like<name>) that are considered “metadata” anddefine both the
structure of the following data and the contents. Order of the tags does not matter
for a given level unless otherwise specified. Text data resides both in the tags (like
<name>bob</name>or as attributes of the tag (such as<name id="1245"></name>).
XML files can be edited with any text editor. For more information on XML consult
any number of books on the subject or browse the internet. XML is a very widely
used format for storing data that can be both read by both people and computers.
Also see section 2.3.9 for further examples. Let’s call this file example1.xml, which
we will use in two following examples:

1 <?xml version="1.0" encoding="ASCII" standalone="yes"?>
2 <message_set>
3 <message>
4 <name>GoToCommand</name>
5 <id>1</id>
6 <trigger>publish</trigger>
7 <trigger_var mandatory_content="CommandType=GoTo">
8 OUTGOING_COMMAND
9 </trigger_var>
10 <size>32</size>
11 <header>
12 <dest_id>
13 <name>Destination</name>
14 </dest_id>
15 </header>
16 <layout>
17 <static>
18 <name>type</name>
19 <value>goto</value>
20 </static>
21 <int>
22 <name>goto_x</name>

CHAPTER 2. GOBY MOOS MODULES 27

23 <max>10000</max>
24 <min>0</min>
25 </int>
26 <int>
27 <name>goto_y</name>
28 <max>10000</max>
29 <min>0</min>
30 </int>
31 <bool>
32 <name>lights_on</name>
33 </bool>
34 <string>
35 <moos_var>SPECIAL_INSTRUCTIONS</moos_var>
36 <name>new_instructions</name>
37 <max_length>10</max_length>
38 </string>
39 <float>
40 <name>goto_speed</name>
41 <max>3</max>
42 <min>0</min>
43 <precision>2</precision>
44 </float>
45 </layout>
46 <on_receipt>
47 <publish>
48 <publish_var>INCOMING_COMMAND</publish_var>
49 <all />
50 </publish>
51 <publish>
52 <publish_var>SPECIAL_INSTRUCTIONS</publish_var>
53 <format>special_instructions=%1%,lights_on=%2%</format>
54 <message_var>new_instructions</message_var>
55 <message_var>lights_on</message_var>
56 </publish>
57 </on_receipt>
58 </message>
59 <message>
60 <name>VehicleStatus</name>
61 <id>2</id>
62 <trigger>time</trigger>
63 <trigger_time>30</trigger_time>
64 <size>32</size>
65 <layout>
66 <float>
67 <name>nav_x</name>
68 <src_var>NAV_X</src_var>

CHAPTER 2. GOBY MOOS MODULES 28

69 <max>1000</max>
70 <min>0</min>
71 <precision>1</precision>
72 </float>
73 <float>
74 <name>nav_y</name>
75 <src_var>NAV_Y</src_var>
76 <max>1000</max>
77 <min>0</min>
78 <precision>1</precision>
79 </float>
80 <enum>
81 <name>health</name>
82 <src_var>VEHICLE_HEALTH</src_var>
83 <value>good</value>
84 <value>low_battery</value>
85 <value>abort</value>
86 </enum>
87 </layout>
88 <on_receipt>
89 <publish>
90 <publish_var>STATUS_SUMMARY</publish_var>
91 <all />
92 </publish>
93 </on_receipt>
94 </message>
95 </message_set>

2.3.9 DCCL Encoding/Decoding Unit: Designing Messages

Designing a publish triggered message

We will look at two scenarios and detail how to design a proper message file for
each scenario. We will reference the example file given in section 2.3.8 for both
scenarios.
Scenario: you want to command an surface craft to move to a new location:

1. Identify the data: location (x (goto_x) and y (goto_y) on a local grid). you also
want to specify a speed (goto_speed) at which it should transit, whether it
shouldhave lights (lights_on) onornot, and finally a string (special_instructions)
with possible special instructions. All these data will come in to a moos vari-
able OUTGOING_COMMAND on a string like:

OUTGOING_COMMAND: Destination=3,CommandType=GoTo,goto_x=351,goto_y=294,
lights_on=true,special_instructions=make_toast,goto_speed=2.3

CHAPTER 2. GOBY MOOS MODULES 29

2. Type the data (i.e. is it an int, a float, a string?) and give the ranges and
precisions needed:

• goto_x: integer (in meters) (int) that will operate on a (positive valued)
local grid not to exceed 10 km in either dimension.
• goto_y: same as goto_x.
• goto_speed: speed inm/s. the vehicle cannot exceed 3m/s and does not
go backwards. we would like to give precise speeds to the hundredths
place. thus, we need a float ranging from 0 to 3 with precision 2.
• lights_on: simply a flag (boolean value) whether to have our lights on
or off. thus, we need a bool message_var.
• special_instructions: We want a field that can hold any string of char-
acters, but we know it will not exceed ten characters. thus, we need a
string message_var.

3. Putting all this together, we can define the <layout> portion of the first
message defined in section 2.3.8. Wedonot need any<src_var> tagswithin
themessage_vars since all the data are contained in the contents of the trigger
variablemessage (OUTGOING_COMMAND). That is, whenwe leave out the<src_var>,
pAcommsHandlerwill insert<src_var>OUTGOING_COMMAND</src_var>,
which is exactly what we want. For example, taking one of themessage_vars:

1 <int>
2 <name>goto_x</name>
3 <max>10000</max>
4 <min>0</min>
5 </int>

is exactly the same as saying

1 <int>
2 <name>goto_x</name>
3 <src_var>OUTGOING_COMMAND</src_var>
4 <max>10000</max>
5 <min>0</min>
6 </int>

4. Now we can fill out the rest of the tags on the<message> level:

CHAPTER 2. GOBY MOOS MODULES 30

• <name>GoToCommand</name>: just a name so we can identify this
message quickly when reading through the XML.
• <trigger>publish</trigger>: we are creating this message on a
publish (to OUTGOING_COMMAND).
• <trigger_var mandatory_content="CommandType=GoTo"> OUTGOING_COMMAND
</trigger_var>: OUTGOING_COMMAND is the trigger variable and it must
contain the substring CommandType=GoTo. That is, other commandsmight
be published here (e.g. CommandType=Loiter, CommandType=Track) and we
donot define themessage structure of thosehere (this particular<message>
is only for aGoTomessage). Othermessages canbe created to encode/decode
these other command types.
• <size>32</size>: we want this message to fit in a WHOI micromo-
dem FSK frame (32 bytes).

5. Finally, we fill out the<publish> section which indicates where (i.e. what
moos variables) and how (what format and which part(s) of the message) pA-
commsHandler should publish decoded messages upon receipt of hex from
other vehicles. Each <publish> indicates a separate action that is taken
upon receipt of a message. As many <publish> sections as desired may
be included for a given message. So, for our example message, we want to
replicate the original string (a common practice):

INCOMING_COMMAND: CommandType=GoTo,goto_x=351,goto_y=294,
lights_on=true,special_instructions=make_toast,goto_speed=2.3

to do thiswe fill out a publish<all>. This is the simplest formof the<publish>
section:

1 <on_receipt>
2 <publish>
3 <publish_var>INCOMING_COMMAND</publish_var>
4 <all />
5 </publish>
6 </on_receipt>

this says to take everymessage_var andmake a “key=value” comma-delimited
string from it. the above <publish> block is a shortcut for a much longer
form:

CHAPTER 2. GOBY MOOS MODULES 31

1 <on_receipt>
2 <publish>
3 <publish_var>INCOMING_COMMAND</publish_var>
4 <format>type=goto,goto_x=%1%,goto_y=%2%,lights_on=%3%,
5 special_instructions=%4%,goto_speed=%5%</format>
6 <message_var>goto_x</message_var>
7 <message_var>goto_y</message_var>
8 <message_var>lights_on</message_var>
9 <message_var>special_instructions</message_var>
10 <message_var>goto_speed</message_var>
11 </publish>
12 </on_receipt>

These two blocks are functionally identical.
We may want to also publish the special_instructions to another moos vari-
able, so that:

SPECIAL_INSTRUCTIONS: special_instructions=make_toast,lights_on=true

we can do this with another publish block:

1 <publish>
2 <publish_var>SPECIAL_INSTRUCTIONS</publish_var>
3 <format>special_instructions=%1%,lights_on=%2%</format>
4 <message_var>new_instructions</message_var>
5 <message_var>lights_on</message_var>
6 </publish>

in this case the<format> block is necessary because the default would be
<format>new_instructions=%1%,lights_on=%2%</format> not
<format>special_instructions=%1%,lights_on=%2%</format>.

Those are the basics to designing a publish triggering message.

Designing a time triggered message Scenario: we need a status message that grabs
data from various moos variables and publishes them (encoded) on a time interval.
We will not go into as much detail here, but rather highlight the changes from the
previous scenario.

• you will notice

CHAPTER 2. GOBY MOOS MODULES 32

1 <trigger>time</trigger>
2 <trigger_time>30</trigger_time>

instead of

1 <trigger>publish</trigger>
2 <trigger_var mandatory_content="CommandType=GoTo">
3 OUTGOING_COMMAND
4 </trigger_var>

this indicates that a message should be made on a time interval (given by
<trigger_time>, which is every 30 seconds here), rather than on a publish
to some MOOS variable.

• you will notice that all the message_vars have a <src_var> tag, which was
omitted in the previous example since we were taking data from the trigger
variable. Obviously, there is no trigger variable now so we must specify a
location for the data to come from (in the MOOSDB). The newest available
value will be used when the message needs to be made. This means there
is no guarantee that the data is fresh. Thus, you should use MOOS variables
that are often updated for a<trigger>time</trigger>message. If this
is not the case, a <trigger>publish</trigger> message (see previous
scenario) may be a better choice.

• the format of the value read from the<src_var> can have several options.
First, if the message_var is of a numeric type (<int>, <float>, <bool>)
and the <moos_var> is a double, the value of the double is used as is (with
appropriate rounding and type casting). If the message_var is a string, two
options are available. First, pAcommsHandler looks for a substring of the
form:

name=value

within the string and picks out value to send for the message. If there is no
such name= substring, the entire string is converted to the appropriate form.
An example: we have a <float> called <name>my_float</name> that
has a tag<moos_var>SOME_FLOAT_VARIABLE</moos_var>:

CHAPTER 2. GOBY MOOS MODULES 33

– if

1 (double)SOME_FLOAT_VARIABLE: 3.56

then 3.56 is sent.
– if instead

2 (string)SOME_FLOAT_VARIABLE: "my_float=3.56"

then 3.56 is still sent.
– if instead

3 (string)SOME_FLOAT_VARIABLE: "3.56"

again, 3.56 is sent.
– Finally, if some other string like

4 (string)SOME_FLOAT_VARIABLE: "blah=3.56"

then blah=3.56 is converted to a float, which will probably be zero or
something else undesired. In other words, case 4 is not what you want,
whereas 1-3 are fine.

Further examples

• I currently store some example working message files in goby/xml. look for
.xml files in this directory for further examples.

• Probably the simplest message you can make (for a single string MOOS vari-
able published to IN_MESSAGE that gets truncated at 26 chars (need six bytes
for the DCCL header) and sent to broadcast):

1 <?xml version="1.0" encoding="UTF-8"?>
2 <message_set>
3 <message>
4 <name>Chat</name>
5 <id>1</id>

CHAPTER 2. GOBY MOOS MODULES 34

6 <size>32</size>
7 <queuing>
8 <ack>true</ack>
9 <newest_first>false</newest_first>
10 </queuing>
11 <layout>
12 <string>
13 <name>message</name>
14 <max_length>26</max_length>
15 </string>
16 </layout>
17
18 <!-- only used by pAcommsHandler (publish/subscribe)-->
19 <trigger>publish</trigger> <!-- pack -->
20 <trigger_var>OUT_MESSAGE</trigger_var>
21 <on_receipt> <!-- unpack -->
22 <publish>
23 <publish_var>IN_MESSAGE</publish_var>
24 <message_var>message</message_var>
25 </publish>
26 </on_receipt>
27 <!-- end used by pAcommsHandler -->
28
29 </message>
30 </message_set>

2.3.10 DCCL Encoding/Decoding Unit: XML Tag Reference

The XML tag reference is now part of the Goby Developers documentation (http:
//gobysoft.com/doc/1.0/:

• Seehttp://gobysoft.com/doc/1.0/acomms__dccl.html#dccl_tags for
a structure of all the allowed tags.

• Visithttp://gobysoft.com/doc/1.0/acomms__dccl.html#dccl_tags_
details for an up-to-date reference of all the DCCL tags with a description
of their usage.

Algorithms

You can perform a number of simple algorithms on data either before encoding
(specified in themessage_var tag (e.g. <string algorithm="">) or after receipt
(specified in the <message_var> tag. You can apply more than one algorithm
by separating them with commas and they are processed in the order given. The
currently implemented algorithms include:

http://gobysoft.com/doc/1.0/
http://gobysoft.com/doc/1.0/
http://gobysoft.com/doc/1.0/acomms__dccl.html#dccl_tags
http://gobysoft.com/doc/1.0/acomms__dccl.html#dccl_tags_details
http://gobysoft.com/doc/1.0/acomms__dccl.html#dccl_tags_details

CHAPTER 2. GOBY MOOS MODULES 35

• to_upper: converts string, enum, or bool to uppercase

• to_lower: converts string, enum, or bool to lowercase

• angle_0_360: wraps float or int angle in degrees into the range of [0, 360)

• angle_-180_180: wraps float or int angle in degrees into the range of [-180,
180)

• lon2utm_x: converts longitude to a local utmcoordinate (meters) usedby LAMSS2.
Requires LatOrigin and LongOrigin to be specified at the top of the moos file.
Since a UTM conversion requires a lon/lat pair, youmust specify the latitude
variable here to pair with by adding a colon after this algorithm followed by
the name of the latitude variable. e.g.

<message_var algorithm="lon2utm_x:our_lat">our_lon</message_var>

converts our_lon to a local x (easting) using our_lat as the latitude point.

• lat2utm_y: similar to lon2utm_x but for latitude. e.g.

<message_var algorithm="lat2utm_y:our_lon">our_lat</message_var>

converts our_lat to a local y (northing) using our_lon as the longitude point.

• utm_x2lon: the reverse conversion from x to longitude. similarly to the lati-
tude, longitude to x,y conversion you must pair x and y. e.g.,

<message_var algorithm="utm_x2lon:our_y">our_x</message_var}

• utm_y2lat: example:

<message_var algorithm="utm_y2lat:our_x">our_y</message_var}

• modem_id2name: converts a WHOI modem_id to a vehicle name. requires a file
(path given in the .moos as modem_id_lookup_path: "/path/to/modemidlookup.txt".
an example file:

2we define a latitude/longitude origin near our basis of operations. From this datumwe calculate
the UTM northings (y) and eastings (x). All further UTM calculations are the offset from this datum
point. This offset is what is returned by this algorithm. Contact me if you need more information on
this.

CHAPTER 2. GOBY MOOS MODULES 36

1 // modem_id, vehicle name (should be community name), vehicle type
2 0, broadcast, broadcast
3 1, endeavor, ship
4 3, unicorn, auv
5 4, macrura, auv

if no match is found, the modem_id is returned as a string (e.g. ”10”).

• name2modem_id: performs the (case insensitive) reverse lookup on the same
file. if no match is found, atoi(name.c_str()) is returned (probably zero un-
less you passed something like ”4” to this function).

• modem_id2type: similar to modem_id2name but returns the type of the vehicle
(ship, auv, etc.)

• power_to_dB: takes 10 log10 of the value.

• dB_to_power: takes power antilog of the value.

• alg_TSD_to_soundspeed: applied to temperature, with references to salinity
and depth, calculates the speed of sound using the Mackenzie equation. For
example:

<message_var algorithm="alg_TSD_to_soundspeed:sal:depth">temp</message_var>

• add: adds the reference <message_var> to the current <message_var>.
example: <message_var algorithm="add:b">a</message_var> adds
b to a.

• subtract: subtracts the reference<message_var> from the current<message_var>.

2.3.11 DCCL Encoding/Decoding Unit: Under the Hood

Seehttp://gobysoft.com/doc/1.0/acomms__dccl.html#dccl_how and [5] for
details on how the DCCL encoding is done.

2.3.12 Priority Message Queuing Unit

pAcommsHandler takes all the configured queues and maintains a stack of mes-
sages for each queue. when it is prompted by data by the modem, it has a pri-
ority ”contest” between the queues. the queue with the current highest priority

http://gobysoft.com/doc/1.0/acomms__dccl.html#dccl_how

CHAPTER 2. GOBY MOOS MODULES 37

(as determined by the value_base and ttl fields) is selected. The next message in
that queue is then provided to the MicroModem to send. For modem messages
with multiple frames per packet, each frame is a separate contest. Thus a single
packet may contain frames from different queues (e.g. a rate 5 PSK packet has
eight 256 byte frames. frame 1 might grab a STATUS message since that has the
current highest queue. then frame 2 may grab a BTR message and frames 3-8 are
filled up with CTD messages (e.g. STATUS is in blackout, BTR queue is empty)).
See http://gobysoft.com/doc/1.0/acomms__queue.html#queue_priority
for more
Formessages with ack: true (acknowledge requested), the last message contin-

ues to be re-sent (that is, it is not popped from the message queue) until the ACK is
received from themodem (thus blocking the sending of other messages). Messages
with ack: false are popped and discarded when they are sent (no retries).
If you do not wish for dynamic growth of the priorities, simply set the ttl to

the special value 0. Then the priorities grow as P = V _base and messages never
expire. Note that this is the same as setting ttl =∞.

Messages not to us are ignored We choose modem id 0 as broadcast. thus messages
with the destination field = 0 will always be read by all nodes and reported to the
appropriate moos variable. Otherwise, we ignore messages unless they correspond
to our modem id. so if you send a message to modem id 10, pAcommsHandler for
modem ids 1 → 9, 11 → N will ignore that. This is not the default behavior of the
WHOI Micro-Modem, which always reports data, regardless of the sender’s ID.
TheXML tag reference is nowpart of theGobyDevelopers documentation (http:

//gobysoft.com/doc/1.0/:

• Seehttp://gobysoft.com/doc/1.0/acomms__queue.html#queue_tags
for a structure of all the allowed tags.

• http://gobysoft.com/doc/1.0/acomms__queue.html#queue_tags_details
provides an up-to-date reference of all the Queue tags with a description of
their usage.

2.3.13 Modem Driver Unit

The Modem driver unit current supports the WHOI Micro-Modem acoustic mo-
dem and is extensible to other acoustic modems. To directly monitor the modem
feed, subscribe to ACOMMS_NMEA_IN and ACOMMS_NMEA_OUT. For a complete
list of supported commands of the WHOI Micro-Modem, see http://gobysoft.
com/doc/1.0/acomms__driver.html#acomms_mmdriver.

http://gobysoft.com/doc/1.0/acomms__queue.html#queue_priority
http://gobysoft.com/doc/1.0/
http://gobysoft.com/doc/1.0/
http://gobysoft.com/doc/1.0/acomms__queue.html#queue_tags
http://gobysoft.com/doc/1.0/acomms__queue.html#queue_tags_details
http://gobysoft.com/doc/1.0/acomms__driver.html#acomms_mmdriver
http://gobysoft.com/doc/1.0/acomms__driver.html#acomms_mmdriver

CHAPTER 2. GOBY MOOS MODULES 38

2.3.14 Medium Access Control (MAC) Unit

TheMACunit uses time division (TDMA) to attempt to ensure a collision-free acous-
tic channel.
pAcommsHandler supports two variants of the TDMAMAC scheme: centralized

and decentralized. As the names suggest, Centralized TDMA (type: MAC_POLLED) in-
volves control of the entire cycle from a single master node, whereas each node’s
respective slot is controlled by that node in Decentralized TDMA.Within decentral-
izedTDMA,Goby supports both a fixed (preprogrammed) cycle (type: MAC_FIXED_DECENTRALIZED)
and anautodiscoverymode (type: MAC_AUTO_DECENTRALIZED). Todisable thepAcommsHan-
dler MAC, use (type: MAC_NONE)

Centralized TDMA (Polling)

Centralized TDMA involves a master node (usually aboard the Research Vessel or
on land)which initiates every transmission for the entire communcations cycle (i.e.
“polls” each node for data). Thus, the other nodes are not required to maintain
synchronized clocks as the timing is all performed on the master node.
This style of MAC has been widely used for small AUV operations using the

WHOI Micro-Modem. Its principal advantages are that it has 1) no requirement
for synchronized clocks, 2) full control over the communications cycle at runtime
(assuming the master is accessible to the vehicle operators, as is usually the case);
and 3) a master who can acknowledge “broadcast” messages.
However, centralized TDMA has a number of substantial disadvantages. In or-

der for a third-party master to initiate a transmission, an acoustic packet must be
sent for this initialization. This additional “cycle initialization” packet, like any
acoustic message, has a high chance of being lost (after which the data are never
sent because the sending node did not receive a cycle initialization message), con-
sumes power, and lengthens the time of the communications slot. See Fig. 2.6
for the various parts of the communication cycle with (for Centralized TDMA) and
without (for Decentralized TDMA) the cycle initialization message. The additional
time required for each slot of Centralized TDMA is

τci + rmax/c (2.1)

where τci is the length (in seconds) of the cycle initalization packet (about one sec-
ond for theWHOIMicro-Modem), rmax is themaximum range of the network (typi-
cally of order 1000s ofmeters), and c is the compressional speed of sound (nominally
1500 m/s).

CHAPTER 2. GOBY MOOS MODULES 39

Cycle Initialization (Poll)

Propagation

Message

Propagation

Acknowledge

Propagation

(a) Centralized
TDMA

Message

Propagation

Acknowledge

Propagation

(b) Decentralized
TDMA

Figure 2.6: Comparison of the time needed for a single slot for the two types of
TDMA supported by pAcommsHandler. Eq. 2.1 gives the additional length of time
required by the Centralized variant.

Decentralized TDMA with passive auto-discovery

Decentralized TDMA removes the cycle initialization packet and thus reduces the
length of each slot and the chance of errors. However, it introduces the constraint
of synchronized clocks3 for all nodes, which can be somewhat tricky to maintain
underwater.
Decentralized TDMA gives each vehicle a single slot in which it transmits. Each

vehicle initiates its own transmission at the start of its slot. Collisions are avoidedby
each vehicle following the same rules about slot placement within the timewindow
(based on the time of day). All slots are ordered by ascending acoustic MAC address
(or “modem identification number”), which is an unsigned integer unique for each
network.
During the runtime of the network, it is often desirable to add or remove nodes.

Since the MAC is spread throughout the nodes, there is no easy way to change the
cycle during runtime. libamac supports passive auto-discovery (and subsequent ex-
piration) of nodes to provide a solution to this problem. This auto-discovery is pas-
sive because it requires no control messaging beyond the normal communications
between nodes.
Vehicles are discovered by shifting a blank slot in each cycle based on their

knowledge of the world and the time of day. If a new vehicle is heard from during
the blank, it is added to the listening vehicle’s knowledge of the world and hence
their cycle. In the simplified situation (which is really a worst case scenario) dis-
covery is defined by a single vehicle transmitting during a cycle and all the others
silent (the current slot is not equal to each vehicle’s acoustic MAC address).

3the accuracy of the clock synchronization can be low relative to other timing needs such as bi-
static sonar. Generally, accuracy better than 0.1 seconds is acceptable; higher inaccuracies can be
handled by increasing the guard time on both sides of each slot.

CHAPTER 2. GOBY MOOS MODULES 40

3 sends

1 sends 2 sends 3 sends

1 sends 2 sends 3 sends

3 sends

1 sends

2 sends

2 sends

1 sends 1 sends 1 sends

Vehicle 1 Vehicle 2 Vehicle 3

blank

“ground

 state”

blank

“ground

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

blank

“excited

 state”

blank

“ground

 state”

Figure 2.7: Graphical example of auto discovery for three nodes launched at the
same time. Each circle represents the vehicle’s cycle at each time step (represented
by horizontal rows) based on the vehicle’s current knowledge of the world. In the
first row, all vehicles only know of themselves and put the blank slot in the last
slot; thus, all communications collide and no discoveries are made. In the second
row, vehicle 1’s blank is moved (by pseudo-chance) to the penultimate (first) slot,
so vehicles 2 and 3 discover 1. Then, in the third row vehicles 2 and 3 are discovered
by the others because vehicle 3 moves its blank slot. By the fourth row all vehicles
have discovered the others and continue to transmit without collision following
the cycle diagrammed on this row.

CHAPTER 2. GOBY MOOS MODULES 41

time vehicle 1 vehicle 2 result
0 send send collision
15 blank blank nothing
30 blank send success: 1 discovers 2
45 cycle wait blank nothing
60 cycle wait send success
75 cycle wait blank nothing
90 send blank success: 2 discovers 1
105 listen for 2 cycle wait nothing
120 blank cycle wait nothing
135 send listen for 1 success
150 listen for 2 send success
165 blank blank nothing
180 send listen for 1 success
195 blank blank nothing
210 listen for 2 send success

Table 2.1: Example initialization for the Decentralized TDMA with autodiscovery.
By 135 seconds, both vehicles have discovered each other and are synchronized.
Thus, nomore collisionswill occur. This scenario assumes that both vehicles always
have some data to send during their slot.

2.3.15 Simple complete example MOOS files

Example 1: Basic CCL (goby/share/cfg/MOOS/basic_ccl)

This example sends the bytes 0x020304 from node 1 (mm1) to node 2 (mm2). It shows
use of all the parts of pAcommsHandler except the DCCL encoding / decoding unit.
I use iModemSim here to simulate the WHOI Micro-Modem. This process is avail-
able inmoos-ivp-local (http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.
php?n=Support.Milocal). You can also easily substitute real modems by remov-
ing iModemSim references and changing the serial_port.

MOOS file for Node 1: goby/share/cfg/MOOS/basic_ccl/mm1.moos

1 // t. schneider tes@mit.edu 2.16.11
2
3 // bare bones acoustic communications
4 // stack for topside receiver

http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal
http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal

CHAPTER 2. GOBY MOOS MODULES 42

5 // for CCL message
6
7 ServerHost = localhost
8 ServerPort = 9101
9 Community = mm1
10
11 LatOrigin = 0
12 LongOrigin = 0
13
14 ProcessConfig = ANTLER
15 {
16 MSBetweenLaunches = 10
17 Run = MOOSDB @ NewConsole = false
18
19 /////////////////////////////////////
20 // acomms related
21 /////////////////////////////////////
22 // queuing
23 Run = pAcommsHandler @ NewConsole = true
24 // modem simulator
25 Run = iModemSim @ NewConsole = true
26
27 // simulate CCL data source
28 Run = uTimerScript @ NewConsole = true
29 }
30
31 ProcessConfig = pAcommsHandler
32 {
33 modem_id: 1
34
35 driver_type: DRIVER_WHOI_MICROMODEM
36
37 driver_cfg
38 {
39 serial_port: "/tmp/ttyLOOPA2"
40 # doesn't work with iModemSim, set to true for real ops
41 [MicroModemConfig.reset_nvram]: false
42 }
43
44 mac_cfg
45 {
46 type: MAC_FIXED_DECENTRALIZED
47 slot
48 {
49 src: 1
50 dest: 2

CHAPTER 2. GOBY MOOS MODULES 43

51 rate: 0
52 type: SLOT_DATA
53 slot_seconds: 10
54 }
55 }
56
57 queue_cfg
58 {
59 queue
60 {
61 key {
62 type: QUEUE_CCL
63 id: 2 # decimal CCL id (first byte)
64 }
65 in_pubsub_var: "IN_TEST_32B"
66 out_pubsub_var: "OUT_TEST_32B"
67 name: "TEST"
68 }
69 }
70 }
71 // must set serial_loopbacks to use
72 // as root run the shell script (in moos-ivp-local/scripts)
73 // > loopbacks
74 ProcessConfig = iModemSim
75 {
76 AppTick = 4
77 CommsTick = 4
78
79 Port = /tmp/ttyLOOPA1
80 Speed = 19200
81
82 IPPort = 49234
83 BroadcastAddr = 127.0.0.1
84
85 InputLocType = constant_local
86 ConstantPosX = 0
87 ConstantPosY = 0
88 ConstantDepth = 0
89 }
90
91
92
93 ProcessConfig = uTimerScript
94 {
95 // data is 2 2 3 4 in octal
96 EVENT = var=OUT_TEST_32B, val="data: "\002\002\003\004"", time = 10

CHAPTER 2. GOBY MOOS MODULES 44

97 RESET_TIME = end
98 }

MOOS file for Node 2: goby/share/cfg/MOOS/basic_ccl/mm2.moos

1 // t. schneider tes@mit.edu 4.28.10
2
3 // bare bones acoustic communications
4 // stack for auv
5 // for CCL message
6
7 ServerHost = localhost
8 ServerPort = 9102
9 Community = mm2
10
11 LatOrigin = 0
12 LongOrigin = 0
13
14 ProcessConfig = ANTLER
15 {
16 MSBetweenLaunches = 10
17 Run = MOOSDB @ NewConsole = false
18
19 /////////////////////////////////////
20 // acomms related
21 /////////////////////////////////////
22 // queuing
23 Run = pAcommsHandler @ NewConsole = true
24
25 Run = iModemSim @ NewConsole = true
26 }
27
28 ProcessConfig = pAcommsHandler
29 {
30 modem_id: 2
31
32 driver_type: DRIVER_WHOI_MICROMODEM
33
34 driver_cfg
35 {
36 serial_port: "/tmp/ttyLOOPB2"
37 # doesn't work with iModemSim, set to true for real ops
38 [MicroModemConfig.reset_nvram]: false
39 }

CHAPTER 2. GOBY MOOS MODULES 45

40
41 mac_cfg
42 {
43 type: MAC_FIXED_DECENTRALIZED
44 slot
45 {
46 src: 1
47 dest: 2
48 rate: 0
49 type: SLOT_DATA
50 slot_seconds: 10
51 }
52 }
53
54 queue_cfg
55 {
56 queue
57 {
58 key {
59 type: QUEUE_CCL
60 id: 2 # decimal CCL id (first byte)
61 }
62 in_pubsub_var: "IN_TEST_32B"
63 out_pubsub_var: "OUT_TEST_32B"
64 name: "TEST"
65 }
66 }
67 }
68
69
70 // must set serial_loopbacks to use
71 // as root run the shell script (in moos-ivp-local/src/bin)
72 // > loopbacks
73 ProcessConfig = iModemSim
74 {
75 AppTick = 4
76 CommsTick = 4
77
78 Port = /tmp/ttyLOOPB1
79 Speed = 19200
80
81 IPPort = 49234
82 BroadcastAddr = 127.0.0.1
83
84 InputLocType = constant_local
85 ConstantPosX = 0

CHAPTER 2. GOBY MOOS MODULES 46

86 ConstantPosY = 0
87 ConstantDepth = 0
88 }

Example 2: DCCL and CCL (goby/share/cfg/MOOS/ccl_and_dccl)

This example sends the DCCL “Simple Status” messsage from node 1 (mm1) to node
2 (mm2). mm2 sends the REMUS CCL State message to mm1. It thus uses all the compo-
nents of pAcommsHandler. As in the previous example, you can use real modems
by removing iModemSim and changing the serial_port to the proper real serial
port.

MOOS file for Node 1: goby/share/cfg/MOOS/ccl_and_dccl/mm1.moos

1 // t. schneider tes@mit.edu 3.2.11
2
3 // bare bones acoustic communications
4 // stack for topside receiver
5
6 ServerHost = localhost
7 ServerPort = 9101
8 Community = mm1
9
10 LatOrigin = 42.35
11 LongOrigin = -70.95
12
13 NoNetwork = true
14 modem_id_lookup_path = modemidlookup.txt
15
16
17 ProcessConfig = ANTLER
18 {
19 MSBetweenLaunches = 10
20 Run = MOOSDB @ NewConsole = false
21
22 Run = pREMUSCodec @ NewConsole = true, XConfig=1
23 Run = pAcommsHandler @ NewConsole = true, XConfig=2
24 Run = iModemSim @ NewConsole = true, XConfig=3
25
26 1 = -geometry,80x15+0+0
27 2 = -geometry,80x100+0+230
28 3 = -geometry,80x15+0+570
29 }

CHAPTER 2. GOBY MOOS MODULES 47

30
31 ProcessConfig = pREMUSCodec
32 {
33 mdat_state_var: "IN_REMUS_STATUS"
34 mdat_state_out: "OUT_REMUS_STATUS"
35 create_status: false
36 }
37
38
39 ProcessConfig = pAcommsHandler
40 {
41 common
42 {
43 verbosity: VERBOSITY_GUI
44 initializer { type: INI_DOUBLE global_cfg_var: "LatOrigin" moos_var: "LAT_ORIGIN" }
45 initializer { type: INI_DOUBLE global_cfg_var: "LongOrigin" moos_var: "LONG_ORIGIN" }
46 initializer { type: INI_STRING moos_var: "VEHICLE_TYPE" sval: "topside" }
47 initializer { type: INI_STRING moos_var: "VEHICLE_NAME" sval: "mm1" }
48 initializer { type: INI_DOUBLE moos_var: "NAV_X" dval: 100 }
49 initializer { type: INI_DOUBLE moos_var: "NAV_Y" dval: 300 }
50 initializer { type: INI_DOUBLE moos_var: "NAV_HEADING" dval: 150 }
51 initializer { type: INI_DOUBLE moos_var: "NAV_SPEED" dval: 0 }
52 initializer { type: INI_DOUBLE moos_var: "NAV_DEPTH" dval: 0 }
53 }
54
55 modem_id: 1
56
57 driver_type: DRIVER_WHOI_MICROMODEM
58 driver_cfg
59 {
60 serial_port: "/tmp/ttyLOOPA2"
61 # doesn't work with iModemSim, set to true for real ops
62 [MicroModemConfig.reset_nvram]: false
63 }
64
65 mac_cfg
66 {
67 type: MAC_FIXED_DECENTRALIZED
68 slot { src: 1 dest: 2 rate: 0 type: SLOT_DATA slot_seconds: 10 } # downlink
69 slot { src: 2 dest: 1 rate: 0 type: SLOT_DATA slot_seconds: 10 } # uplink
70 }
71
72 queue_cfg
73 {
74 queue
75 {

CHAPTER 2. GOBY MOOS MODULES 48

76 key {
77 type: QUEUE_CCL
78 id: 14 # decimal CCL id (first byte)
79 }
80 in_pubsub_var: "IN_REMUS_STATUS"
81 out_pubsub_var: "OUT_REMUS_STATUS"
82 name: "Remus_State"
83 }
84 }
85
86 dccl_cfg
87 {
88 message_file { path: "../../../xml/simple_status.xml" }
89 }
90 }
91
92 // must set serial_loopbacks to use
93 // as root run the shell script (in moos-ivp-local/src/bin)
94 // > loopbacks
95 ProcessConfig = iModemSim
96 {
97 AppTick = 4
98 CommsTick = 4
99
100 Port = /tmp/ttyLOOPA1
101 Speed = 19200
102
103 IPPort = 49234
104 BroadcastAddr = 127.0.0.1
105
106 InputLocType = constant_local
107 ConstantPosX = 0
108 ConstantPosY = 0
109 ConstantDepth = 0
110 }
111

MOOS file for Node 2: goby/share/cfg/MOOS/ccl_and_dccl/mm2.moos

1 // t. schneider tes@mit.edu 3.2.11
2
3 // bare bones acoustic communications
4 // stack for auv
5

CHAPTER 2. GOBY MOOS MODULES 49

6 ServerHost = localhost
7 ServerPort = 9102
8 Community = mm2
9
10 LatOrigin = 42.35
11 LongOrigin = -70.95
12
13 modem_id_lookup_path = modemidlookup.txt
14 modem_id = 2
15
16 NoNetwork = true
17
18 ProcessConfig = ANTLER
19 {
20 MSBetweenLaunches = 10
21
22 Run = MOOSDB @ NewConsole = false
23
24 Run = pREMUSCodec @ NewConsole = true, XConfig=1
25 Run = pAcommsHandler @ NewConsole = true, XConfig=2
26 Run = iModemSim @ NewConsole = true, XConfig=3
27
28 1 = -geometry,80x15-0+0
29 2 = -geometry,80x100-0+230
30 3 = -geometry,80x15-0+570
31 }
32
33 ProcessConfig = pREMUSCodec
34 {
35 create_status: true
36
37 mdat_state_var: "IN_REMUS_STATUS"
38 mdat_state_out: "OUT_REMUS_STATUS"
39 modem_id_lookup_path: "modemidlookup.txt"
40 }
41
42 ProcessConfig = pAcommsHandler
43 {
44 common
45 {
46 verbosity: VERBOSITY_GUI
47 initializer { type: INI_DOUBLE global_cfg_var: "LatOrigin" moos_var: "LAT_ORIGIN" }
48 initializer { type: INI_DOUBLE global_cfg_var: "LongOrigin" moos_var: "LONG_ORIGIN" }
49 initializer { type: INI_STRING moos_var: "VEHICLE_TYPE" sval: "auv" }
50 initializer { type: INI_STRING moos_var: "VEHICLE_NAME" sval: "mm2" }
51 initializer { type: INI_DOUBLE moos_var: "NAV_X" dval: 123 }

CHAPTER 2. GOBY MOOS MODULES 50

52 initializer { type: INI_DOUBLE moos_var: "NAV_Y" dval: 321 }
53 initializer { type: INI_DOUBLE moos_var: "NAV_HEADING" dval: 45 }
54 initializer { type: INI_DOUBLE moos_var: "NAV_SPEED" dval: 1.2 }
55 initializer { type: INI_DOUBLE moos_var: "NAV_DEPTH" dval: 111 }
56 }
57
58 modem_id: 2
59 modem_id_lookup_path: "modemidlookup.txt"
60
61 driver_type: DRIVER_WHOI_MICROMODEM
62 driver_cfg
63 {
64 serial_port: "/tmp/ttyLOOPB2"
65 # doesn't work with iModemSim, set to true for real ops
66 [MicroModemConfig.reset_nvram]: false
67 }
68
69 mac_cfg
70 {
71 type: MAC_FIXED_DECENTRALIZED
72 slot { src: 1 dest: 2 rate: 0 type: SLOT_DATA slot_seconds: 10 } # downlink
73 slot { src: 2 dest: 1 rate: 0 type: SLOT_DATA slot_seconds: 10 } # uplink
74 }
75
76 queue_cfg
77 {
78 queue
79 {
80 key { type: QUEUE_CCL id: 14 }
81 in_pubsub_var: "IN_REMUS_STATUS"
82 out_pubsub_var: "OUT_REMUS_STATUS"
83 name: "Remus_State"
84 }
85 }
86
87 dccl_cfg
88 {
89 message_file { path: "../../../xml/simple_status.xml"
90 manipulator: NO_ENCODE }
91 }
92 }
93
94 // must set serial_loopbacks to use
95 // as root run the shell script (in moos-ivp-local/src/bin)
96 // > loopbacks
97 ProcessConfig = iModemSim

CHAPTER 2. GOBY MOOS MODULES 51

98 {
99 AppTick = 4
100 CommsTick = 4
101
102 Port = /tmp/ttyLOOPB1
103 Speed = 19200
104
105 IPPort = 49234
106 BroadcastAddr = 127.0.0.1
107
108 InputLocType = constant_local
109 ConstantPosX = 0
110 ConstantPosY = 0
111 ConstantDepth = 0
112 }

XML definition of Simple Status: goby/xml/simple_status.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <message_set>
3 <message>
4 <name>SIMPLE_STATUS</name>
5 <trigger>time</trigger>
6 <trigger_time>5</trigger_time>
7 <size>32</size>
8 <header>
9 <id>20</id>
10 <time>
11 <name>Timestamp</name>
12 </time>
13 <src_id algorithm="to_lower,name2modem_id">
14 <name>Node</name>
15 <moos_var>VEHICLE_NAME</moos_var>
16 </src_id>
17 </header>
18 <layout>
19 <static>
20 <name>MessageType</name>
21 <value>LAMSS_STATUS</value>
22 </static>
23 <float>
24 <name>nav_x</name>
25 <moos_var>NAV_X</moos_var>
26 <max>100000</max>

CHAPTER 2. GOBY MOOS MODULES 52

27 <min>-100000</min>
28 <precision>0</precision>
29 </float>
30 <float>
31 <name>nav_y</name>
32 <moos_var>NAV_Y</moos_var>
33 <max>100000</max>
34 <min>-100000</min>
35 <precision>0</precision>
36 </float>
37 <float>
38 <name>Speed</name>
39 <moos_var>NAV_SPEED</moos_var>
40 <max>20</max>
41 <min>-2</min>
42 <precision>1</precision>
43 </float>
44 <float algorithm="angle_0_360">
45 <name>Heading</name>
46 <moos_var>NAV_HEADING</moos_var>
47 <max>360</max>
48 <min>0</min>
49 <precision>2</precision>
50 </float>
51 <float>
52 <name>Depth</name>
53 <moos_var>NAV_DEPTH</moos_var>
54 <max>6400</max>
55 <min>0</min>
56 <precision>1</precision>
57 </float>
58 </layout>
59
60 <!-- decoding -->
61 <on_receipt>
62 <publish>
63 <moos_var>STATUS_REPORT_IN</moos_var>
64 <all />
65 </publish>
66 <publish>
67 <moos_var>NODE_REPORT</moos_var>
68 <format>NAME=%1%,TYPE=%2%,UTC_TIME=%3$.0lf,X=%4%,Y=%5%,LAT=%6$lf,LON=%7$lf,SPD=%8%,HDG=%9%,DEPTH=%10%</format>
69 <message_var algorithm="modem_id2name">Node</message_var>
70 <message_var algorithm="modem_id2type">Node</message_var>
71 <message_var>Timestamp</message_var>
72 <message_var>nav_x</message_var>

CHAPTER 2. GOBY MOOS MODULES 53

73 <message_var>nav_y</message_var>
74 <message_var algorithm="utm_y2lat:nav_x">nav_y</message_var>
75 <message_var algorithm="utm_x2lon:nav_y">nav_x</message_var>
76 <message_var>Speed</message_var>
77 <message_var>Heading</message_var>
78 <message_var>Depth</message_var>
79 </publish>
80 </on_receipt>
81 <queuing>
82 <ack>false</ack>
83 <blackout_time>10</blackout_time>
84 <ttl>300</ttl>
85 <value_base>1.5</value_base>
86 </queuing>
87 </message>
88 </message_set>
89

Modem Lookup Table: goby/share/cfg/MOOS/ccl_and_dccl/modemidlookup.txt

1 1,mm1,topside
2 2,mm2,auv

2.4 iCommander

iCommander is a topside command and control (C2) tool which provides a simple con-
sole for issuing commands through the acoustic network. By sharing DCCLmessage
configuration (XML) files with pAcommsHandler it automatically adapts to the current
message set, without any need to change code.

Parameters for the iCommander Configuration Block

Example .moos file The moos file is simple since the bulk of the configuration is
stored in separate XML files (see section 2.3.8 for the configuration of these files):

1 ProcessConfig = iCommander
2 {
3 common { # Configuration common to all Goby MOOS applications
4 # (opt)
5 log: true # Should we write a text log of the terminal

CHAPTER 2. GOBY MOOS MODULES 54

6 # output? (opt) (default=true) (can also set MOOS
7 # global "log=")
8 log_path: "./" # Directory path to write the text log of the
9 # terminal output (if log=true) (opt)
10 # (default="./") (can also set MOOS global
11 # "log_path=")
12 community: "AUV23" # The vehicle's name (opt) (can also set
13 # MOOS global "Community=")
14 lat_origin: 42.5 # Latitude in decimal degrees of the local
15 # cartesian datum (opt) (can also set MOOS
16 # global "LatOrigin=")
17 lon_origin: 10.9 # Longitude in decimal degrees of the local
18 # cartesian datum (opt) (can also set MOOS
19 # global "LongOrigin=")
20 app_tick: 10 # Frequency at which to run Iterate(). (opt)
21 # (default=10)
22 comm_tick: 10 # Frequency at which to call into the MOOSDB
23 # for mail. (opt) (default=10)
24 verbosity: VERBOSITY_VERBOSE # Verbosity of the terminal
25 # window output (VERBOSITY_QUIET,
26 # VERBOSITY_WARN,
27 # VERBOSITY_VERBOSE,
28 # VERBOSITY_DEBUG, VERBOSITY_GUI)
29 # (opt)
30 # (default=VERBOSITY_VERBOSE)
31 initializer { # Publish a constant value to the MOOSDB at
32 # startup (repeat)
33 type: INI_DOUBLE # type of MOOS variable to publish
34 # (INI_DOUBLE, INI_STRING) (req)
35 moos_var: "SOME_MOOS_VAR" # name of MOOS variable to
36 # publish to (req)
37 global_cfg_var: "LatOrigin" # Optionally, instead of
38 # giving `sval` or `dval`, give
39 # a name here of a global MOOS
40 # variable (one at the top of
41 # the file) whose contents
42 # should be written to
43 # `moos_var` (opt)
44 dval: 3.454 # Value to write for type==INI_DOUBLE (opt)
45 sval: "a string" # Value to write for type==INI_STRING
46 # (opt)
47 }
48 }
49 dccl_cfg { # Configure the DCCL Encoder (opt)
50 modem_id: 1 # Unique number 1-31 to identify this node (req)
51 message_file { # XML message file containing one or more

CHAPTER 2. GOBY MOOS MODULES 55

52 # DCCL message descriptions (repeat)
53 path: "/home/toby/goby/src/acomms/examples/chat/chat.xml"
54 # path to the
55 # message XML file
56 # (req)
57 manipulator: NO_MANIP # manipulators to modify the
58 # encoding and queuing behavior of the
59 # messages in this file (NO_MANIP,
60 # NO_ENCODE, NO_DECODE, NO_QUEUE,
61 # LOOPBACK, ON_DEMAND, TCP_SHARE_IN)
62 # (repeat)
63 }
64 crypto_passphrase: "twinkletoes%24" # If given, encrypt all
65 # communications with this
66 # passphrase using AES.
67 # Omit for unencrypted
68 # communications. (opt)
69 }
70 modem_id_lookup_path: "" # Path to file containing mapping
71 # between modem_id and vehicle name &
72 # type (opt) (can also set MOOS global
73 # "modem_id_lookup_path=")
74 load: "" # Path to iCommander save file to load automatically
75 # on startup (repeat)
76 show_variable: "" # MOOS Variable to scope on the GUI (repeat)
77 force_xy_only: false # Set true to set all Latitude/Longitude
78 # fields to use x/y values instead (opt)
79 # (default=false)
80 }

AswithpAcommsHandler, the above configuration file canbe generated at any time
with the command:

1 iCommander --example_config

Filling out the .moos file Some of the DCCL configuration (dccl_cfg) parameters are
not used, such as the crypto_passphrase.

• common: See section 2.3.5.

• dccl_cfg.message_file: path to an XML file containing a message set of one
or messages. These are the DCCL messages. You can also load messages XML
files through the Main Menu in the program.

CHAPTER 2. GOBY MOOS MODULES 56

• load: path to a file of iCommander saved message(s) to load automatically on
startup. You can also load messages through the Main Menu in the program.

Reference Sheet

Main Menu

1 __
2 | iCommander: Vehicle Command Message Sender |
3 | 2 messages loaded. |
4 | Main Menu: |
5 | > Return to active message |
6 | > Select Message |
7 | > Load |
8 | > Save |
9 | > Import Message File |
10 | > Exit |
11 |__|

• Return to active message - only available if you have actively edited a message
this session. Choose to return to the editing screen of the last message you
were editing.

• Select Message - pick a message type to edit. All messages are read from DCCL
(dynamic compact control language) XML message files.

• Load - load a saved message parameters file. This allows you to save values
for message fields from session to session.

• Save - saves all openmessages to a single file for later use. These files are plain
text for easy use outside iCommander.

• Import Message File - import another DCCL XML file for use.

• Exit - quit cleanly.

Editing screen

1
2 __
3 | |
4 |Editing message variable 1 of 22: MessageType |

CHAPTER 2. GOBY MOOS MODULES 57

5 |(static) you cannot change the value of this field|
6 |__|
7
8 ___
9 | |
10 |Message (Type: SENSOR_PROSECUTE) |
11 |22 entries total |
12 | {Enter} for options |
13 | {Up/Down} for more message variables |
14 | |
15 | _________________ |
16 | | ||
17 |1. MessageType (static) |SENSOR_PROSECUTE ||
18 | |_________________||
19 | _________________ |
20 | | ||
21 |2. SensorCommandType (int) |1 ||
22 | |_________________||
23 | _________________ |
24 | | ||
25 |3. SourcePlatformId (int) |0 ||
26 | |_________________||
27 | _________________ |
28 | | ||
29 |4. DestinationPlatformId (int) |3 ||
30 | |_________________||
31 |___|

Scroll to select the box to edit. Note that you will need to scroll up or down off
the screen to see all the fields at once. The information box at the top will tell you
how large the field can be based on the DCCL settings. You cannot enter a value
outside these ranges. Hit enter to get the editing menu.

Editing menu

1 __
2 | |
3 | Choose an action |
4 |> Return to message |
5 |> Send |
6 |> Preview |
7 |> Quick switch to another open message |
8 |> Insert special: current time |
9 |> Insert special: local X,Y to longitude,latitude |

CHAPTER 2. GOBY MOOS MODULES 58

10 |> Insert special: community |
11 |> Insert special: modem id |
12 |> Clear message |
13 |> Main Menu |
14 | |
15 | |
16 |__|

• Return to message

• Send - publish the variables for use by pAcommsHandler

• Preview - preview the message to be sent in exact syntactical form

• Quick switch to another openmessage - switch to anothermessage with informa-
tion (either edited this session or loaded)

• Insert special: current time - insert a placeholder (“_time”) that will be replaced
with the currentUNIX timewhenmessage is sent (e.g. 1236053988). Shortcut:
type ’t’ directly into the field and bypass this menu.

• Insert special: local X,Y to longitude,latitude - insert a placeholder designator to
do a UTM local grid to latitude / longitude conversion. first the latitude (Y
or northings) is entered (“y(lat)1:”), then you choose where to put the lon-
gitude (X or eastings) (“x(lon)1:”). after the colon enter the desired value
in meters that will be converted to latitude/longitude based in the LatOri-
gin/LongOrigin set in the top of the MOOS file. Note that youmay have more
thanonepair of x/y. This is the reason for thenumber following “y(lat)”/“x(lon)”.
“y(lat)1” is pairedwith “x(lon)1”, “y(lat)2” is pairedwith “x(lon)2”, etc. Short-
cut: type ’y’ or ’x’ respectively directly into the fields and bypass this menu.

• Insert special: community - insert the name of this MOOS community.

• Insert special: modem id - choose amodem id from a list of names. This is based
off the modem id lookup table used by pAcommsHandler.

• Clear message

• Main Menu

CHAPTER 2. GOBY MOOS MODULES 59

Acknowledgments If you are using pAcommsHandler with the ACK field set to 1
(true), all acousticmessage acknowledgments are displayed at the top of the screen.
For example, the ack of a LAMSS_DEPLOYmessage would look like this:

1 ___
2 | |
3 |Message acknowledged from queue: LAMSS_DEPLOY|
4 | for destination: 5 |
5 | at time: 2011-Mar-03 22:38:12 |
6 |___|

Similarly, expired messages (messages that exceed their ttlwithout being sent)
are shown as well:

1 ___
2 | |
3 |Message expired from queue: LAMSS_DEPLOY |
4 | for destination: 5 |
5 | at time: 2011-Mar-03 22:38:12 |
6 |___|

2.5 pREMUSCodec

Example .moos file

1 ProcessConfig = pREMUSCodec
2 {
3 common { # Configuration common to all Goby MOOS applications
4 # (opt)
5 log: true # Should we write a text log of the terminal
6 # output? (opt) (default=true) (can also set MOOS
7 # global "log=")
8 log_path: "./" # Directory path to write the text log of the
9 # terminal output (if log=true) (opt)
10 # (default="./") (can also set MOOS global
11 # "log_path=")
12 community: "AUV23" # The vehicle's name (opt) (can also set
13 # MOOS global "Community=")
14 lat_origin: 42.5 # Latitude in decimal degrees of the local
15 # cartesian datum (opt) (can also set MOOS
16 # global "LatOrigin=")

CHAPTER 2. GOBY MOOS MODULES 60

17 lon_origin: 10.9 # Longitude in decimal degrees of the local
18 # cartesian datum (opt) (can also set MOOS
19 # global "LongOrigin=")
20 app_tick: 10 # Frequency at which to run Iterate(). (opt)
21 # (default=10)
22 comm_tick: 10 # Frequency at which to call into the MOOSDB
23 # for mail. (opt) (default=10)
24 verbosity: VERBOSITY_VERBOSE # Verbosity of the terminal
25 # window output (VERBOSITY_QUIET,
26 # VERBOSITY_WARN,
27 # VERBOSITY_VERBOSE,
28 # VERBOSITY_DEBUG, VERBOSITY_GUI)
29 # (opt)
30 # (default=VERBOSITY_VERBOSE)
31 initializer { # Publish a constant value to the MOOSDB at
32 # startup (repeat)
33 type: INI_DOUBLE # type of MOOS variable to publish
34 # (INI_DOUBLE, INI_STRING) (req)
35 moos_var: "SOME_MOOS_VAR" # name of MOOS variable to
36 # publish to (req)
37 global_cfg_var: "LatOrigin" # Optionally, instead of
38 # giving `sval` or `dval`, give
39 # a name here of a global MOOS
40 # variable (one at the top of
41 # the file) whose contents
42 # should be written to
43 # `moos_var` (opt)
44 dval: 3.454 # Value to write for type==INI_DOUBLE (opt)
45 sval: "a string" # Value to write for type==INI_STRING
46 # (opt)
47 }
48 }
49 create_status: false # Will generate REMUS State message if
50 # true (opt) (default=false)
51 mdat_state_var: "IN_REMUS_STATUS_HEX_30B" # MOOS variable for
52 # incoming REMUS state
53 # messages (raw) (opt)
54 # (default="IN_REMUS_ST
55 # ATUS_HEX_30B")
56 mdat_state_out: "OUT_REMUS_STATUS_HEX_30B" # MOOS variable for
57 # outgoing REMUS
58 # state messages
59 # (raw) (opt)
60 # (default="OUT_REMUS_
61 # STATUS_HEX_30B")
62 mdat_ranger_var: "IN_REMUS_RANGER_HEX_30B" # MOOS variable for

CHAPTER 2. GOBY MOOS MODULES 61

63 # incoming REMUS
64 # ranger messages
65 # (raw) (opt)
66 # (default="IN_REMUS_R
67 # ANGER_HEX_30B")
68 mdat_ranger_out: "OUT_REMUS_RANGER_HEX_30B"
69 # MOOS variable for
70 # outgoing REMUS
71 # ranger messages
72 # (raw) (opt)
73 # (default="OUT_REMUS_
74 # RANGER_HEX_30B")
75 mdat_redirect_var: "IN_REMUS_REDIRECT_HEX_30B"
76 # MOOS variable for
77 # incoming REMUS
78 # redirect messages
79 # (raw) (opt)
80 # (default="IN_REMUS_R
81 # EDIRECT_HEX_30B")
82 mdat_redirect_out: "OUT_REMUS_REDIRECT_HEX_30B"
83 # MOOS variable for
84 # outgoing REMUS
85 # redirect messages
86 # (raw) (opt)
87 # (default="OUT_REMUS_
88 # REDIRECT_HEX_30B")
89 mdat_alert_var: "IN_REMUS_ALERT_HEX_30B" # MOOS variable for
90 # incoming REMUS alert
91 # messages (raw) (opt)
92 # (default="IN_REMUS_ALE
93 # RT_HEX_30B")
94 mdat_alert_out: "OUT_REMUS_ALERT_HEX_30B" # MOOS variable for
95 # outgoing REMUS alert
96 # messages (raw) (opt)
97 # (default="OUT_REMUS_A
98 # LERT_HEX_30B")
99 mdat_alert2_var: "IN_REMUS_ALERT2_HEX_30B" # MOOS variable for
100 # incoming REMUS
101 # alert2 messages
102 # (raw) (opt)
103 # (default="IN_REMUS_A
104 # LERT2_HEX_30B")
105 mdat_alert2_out: "OUT_REMUS_ALERT2_HEX_30B"
106 # MOOS variable for
107 # outgoing REMUS
108 # alert2 messages

CHAPTER 2. GOBY MOOS MODULES 62

109 # (raw) (opt)
110 # (default="OUT_REMUS_
111 # ALERT2_HEX_30B")
112 modem_id_lookup_path: "" # Path to file containing mapping
113 # between modem_id and vehicle name &
114 # type (opt) (can also set MOOS global
115 # "modem_id_lookup_path=")
116 }

AswithpAcommsHandler, the above configuration file canbe generated at any time
with the command:

1 pREMUSCodec --example_config

This codec handles several of the standard REMUS CCLmessages. It can be con-
figured to generate CCL State messages at regular intervals, and it will translate
incoming CCL State messages into the standard NODE_REPORT format used internally
in the LAMSS autonomy systems. This codec allows a MOOS vehicle to perform col-
laborative behaviors, such as collision avoidance, with a non-MOOS, standard CCL
vehicle. See section 2.3.15 for an example of using pREMUSCodec.

2.6 iMOOS2SQL

This is a transponder process, which translates Status, Contact, and Track Reports
into a format for interfacing the MOOS C2 with the generic Google Earth-based
(geov) topside display, e.g. as shown in Fig. 2.1. This module is available in moos-
ivp-local (http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.
Milocal).

2.7 pGeneralCodec

Deprecated. Do not use, rather use pAcommsHandler with no driver, no MAC, and no queue-
ing if only encoding/decoding is desired.

2.8 pBTRCodec

Deprecated. Do not use, rather use the <array_length> feature of pAcommsHandler
which provides the same functionality.

http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal
http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Support.Milocal

CHAPTER 2. GOBY MOOS MODULES 63

2.9 pCTDCodec

Deprecated. Do not use, rather use the<max_delta> feature of pAcommsHandler which
provides all the same functionality but with much more generality.

2.10 pAcommsPoller

Deprecated. Use the MAC built into pAcommsHandler.

3What’s next
That’s all for goby-core in Release 1.1. There’s still a lot to do so keep tuned. If you
want thebleeding edge, you can checkout theGoby 2.0 branchwith bzr checkout lp:goby/2.0.
Here’s what’s on the horizon:

• support for seamless inter-platformcommunications via acoustics (acomms),
serial, wifi, and ethernet. Maybe even two cans and a string.

• a Wt [6] based configuration, launch, and runtime manager.

Stay tuned at https://launchpad.net/goby. Thanks.

64

https://launchpad.net/goby

Glossary
autonomy architecture loosely defined, a collection of software applications and li-

braries that facilitate communications, decision making, timing, and other
utilties needed for making robots function. Another common term for this is
autonomy “middleware”. 2

LAMSS Amultidiscplinary research group at theCenter forOceanEngineering (Dept.
ofMechanical Engineering) atMassachusetts Institute of Technology. LAMSS
focuses on collaborative marine robotics for a variety of acoustic and non
acoustic sensing tasks. See http://lamss.mit.edu.. 5, 6, 9

65

http://lamss.mit.edu

Bibliography
[1] Goby Developers, “Goby underwater autonomy project documentation.”
[Online]. Available: http://gobysoft.com/doc

[2] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested autonomy
for unmanned marine vehicles with MOOS-IvP,” Journal of Field Robotics, vol. 27,
no. 6, pp. 834–875, 2010. [Online]. Available: http://dx.doi.org/10.1002/rob.
20370

[3] T. Schneider and H. Schmidt, “Unified command and control for heterogeneous
marine sensing networks,” Journal of Field Robotics, vol. 27, no. 6, pp. 876–889,
2010. [Online]. Available: http://dx.doi.org/10.1002/rob.20346

[4] “The laboratory for autonomous marine sensing systems (LAMSS).” [Online].
Available: http://lamss.mit.edu/

[5] T. Schneider andH. Schmidt, “The Dynamic Compact Control Language: A com-
pact marshalling scheme for acoustic communications,” in Proceedings of the
IEEE Oceans Conference 2010, Sydney, Australia, 2010.

[6] Emweb, “Wt, a C++ web toolkit.” [Online]. Available: http://www.webtoolkit.
eu/wt

66

http://gobysoft.com/doc
http://dx.doi.org/10.1002/rob.20370
http://dx.doi.org/10.1002/rob.20370
http://dx.doi.org/10.1002/rob.20346
http://lamss.mit.edu/
http://www.webtoolkit.eu/wt
http://www.webtoolkit.eu/wt

	Contents
	Introduction
	What is Goby?
	Structure of this Manual
	How to get help

	Goby MOOS Modules
	Unified Command and Control for Subsea Autonomous Sensing Networks
	Overview of the LAMSS Communication Stack
	pAcommsHandler
	iCommander
	pREMUSCodec
	iMOOS2SQL
	pGeneralCodec
	pBTRCodec
	pCTDCodec
	pAcommsPoller

	What's next
	Glossary
	Bibliography

