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Goby-Acomms: A modular acoustic networking
framework for short-range marine vehicle

communications
Toby Schneider,Member, IEEE,Henrik Schmidt

Abstract—Autonomous marine vehicles are increasingly used
in clusters. The effectiveness of this robotic collaboration is often
limited by communications: throughput, latency, and ease of
reconfiguration. We developed a modular acoustic networking
framework, realized through a set of C++ libraries called
goby-acomms, to provide collaborating underwater vehicles
with an efficient short-range single-hop network.goby-acomms
is comprised of four components that provide: 1) losslesslycom-
pressed encoding of short (i.e. tens to hundreds of bytes) messages
configured in XML via the Dynamic Compact Control Language
(libdccl); 2) a set of message queues that dynamically prioritize
messages based both on overall importance and time sensitivity
(libqueue); 3) Time Division Multiple Access (TDMA) Medium
Access Control (MAC) with automatic discovery (libamac); and 4)
an abstract acoustic modem driver with a subclass for the WHOI
Micro-Modem acoustic modem (libmodemdriver). goby-acomms
has been tested in numerous field trials using a variety of
underwater vehicles and surface nodes using the WHOI Micro-
Modem.

Index Terms—underwater acoustic network, data marshalling,
priority queue, acoustic MAC, AUV communication

I. I NTRODUCTION

Undersea communication over any significant range is
widely accepted to be only practical using an acoustic carrier
[1]. However, the quality of acoustic communications is often
poor due a number of physical realities of acoustic waves:
highly restricted bandwidth (the ocean is a low pass filter
for acoustics), slow phase speeds (acoustic waves are2 · 105

times slower than electromagnetic waves), multipath caused by
surface and bottom reflections, and Doppler spread caused by
moving waves and the relative motion of senders and receivers
(which are a significant fraction of the slow speed of sound).
The difficulty of obtaining high rate acoustic transmissions
due to the ocean environment and how this impacts acoustic
networking is summarized by many researchers such as Bag-
geroer [2], Kilfoyle [3], Preisig [4], Stojanovic [5], and Partan
[6].

Transmission of digital signals through the ocean has been
investigated since at least the 1950s [7], but only recentlyhave
relatively mature acoustic modems been available, such as the
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WHOI Micro-Modem used to develop and test this work [8].
With this advent of a reliable hardware layer it is possible to
build and test networking systems. Due in part to decreasing
costs, marine robots (such as autonomous underwater vehicles
or AUVs) are increasingly being used in clusters to perform
tasks collaboratively such as the work performed at MIT [9]
[10] [11] and elsewhere [12]. Almost by definition, collab-
orative autonomy requires runtime communications between
vehicles. The need for intervehicle communication for the
purposes of research into underwater autonomy motivated the
development ofgoby-acomms.

Networking is a well studied problem in the terrestial
domain; an example is the ubiquitous Internet Protocol Suite.
However, the aforementioned limitations to throughput and
latency in an underwater acoustic network suggest we should
perform careful analysis before applying terrestial networking
solutions to the marine environment. Specifically, we suggest
that certain tradeoffs of efficiency for abstraction that are desir-
able on high throughput, low latency links involving thousands
of computers are not desirable for the low throughput, high
latency acoustic links involving at most tens of autonomous
underwater vehicles (AUVs). A common form of networking
abstraction is the concept of “layers” (together, the layers
form a network “stack”). The Open System Interconnection
Reference Model (OSI Model) presented in [13] provides a
framework for this type of abstraction. In the OSI Model, each
layer is abstracted from the previous layer; that is, higherlevels
do not need to concern themselves with the implementation
details of lower levels. This abstraction allows for complicated
systems to be broken into more manageable pieces and is
likely a contributer to the success of the internet. However,
such layering comes with tradeoffs. Higher layers duplicate
header information (such as addressing) and error checking
that may be already implemented on one or more of the
lower layers. Hence, withgoby-acomms, in order to produce
shorter messages, we chose to maintain the general concept of
networking layers (where each is a separate C++ library), but
with more explicit and implicit interactions between layers.

The layers (or modules) ofgoby-acomms are summarized
in Table I with an approximation of the corresponding layer(s)
of OSI Model, and illustrated generally in Fig. 1 and with more
detail in Fig. 2. While each layer is dependent on one or more
of the other layers, any layer could be replaced as long as the
replacement fulfills the necessary interface requirements. This
modularity of goby-acomms should improve its flexibility
for use in a variety of future acoustic networks, as needs
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Fig. 1: Unified Modeling Language (UML) component model
of goby-acomms. Dependencies are indicated with a dotted
arrow pointing from an object to its dependency. The interface
class to each library is given as a line terminated by a semi-
circle (e.g. DCCLCodec). See Fig. 2 for a more detailed
structure diagram ofgoby-acomms. UML is presented in
[14].

change and new research comes to light. For example, a future
project that just needs encoding could uselibdccl alone. Or
an acoustic network with an improved buffering system could
replacelibqueuewhile making use of the remaining layers of
goby-acomms.

A variety of terms that may be ambiguous are clearly
defined for this paper in the glossary (section VIII).

II. libdccl: ENCODING AND DECODING

A. Motivation

The limited throughput constraint of acoustic communica-
tions suggests that compressing messages as much as possible
is a useful goal. Also, due to the highly time varying nature of
the acoustic channel, it is difficult to maintain error free trans-
mission of long packets. For these reasons, the WHOI Micro-
Modem uses frames of 32 to 256 bytes. Again due to the high
error rates caused by the acoustic channel, guaranteeing receipt
of multiple frames can often take an unacceptable amount
of time for AUV collaboration. Thus, all ofgoby-acomms
deals with data frames smaller than or equal to the size of the
hardware layer’s frame size. This requires that the application
layer produce data that are useful or at least potentially useful
as standalone frames. Given this requirement, it is not feasible
to compress packets using lossless encoding that has overhead
(such as Huffman coding), as the size of the tree would almost
certainly be larger than the space stored (in all but the most
inefficient messages). Thus, for the Dynamic Compact Control
Language, the user must strictly specify and name the fields
that a given message can take. Furthermore, all numeric fields

must have tight bounds that represent the realistic set of values
that field will take. For example, it is inefficient to use a 32-bit
integer to represent the operation depth which might vary at
most from 0-11021 meters on Earth and thus fit in 14 bits or
less.

B. Prior work

1) Compact Control Language: libdcclowes inspiration
and part of the name to the Compact Control Language (CCL)
developed at WHOI by Roger Stokey and others for the
REMUS series of AUVs. An overview of CCL is available in
[15], and the specification is given in [16]. In our experience,
before DCCL, CCL was thede factostandard data marshalling
scheme for acoustic networks based on the WHOI Micro-
Modem.

DCCL is intended to build on the ideas developed in CCL
but with several notable improvements. DCCL provides the
ability for messages to adapt quickly to changing needs of
the researchers without changing software code (i.e.dynamic).
CCL messages are hard coded in software while DCCL
messages are configured using XML.

Also, significantly smaller messages are created with DCCL
than with CCL since the former uses unaligned fields, while
the latter, with the exception of a few custom fields (e.g.
latitude and longitude), requires that message fields fit into
an even number of bytes. Thus, if a value needs eleven bits
to be encoded, CCL uses two bytes (sixteen bits), whereas
DCCL uses the exact number of bits (eleven in this case).
DCCL also offers several features that CCL does not, including
encryption, delta-differencing, and data parsing abilities.

To the best of the authors’ knowledge (which is supported
by Chitre, et al. in [17]), CCL is the only previous effort to
provide an open structure for defining messages to be sent
through an underwater acoustic network. Other attempts have
been ad-hoc encoding for a specific project. In order not to
trample on Stokey’s work and maximize interoperability, we
have made DCCL compatible with a CCL network, giving
DCCL the CCL initial byte flag of 0x20 (decimal 32). This
allows vehicles using CCL and DCCL to interoperate, as-
suming all nodes have appropriate encoders for both message
languages.

2) Text Encoding:Two approaches to encoding that have
proven useful in other applications for compressing data are
dictionary coders (e.g. LZW [18]) and entropy coders (e.g.
Huffman coding [19]). Both of these are successful on sparse
data, such as human readable text. Their utility for the types of
messages encountered commonly in marine robotics is limited,
however. These messages tend to be short and full of numeric
values, whose information entropy is much greater than that
of human generated text.

Furthermore, the overhead cost incurred by these text en-
coders means that the compressed message may not be more
efficient than the original message until a sizable amount
of data (perhaps several kilobytes) has been encoded. This
exceeds the size of individual frames in the WHOI Micro-
Modem, meaning that in messages would have be split across
frames and reassembled. Given the low throughput and high
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Fig. 2: UML structure model ofgoby-acomms showing all the classes and most important members and methods. See Fig. 1
for a broad overview component diagram. Each library ingoby-acomms has an interface class (DCCLCodec, QueueManager,
MACManager, and DriverBase), allowing any module to be replaced by a different library with the same interface. Since digital
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TABLE I: Comparison ofgoby-acomms layers with those of the OSI Model

OSI Model layer goby-acomms layer (library) Provides

Application Provided by thegoby-acomms user. Configuration and data.
Presentation libdccl a Encoding and decoding.
Session Not used. Sessions are passive.

Transport libqueueb
Priority buffering, concatentation of
multiple DCCL messages, and guaran-
tee of receipt.

Network Not provided (goby-acomms is single-hop).

Data Link libamac c Division of time into slots for multiple
vehicles over the half-duplex link.

libmodemdriverd
Configuration of, interaction with, and
abstraction of the physical layer.

Physical e.g. WHOI Micro-Modem Transmission and receipt of messages.
a section II
b section III
c section IV
d section V

libamaclibqueue WHOI Micro-Modem FirmwarelibmodemdriverApplication libdccl
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Adds dest
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Fig. 3: The UML sequence diagram for sending a message using all the goby-acomms components. See Fig. 2 for the
corresponding class structure diagram.

error rate of the acoustic channel, it is impractical to attempt to
send a message that is more than several frames before being
decodable. Furthermore, the resulting message from these text
encoders is variable length, as the compressibility depends on
the input data. This can cause further difficulties transporting
these data across the acoustic network.

Given these considerations, we decided that currently avail-
able text encoders would not an acceptable solution to the
problem at hand, i.e. creating short messages for acoustic
communications.

3) Abstract Syntax Notation One:Abstract Syntax Notation
One (ASN.1) is a mature and widely used standard for ab-
stractly representing data structures (or messages) in a human-
readable textual form. It also specifies a variety of rules for

encoding data using the ASN.1 structures. In both these areas,
ASN.1 is similar to DCCL: DCCL also provides a structure
language (based on XML in this case), and a set of encoding
rules. In fact, the rules used by DCCL are very similar to the
ASN.1 unaligned Packed Encoding Rules (PER). For a good
treatment of ASN.1, see Larmouth’s book [20].

If DCCL used the ASN.1 notation, it could hope to draw on
the advantages of being standards compliant. However, DCCL
does not currently use the ASN.1 representation at this time
for two main reasons:

1) Given the severe restrictions on message size due to the
acoustic modem hardware, existing ASN.1 structures are
unlikely to be useful, unless the designers were origi-
nally careful in specifying bounds on numerical types
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(e.g. INTEGER) and minimizing use of string types
(UTF8STRING/IA5STRING). Thus, for simplicity of
the DCCL specification, the authors prefer the XML
specification given in section II-D and currently used
by DCCL.

2) ASN.1 structures are commonly “compiled” into source
code which is then compiled into the finished program.
This does not allow for dynamic message structures,
which is at the core of the DCCL goal. DCCL does
not compile the message structure, but rather translates
it into a collection of objects at runtime. We argue that
for the underwater robotics research community, at least,
changes to messages should not need recompilation of
code. Perhaps as the field matures and messages become
widely used and standardized, support for compiling of
messages will become more desirable.

Support for ASN.1 may become a desirable goal in the
future to take advantage of the knowledge base and experience
of this well accepted standard. However, we will likely have
to choose a tightly reduced subset of the ASN.1 specification
to meet the restrictive demands of the underwater acoustic
channel. One possible path would be to match the XML
definition of DCCL to the ASN.1 XML Encoding rules. Then,
either the ASN.1 definition or XML definition could be used to
encode messages using the Packed Encoding Rules, which are
similar to the rules already used in DCCL (see section II-E).

C. Design overview

DCCL is comprised of two components: 1) a structure
language based on XML with which to define messages
(described in section II-D); and 2) a C++ library (libdccl,
detailed in section II-E) that validates the XML structure
and implements consistent encoding and decoding of each
message.

In order to produce messages as small as possible, DCCL
offers these features:

• Defined bounded field types with customizable ranges.
For example, an integer with minimum value of 0 and
maximum value of 5000 takes 13 bits instead of the 32
bits often used for the integer type, regardless of whether
the full integer type is needed.

• Dissolved byte boundaries (unaligned messages): fields
in the message can be an arbitrary number of bits. Octets
(bytes) are only used in the final message produced.

• Delta-difference encoding of correlated data (e.g. CTD
instrument data): rather then sending the full value for
each sample in a message, each value is differenced
from both a pre-shared key and the first sample within
the message. This feature is described in more detail in
section VI-E.

We also wanted to remove some of the complexity and
potential sources of human error involved in binary encoding
and bit arithmetic. To make DCCL straightforward, we made
several design choices:

• All bounds on types can be specified as any number, such
as powers of ten, rather than restricting the message de-
signer to powers of two. This leads to a small inefficiency

since the message is encoded by powers of two, but this
drawback is balanced by the value of simplicity since the
human mind is much more comfortable with powers of
ten than powers of two.

• XML is the basis of the markup language that defines
the structure of a DCCL message. XML was chosen for
its ubiquity (e.g. XHTML for the web, RSS for news,
KML for Google Earth), which means a host of tools are
already available for editing and checking the validity of
DCCL messages.

• Encoding and decoding for basic types are predefined
and handled automatically by the DCCL C++ library
(libdccl), meaning that in the vast majority of the cases
no new code needs to be written to create or redefine
a DCCL message. Writing code on cruises is always a
risky endeavor, and minimizing that risk is important
to maximizing use of ship time. However, flexibility
to define custom algorithms to assist with encoding is
provided for the fairly rare case when the basic encoding
does not satisfy the needs of a particular message.

D. Defining Messages

DCCL messages are defined using a custom language built
from XML. Thus, the message structure is given by a text
file composed of a series of nested tags (e.g.<message>).
Such files can be edited by any text editor or any of a large
of tools designed specifically for composing XML. The basic
tags needed to define a message are given in this section. A
number of additional tags are available for interacting with
the vehicle’s autonomy architecture; these tags are described
in section VI-A.

1) XML Specification:The full XML schema is available
with the source code at<http://launchpad.net/goby>; here we
give a summary of the tags. A DCCL message file always
consists of the root tag<message_set> which has one
or more<message> tags as its children. The<message>
children are as follows:

• <id>: an identification number (9 bits, so<id> ∈
[0, 511]) representing this message to all decoding nodes
[unsigned integer].

• <name>: a name for the message. This tag and<id>

must each be a unique identifier for this message.
[string].

• <size>: the maximum size of this message in bytes
[unsigned integer]. DCCL may produce a smaller
message, but will not validate this message XML file if
it exceeds this size.

• <repeat>: empty tag that can be specified to tell DCCL
to repeatedly create the entire message to fill the entire
<size> of the message.

• <header>: the children of this tag allow the user to
rename the header parts of the DCCL message. See Fig. 4
for a sketch of the DCCL header format. These names are
used when passing values at encode time for the various
header fields.

– <time>: seconds elapsed since 1/1/1970 (“UNIX
time”). In the DCCL encoding, this reduced to sec-
onds since the start of the day, with precision of
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Fig. 4: Layout of the DCCL header, showing the fixed size (in bits) of each header field. The user cannot modify the size
of these header fields, but can access and set the data inside through the same methods used for the customizable data fields
specified in<layout>. The multimessage and broadcast flags are not used by DCCL, but are included for use by priority
queuing (see Section III).

one second. Upon decoding, assuming the message
arrives within twelve hours of its creation, it is
properly restored to a full UNIX time.
∗ <name>: the name of this field; optional, the

default is “ time”. [string]
– <src_id>: a unique address (<src_id> ∈ [0, 31])

of the sender of this message. For a given experiment
these short unique identifiers can be mapped on
to more global keys (such as vehicle name, type,
ethernet MAC address, etc.).
∗ <name>: default is “ src id”. [string]

– <dest_id>: the eventual destination of this mes-
sage (also anunsigned integer in the range
[0,31]). If this destination exists on the same subnet
as the sender, this will also be the hardware layer
destination id number.
∗ <name>: default is “ dest id”. [string]

• <layout>: the children of this tag define the generic
data fields of the message, which can be drawn from
any combination of the following types, summarized in
Table II.

– <bool>: a boolean value.
∗ <name>: the name of this field. [string]
∗ <array_length>: optional; specifying this

makes this field an array of bool instead of a single
bool [unsigned integer].

– <int>: a bounded integer value.
∗ <name>: see<bool><name>.
∗ <max>: the maximum value this field can take.

[real number].
∗ <min>: the minimum value this field can take.

[real number].
∗ <max_delta>: gives the maximum value for

the difference of delta fields when using delta-
difference encoding. Optional; the use of this tag
enables delta-differencing encoding. This feature
is explained where it is motivated in as part of
the CHAMPLAIN09 experiment in section VI-E
[real number].

∗ <array_length>: see
<bool><array_length>.

– <float>: a bounded real number value.
∗ <name>: see<bool><name>.

∗ <max>: see<int><max>.
∗ <min>: see<int><min>.
∗ <max_delta>: see<int><max_delta>.
∗ <precision>: specifies the number of decimal

digits to preserve. For example, a precision of
“2” causes 1042.1234 to be rounded to 1042.12;
a precision of “-1” rounds 1042.1234 to 1.04e3.
[integer].

∗ <array_length>: see
<bool><array_length>.

– <string>: a fixed length string value.
∗ <name>: see<bool><name>.
∗ <max_length>: the length of the string value

in this field. Longer strings are truncated.
<max_length>4</max_length> means
“ABCDEFG” is sent as “ABCD”. [unsigned
integer].

∗ <array_length>: see
<bool><array_length>.

– <enum>: an enumeration of string values.
∗ <name>: see<bool><name>.
∗ <value>: a possible value the enumeration can

take. Any number of values can be specified.
∗ <array_length>: see

<bool><array_length>. [string].
– <hex>: a pre-encoded hexadecimal value.

∗ <name>: see<bool><name>.
∗ <num_bytes>: the number of bytes for this field.

The string provided should have twice as many
characters as<num_bytes> since each character
of a hexadecimal string is one nibble (4 bits or1

2

byte). [unsigned integer].
2) Message Design:When designing a DCCL message, a

few considerations must be made. Each message needs to be
given a<name> and<id> unique within the DCCL network
that this message is intended to live. Sometimes messages may
have limited scope or may be mutually exclusive, in which
case duplicate<id> numbers may be assigned.

Furthermore, the overall size of the message needs to be
determined. This may be a constraint imposed by the hardware
layer that this message is intended to traverse. In the case of
the WHOI Micro-Modem, this should match the frame size of
the intended data rate to be used (32 bytes for rate 0, 64 bytes
for rate 2, and 256 bytes for rates 3 and 5). The size of the
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TABLE II: Types supported by the Dynamic Compact Control
Language

Type Name DCCL XML Tag C++ Typea

Bounded integer <int> long int

Bounded real <float> double

String <string> std::string

Enumeration <enum> std::string

Boolean <bool> bool

Pre-encoded hexadecimal <hex> std::string
a the preferredC++ type when encoding usinglibdccl, however any mean-

ingful casts from other types (using streams from thestd library) will be
made.

message is given by the header overhead (six bytes) and the
sum of the sizes of the fields. The field sizes are calculated
using the expressions given in the ”Size” column of Table III.
These sizes are calculated at runtime withlibdccl, so it is
rarely necessary to calculate these by hand. However, these
expressions give a sense of how much space a given field will
typically take, which is important when considering how to
type and bound the data.

An example XML message file, showing all the field tags,
is provided in Fig. 5.

E. Algorithms and Implementation

Along with the XML message structure defined in sec-
tion II-D, DCCL provides a set of consistent encoding and
decoding tools in the C++libdccl library. The class structure
of libdccl is modeled in Fig. 2. The tools provided bylibdccl
include:

• XML file parsing and validation using the Xerces-C++
XML Parser [21]. This ensures that the syntax of the
XML file is valid and structure matches that of the DCCL
schema.

• Calculation of message field sizes and comparison to
the mandated maximum size (specified in the<size>

tag). Messages exceeding this size are rejected and the
designer must choose to remove and/or reduce fields or
increase the message<size>.

• Encoding of DCCL messages using the expressions given
in Table III. The user passes values of the C++ types
given in Table II for all the fields in<layout> and
desired fields in<header>. Fig. 5 provides an example
of the encoding process for a DCCL message.

• Decoding of DCCL messages using the reciprocal of the
expressions used for encoding. The user oflibdccl will
receive values of the C++ types as given in Table II for
all header and layout fields.

F. Encryption

libdccl provides encryption of the<layout> portion of
the message using the Advanced Encryption Standard (AES
or Rijndael) [22]. AES is a National Institute of Standards
and Technology (NIST) certified cipher for securely encrypting
data. It has been certified by the National Security Agency
(NSA) for use encrypting top secret data.

<?xml version="1.0" encoding="UTF-8"?>

<message_set>
  <message>
    <id>1</id>
    <header>
      <src_id>
        <name>Src</name>
      </src_id>
      <dest_id>
        <name>Dest</name>
      </dest_id>
    </header>
    <layout>
      <bool>
        <name>B</name>
      </bool>
      <enum>
        <name>E</name>
        <value>cat</value>
        <value>dog</value>
        <value>mouse</value>
      </enum>
      <string>
        <name>S</name>
        <max_length>4</max_length>
      </string>
      <int>
        <name>I</name>
        <max>100</max>
        <min>-50</min>   
      </int>
      <float>
        <name>F</name>
        <max>100</max>
        <min>-50</min>   
        <precision>2</precision>
      </float>      
      <hex>
        <name>H</name>
        <num_bytes>1</num_bytes>
       </hex>
    </layout>
    <name>Example</name>
    <size>32</size>
    <!--omitted other tags for
        publish/subscribe
        architectures-->
  </message>
</message_set>

b)

d)

} true

} cat

} FAT

} 34

} -22.49

} 0x09

10

01

01000110 01000001 
01010100 00000000

01010101

00101011000000

00001001}

000000 10 01 01000110
01000001 01010100
00000000 01010101
00101011000000 00001001

0x2000AA3002300251905500154AC009

e)

c)

f)

a)

}

=

3

1

00100000 (ccl_id)
000000001 (<id>)
01010100
011000000  (time, 12:00 UTC)

00001

00011

0000 (flags)

Fig. 5: Example of the DCCL encoding process. The process
of encoding starts with the DCCL XML file (a). Data are
provided by the application (b).libdccl encodes these data to
binary via the algorithms given in Table III to form the header
(c) and layout (d), concatenates and zero fills the encoded
layout from most significant bit to closest byte (e) to produce
the full encoded message (f). Finally, this point the message
is encrypted (if desired).

libdccl uses a SHA-256 hash of a user provided passphrase
to form the secret key for the AES cipher (see [23] for
the specification of SHA-256). In order to further secure the
message, an initialization vector (IV) is used with the AES
cipher. The IV used for DCCL is the most significant 128
bits of a SHA-256 hash of the header of the message. Since
the message header contains the time of day, it provides the
continually changing value required of an IV. This ensures
that the ciphertext created from the same data encrypted with
the same secret key will only look the same in the future on
a given day on the exact second it was created. The open
source Crypto++ library available at [24] is used to perform
the cryptography tasks.

G. User supplied algorithms

While the basic encoding expressions given in Table III
are sufficient for representing most data, occasionally the
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TABLE III: Formulas for encoding the DCCL types.

DCCL Type Size (bits) Encodea

<bool> 2 xenc =

{

2 if x is true
1 if x is false
0 if x is undefined

<enum> ⌈log
2
(1 +

∑

ǫi)⌉ xenc =

{

i+ 1 if x ∈ {ǫi}

0 otherwise

<string> length · 8 ASCIIb

<int> ⌈log
2
(xmax − xmin + 2)⌉ xenc =

{

nint(x− xmin) + 1 if x ∈ [xmin, xmax]

0 otherwise

<float> ⌈log
2
((xmax − xmin) · 10

prec + 2)⌉ xenc =

{

nint((x − xmin) · 10
prec) + 1 if x ∈ [xmin, xmax]

0 otherwise

<hex> num bytes · 8 xenc = x

· x is the original (and decoded) value;xenc is the encoded value.
· xmin, xmax, length, prec, num bytes are the contents of the<min>, <max>, <max_length>, <precision>, and
<num_bytes> tags, respectively.ǫi is the ith <value> child of the<enum> tag (wherei = 0, 1, 2, . . .).
· nint(x) means roundx to the nearest integer.

a for all types except<string> and <hex>, if data are not provided or they are out of range (e.g.x > max), they are encoded as zero
(xenc = 0) and decoded as not-a-number (NaN).

b the end of the string is padded with zeros tolength before encoding if necessary.

user wants to provide a simple pre-encode and post-decode
algorithm of their own. An example of this would be to encode
a logarithmic value or wrap an angle into the range[0, 2π]. In
this case, the field tags (i.e.<int>, <float>, <string>,
<bool>, <enum>, or <hex>) all take an optional parameter
algorithm. If the algorithm parameter is provided,
libdccl calls the user provided algorithm corresponding to a
callback provided on startup of the library.

For example, the user provides a callback function
called log_function which it passes to libdccl as
the algorithm “log”. Now, whenlibdccl encounters<int
algorithm="log"> it passes the value intended for that field
to thelog_function. The return value oflog_function
is then used to encode the corresponding field of the message.

Similarly, the <message_var> tag used in the
<publish> sections also takes thealgorithm parameter,
allowing for post-decoding algorithms to be processed.

III. libqueue: DYNAMIC PRIORITY BASED BUFFERING

A. Motivation

Field experience has taught us that in a network of AUVs,
desired throughput almost always exceeds the available chan-
nel capacity. Based on the available capacity, the engineers and
scientists topside prefer to see as much data as possible. The
upper limit on desired throughput would perhaps be a real-
time feed of all sensor data, but this can easily be order of
megabits per second or higher (especially if video is involved).
Maximum data throughput of available commercial modems,
such as the WHOI Micro-Modem, is order kilobits per second
or much lower in realistic environments. Given that this spread
is unlikely to close due to the physical limitations of the
acoustic carrier, users will always have be selective about
which data are sent over the network.

One solution to this problem is to fix (before launch) a
small subset of data that will be transmitted acoustically.
Approaches to acoustic networking beforegoby-acommssuch

as the approaches in [25] and [26] use this solution, typically
only sending a vehicle status and maybe a single sensor data
type that is most relevant to the experiment at hand. This tech-
nique is generally suboptimal, given the designer must account
for the worst case communications scenario or risk filling
the sending buffers faster than messages can be transmitted
over the channel. Due to the highly variable communications
environment experienced using acoustics in the ocean, this
minimax approach will under-utilize the available capacity.

To better utilize the channel, we need a solution that
dynamically scales with the moment-to-moment available ca-
pacity. Qualitatively, when have poor throughput, we want
to send highly valuable messages. These may correspond to
status messages or time sensitive mission specific messages
such as target or event detection alerts. When we have good
throughput, we also want to send less critical, but still useful
data. libqueueprovides a prioritized set of buffers with time
varying values to effect this desired behavior. Each DCCL
message type is assigned a buffer. When the Medium Access
Control requests data fromlibqueue, a priority contest is
performed between all the buffers that contain messages. The
winning buffer provides data from either its front or back,
based on the user’s desire for a first-in / first-out (FIFO) or
first-in / last-out (FILO) queue respectively.

B. Prior work

1) Priority Queues: Priority queues are a widely avail-
able container type in modern programming languages (for
example, C++, Java, and Python all provide implementation
in their standard libraries). In a priority queue, messagesare
added with some priority value. When data are requested from
the queue, the highest priority data are given first.libqueue
provides a dynamic priority queue of (ordinary) double-ended
queues (or deques). The dynamic part is howlibqueuediffers
from ordinary priority queues. Rather than having a fixed
priority, entries inlibqueuehave a priority that varies in time.
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Fig. 6: Data structure oflibqueuefor three declared DCCL
types. All objects within a deque are of the same DCCL
type and each deque is dynamically prioritized using Equation
1. Whether a deque is accessed from the back or front is
configurable for each DCCL type.

The structure of this dynamic priority queue of deques is
outlined through an example in Fig. 6.

C. Implementation

Each buffer (one buffer for each DCCL type1) is given
a base value (Vbase) and a time-to-live (ttl) that create the
priority (P (t)) at any given time (t):

P (t) = Vbase

(t− tlast)

ttl
(1)

wheretlast is the time of the last time an object was sent
from this buffer.

This means for every buffer, the user has control over two
variables (Vbase and ttl). Vbase is intended to capture how
important the message type is in general. Higher base values
mean the message is of higher importance. However, with
only theVbase, higher value messages would always supercede
lower value messages. AUV operators know, however, that
messages of some types become more valuable if one has
not been received in a long period of time, where “long” is
defined by the preferences of the operators and the goals of the
mission. For example, the value of a vehicle’s status message
grows in time as the operators become increasingly concerned
with the health and location of the vehicle. Thettl parameter
works to incorporate this notion of time varying value.

As the name suggests, thettl governs the number of
seconds the message lives from creation until it is destroyed
by libqueue. But more importantly, thettl also factors into the
priority calculation. More time sensitive messages (thosewith
lower ttl values) grow in priority faster.

So with these two parameters, the user can capture both
overall value (i.e.Vbase) and latency tolerance (ttl) of the
message buffer. An example of how queuing manifests itself
for different spacing of the Medium Access Control cycles is
given in Fig. 7.

Another way to think of this dynamic priority buffering is
in analogy to the economics of supply and demand. DCCL
messages are analogous to perishable goods (such as food).
The message sender has certain supply of each type of mes-
sage. The receiver demands messages at a fixed price based on

1as uniquely defined by<id> or <name>

the type of good (Vbase) that grows as time passes since the
last “shipment” (successful transmission). The “perishability”
of goods is reflected in thettl. The sender uses Equation 1 to
maximize his “profit” (assuming linear2 laws).

See Fig. 2 for the software structure oflibqueue.

D. Message stitching

While goby-acomms does not provide splitting and subse-
quent restitching of hardware layer frames to allow transmis-
sion of large DCCL messages3, it does provide the opposite.
Using themultimessage flagin the DCCL header (see Fig. 4),
libqueuewill stitch small DCCL messages together to form
a larger hardware layer frame. For example,goby-acomms
will not break a 256 byte DCCL message into parts to fit a 32
byte WHOI Micro-Modem frame, but itwill stitch 2 16 byte
DCCL messages to fit a 32 byte WHOI Micro-Modem frame.

The reasoning behind this is acoustic telemetry is so error
prone that each received hardware frame should be useful
in its own right. The size of hardware frames are chosen
as a decent compromise between size and acceptable frame
error rates. Hence, we feel providing abstraction of multiple
frames per DCCL message would lead to unacceptable error
rates (or unacceptable delays waiting for successful receipt
and acknowledgement). However, providing facilities to fully
utilize the entire hardware frame when the DCCL messages
are small is useful and efficient.

IV. libamac: MEDIUM ACCESSCONTROL

A. Motivation

Thegoby-acomms acoustic Medium Access Control mod-
ule is intended to provide a robust and easily usable MAC
layer. MAC is perhaps the most widely studied question in
acoustic networking; Partan does a good job summarizing the
various options [6].libamac focuses on providing collision
free communications with acceptable utilization of the avail-
able bandwidth under the following assumptions:

• All nodes are within broadcast range of one another for
much of the time. (i.e., there are no hidden nodes).

• The hardware layer can support time division multiple
access (TDMA).

These assumptions may seem rather strong, but in our
experience they are practical for the numerous present day
AUV applications that do not require routing. Routing is still
a significantly difficult problem for mobile acoustic networks
and will likely prove the next addition togoby-acomms.
goby-acomms supports two variants of the TDMA MAC

scheme: centralized and decentralized. As the names suggest,
Centralized TDMA involves control of the entire cycle from
a single master node, whereas each node’s respective slot is
controlled by that node in Decentralized TDMA.

2other functional forms (e.g. exponential) were tested but the authors
could not find any substantial benefit versus linear, so linear was chosen for
simplicity.

3for example, TCP provides such a message splitting feature
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(b) TDMA Cycles are unevenly spaced (increasing period of 50, 100, and then 200 seconds).3 never gets to send in this scenario.

Fig. 7: Comparison of message priority selection for three different types (1, 2, and 3) using libqueue. Types1 and 2 are
equally valuable (since1 is more time sensitive with its lowerttl and2 is more valuable overall with a higherVbase). 3 is the
least valuable. While clearly dependent on the spacing of transmissions,libqueueensures a mix of all types of messages are
sent, weighting the valuable ones more.

B. Centralized TDMA (Polling)

Centralized TDMA involves a master node (usually aboard
the Research Vessel or on land) which initiates every transmis-
sion for the entire communcations cycle (i.e. “polls” each node
for data). Thus, the other nodes are not required to maintain
synchronized clocks as the timing is all performed on the
master node.

This style of MAC has been widely used for small AUV
operations using the WHOI Micro-Modem. Its principal ad-
vantages are that it has 1) no requirement for synchronized
clocks, 2) full control over the communications cycle at
runtime (assuming the master is accessible to the vehicle
operators, as is usually the case); and 3) a master who can
acknowledge “broadcast” messages.

However, centralized TDMA has a number of substantial
disadvantages. In order for a third-party master to initiate
a transmission, an acoustic packet must be sent for this
initialization. This additional “cycle initialization” packet, like
any acoustic message, has a high chance of being lost (after
which the data are never sent because the sending node did
not receive a cycle initialization message), consumes power,
and lengthens the time of the communications slot. See Fig.
8 for the various parts of the communication cycle with (for
Centralized TDMA) and without (for Decentralized TDMA)
the cycle initialization message. The additional time required
for each slot of Centralized TDMA is

τci + rmax/c (2)

whereτci is the length (in seconds) of the cycle initalization
packet (about one second for the WHOI Micro-Modem),rmax

Cycle Initialization (Poll) 

Propagation

Message

Propagation

Acknowledge

Propagation

(a) Centralized TDMA

Message

Propagation

Acknowledge

Propagation

(b) Decentralized TDMA

Fig. 8: Comparison of the time needed for a single slot for the
two types of TDMA supported bygoby-acomms libamac.
Eq. 2 gives the additional length of time required by the
Centralized variant.

is the maximum range of the network (typically of order
1000s of meters), andc is the compressional speed of sound
(nominally 1500 m/s).

C. Decentralized TDMA with passive auto-discovery

Decentralized TDMA removes the cycle initialization
packet and thus reduces the length of each slot and the chance
of errors. However, it introduces the constraint of synchronized
clocks4 for all nodes, which can be somewhat tricky to

4the accuracy of the clock synchronization can be low relative to other
timing needs such as bi-static sonar. Generally, accuracy better than 0.1
seconds is acceptable; higher inaccuracies can be handled by increasing the
guard time on both sides of each slot.
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Fig. 9: Graphical example of auto discovery for three nodes
launched at the same time. Each circle represents the vehicle’s
cycle at each time step (represented by horizontal rows) based
on the vehicle’s current knowledge of the world. In the first
row, all vehicles only know of themselves and put the blank
slot in the last slot; thus, all communications collide and no
discoveries are made. In the second row, vehicle 1’s blank is
moved (by pseudo-chance, see equation 3) to the penultimate
(first) slot, so vehicles 2 and 3 discover 1. Then, in the third
row vehicles 2 and 3 are discovered by the others because
vehicle 3 moves its blank slot. By the fourth row all vehicles
have discovered the others and continue to transmit without
collision following the cycle diagrammed on this row.

maintain underwater See Eustice et al. [27] for an example of
maintaining synchronity for navigation and communication.

Decentralized TDMA gives each vehicle a single slot in
which it transmits. Each vehicle initiates its own transmission
at the start of its slot. Collisions are avoided by each vehicle
following the same rules about slot placement within the time
window (based on the time of day). All slots are ordered by
ascending acoustic MAC address (or “modem identification
number”), which is an unsigned integer unique for each
network.

During the runtime of the network, it is often desirable to

time vehicle 1 vehicle 2 result
0 send send collision
15 blank blank nothing
30 blank send success: 1 discovers 2
45 cycle wait blank nothing
60 cycle wait send success
75 cycle wait blank nothing
90 send blank success: 2 discovers 1
105 listen for 2 cycle wait nothing
120 blank cycle wait nothing
135 send listen for 1 success
150 listen for 2 send success
165 blank blank nothing
180 send listen for 1 success
195 blank blank nothing
210 listen for 2 send success

TABLE IV: Example initialization for the Decentralized
TDMA with autodiscovery. By 135 seconds, both vehicles
have discovered each other and are synchronized. Thus, no
more collisions will occur. This scenario assumes that both
vehicles always have some data to send during their slot.

add or remove nodes. Since the MAC is spread throughout the
nodes, there is no easy way to change the cycle during run-
time. libamacsupports passive auto-discovery (and subsequent
expiration) of nodes to provide a solution to this problem.
This auto-discovery is passive because it requires no control
messaging beyond the normal communications between nodes.

Vehicles are discovered by shifting a blank slot in each cycle
based on their knowledge of the world and the time of day. If
a new vehicle is heard from during the blank, it is added to
the listening vehicle’s knowledge of the world and hence their
cycle. In the simplified situation (which is really a worst case
scenario) discovery is defined by a single vehicle transmitting
during a cycle and all the others silent (the current slot is not
equal to each vehicle’s acoustic MAC address).

The auto-discovery works in a similar manner analogous to
excitation of electrons in an atom. The blank slot is typically at
the end of the cycle (“ground state”). However, depending on
the “temperature” (determined by thecoolnessparameterC)
the blank slot may be “excited” and moved one slot away from
the end (to the penultimate slot). How often this parameter is
moved is pseudorandomly determined from the time of day
and the current known world state (as evidenced by the sum of
the acoustic MAC addresses of all known nodes). The higher
the coolness parameterC, the less likely the blank slot will be
“excited” from its position at the end of the cycle. Assuming
all collisions are destructive to the data received, no vehicles
would ever be discovered without this movement of the blank
slot. By moving the blank slot, we improve the chances that
two vehicles with dissimilar views of the world will eventually
discover each other. Mathematically, this placement of the
blank spot in the cycle can be expressed as

iblank =

{

imax if ⌊tUTC/
∑

i τ(i)⌋ (modC) =
∑

i a(i) (modC)
imax − 1 otherwise

(3)
where iblank is the position of the blank slot in the cycle,
tUTC is the number of seconds since midnight Coordinated
Universal Time (UTC) of the current day,τ(i) is the length
of the ith slot,C is the “coolness” parameter, anda(i) is the
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acoustic MAC address of the node in theith slot. Put in words,
the blank slot is moved from the end of the cycle (position
imax) to the penultimate position (imax−1) when the number
of cycles since the start of the day is congruent moduloC
with the known world (sum of MAC addresses). Therefore,
the higherC is, the less often these two values are congruent,
and the less often the blank slot is “excited”.

V. libmodemdriver: ACOUSTIC MODEM DRIVER

A. Motivation

In goby-acomms, the physical layer is generally assumed
to be an acoustic modem, as the tradeoffs made between
efficiency and abstraction are intentionally highly biased
towards efficiency ingoby-acomms because of the very
low throughput acoustic channel. However, the remainder of
goby-acomms is agnostic to the choice of acoustic modem,
or even that the physical layer is acoustic at all; other very
low throughput channels (e.g. satellite) could also work with
the design paradigms ofgoby-acomms. libmodemdriveris
responsible for communicating with the specific firmware of
the acoustic modem of choice and abstracting that interface
for the rest ofgoby-acomms. This interface works using
basic virtualization in C++ whereDriverBase provides a
superclass that handles generic tasks and provides the abstract
(or virtual) interface forgoby-acommsto use. Various drivers
can subclassDriverBaseto provide the details of a particular
physical device. See Fig. 2 for this class structure. Currently,
the WHOI Micro-Modem is supported via theMMDriver
class, but support for the Teledyne Benthos modem and other
devices is in progress.

B. DriverBase: Abstract Acoustic Modem Driver

DriverBaseprovides an virtual interface to a generic acous-
tic modem. Some requirements are made about the acoustic
modems that can be supported:

• The acoustic modem communicates with the host running
goby-acomms via a serial port (typically RS-232 or
RS-485) or an Ethernet port (using TCP/IP). The modem
communicates using a delimited format (such as lines of
text delimited by the newline character ASCII 0x0A).

• The acoustic modem is configurable over this communi-
cation line.

• The modem supports transmission of fixed size datagrams
with optional acknowledgement of the message receipt
(variable size datagrams can be used to mimic fixed
sizes).

DriverBaseprovides:

• a class that reads serial port or TCP data into a buffer for
use by the DriverBase derived class (e.g. MMDriver).

• methods to set all six callbacks provided by the derived
class (receive, acknowledgement, data request, parsed
incoming message, raw incoming message, raw outgo-
ing message). Typicallylibqueue handles the receive,
acknowledgement, and data request callbacks, whileliba-
mac needs the parsed incoming message callback to
discover new vehicles (when in Decentralized TDMA

mode). The raw messaging callbacks are optionally pro-
vided for the application layer to perform debugging
directly on the modem, if desired.

• three virtual functions: for starting the driver, running the
driver, and initiating the transmission of a message.

• a method to set configuration values for the acous-
tic modem. This configuration takes the form of an
std::vector of std::string, the details of the
contents depend on the specific modem.

C. MMDriver: WHOI Micro-Modem Driver

The MMDriver extends the DriverBase for the WHOI
Micro-Modem acoustic modem. The WHOI Micro-Modem
uses a serial RS-232 interface and an NMEA-0183 sentence
structure.

MMDriver has been tested to work with revision 0.93.0.30
of the Micro-Modem firmware, but is known to work with
older firmware (at least 0.92.0.85). The following commands
of the WHOI Micro-Modem as given in [28] are implemented:

• Modem to Control Computer ($CA):

– $CAACK - acknowledgement of sent message. Will
be transformed into aModemMessageand passed to
the DriverBaseacknowledgement callback.

– $CADRQ - data request. Will be transformed into a
ModemMessageand passed to theDriverBasedata
request callback.

– $CARXD - received hexadecimal data. Will be trans-
formed into a ModemMessageand passed to the
DriverBasereceived data callback.

– $CAREV - revision number and heartbeat. Used to
check for correct clock time and modem reboots.

– $CAERR - error message. The error message is
logged to thestd::ostream provided to MM-
Driver at instantiation.

– $CAMPR - ping (two way ranging) response. Gives
the one way travel time between nodes computed
from a two way message.

• Control Computer to Modem ($CC). Also implemented
is the NMEA acknowledge (e.g. $CACYC for $CCCYC):

– $CCTXD - transmit data. Sent using the returned
value from the data request callback (see $CADRQ).

– $CCCYC - initiate a cycle. Sent on response to a
call of DriverBase for initiating transmission of a
message.

– $CCCLK - set the modem clock. The clock is set
on startup until a suitable value (within 1 second of
the computer time) is reported back. If the modem
reboots ($CAREV,...,INIT), the clock is set again.

– $CCCFG - configure NVRAM value. All values
passed to the DriverBase configuration will be
passed to $CACFG at startup. For example, to send
$CACFG,SRC,3, the string ”SRC,3” is placed in the
vector passed to DriverBase.

– $CCCFQ - query configuration values. $CC-
CFQ,ALL is sent after all the $CCCFG lines to log
the NVRAM parameters.
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– $CCMPC - initiate a two way ranging request for
the travel time between nodes.

1) Prior Work: iMicroModem: Given the number of users
of the WHOI Micro-Modem, we believe that a number of
special purpose “ad-hoc” Micro-Modem drivers have been
written, but the details of which are not reported in the
literature. Grund’s iMicroModem is one of these that we
have had a chance to work with since it was the Micro-
Modem driver used with the MOOS automony architecture
that preceededgoby-acomms. The MOOS is discussed in
section VI-A.

MMDriver borrows a number of ideas from iMicroModem
in terms of dealing with the specifics of the WHOI Micro-
Modem firmware. The major difference is that MMDriver
implements the interface provided byDriverBase and thus
does not have to replicate any of the work done byDriverBase.
This makes MMDriver shorter and simpler as it only contains
details specific to the WHOI Micro-Modem.DriverBasehan-
dles the communication (RS-232 serial in this case), logging,
and interface to the rest ofgoby-acomms.

This is standard object-oriented design, but it is mentioned
here since such a design is critical for supporting multiple
types of acoustic modems. Given that no standard exists for
underwater acoustic telemetry, it appears the need to support
various types of hardware through an abstracted generic in-
terface will exist for some time.MMDriver with DriverBase
provides that for the WHOI Micro-Modem.

VI. F IELD CASE STUDIES

A. MOOS-IvP Autonomy system and middleware

goby-acomms was developed with and tested with the
MOOS-IvP autonomy architecture [29]. MOOS-IvP is used
on marine robots for autonomy level control. We use MOOS-
IvP in an abstracted manner such as that different vehicle
types from different manufacturers appear the same to the
autonomy system and communications network. This model of
operations, called Unified Command and Control is presented.
The design of Unified Command Control as well as further
details of all these trials except GLINT10 can be found in
[30]. The results presented here are usinggoby-acomms
via pAcommsHandler, an interface process between MOOS-
IvP and goby-acomms. The experiments referenced are
summarized in Table V. Since each experiment has different
assets, different environmental conditions, and different objec-
tives, it is difficult to make clear comparisons in performance
from one sea trial to another. Thus, what follows is a series
of case studies highlighting the development and testing of
goby-acomms. For successful sea trials with AUVs, two
goals are perhaps the most important: saving experimenters’
time and improving safety of the vehicles. Any improvement in
operations that touches upon these goals improves the produc-
tiveness of the experiment. These are often hard to quantify,
but these case studies try to emphasize whatgoby-acomms
has done on both of these fronts.

B. GLINT08

The three GLINT experiments (2008-2010) were designed
to develop and test systems for multi-static active tracking

of moving targets. For the 2008 experiment the first part of
goby-acomms, the code which later becamelibqueue, was
developed. We were using three CCL messages to commu-
nicate three types of data from the AUV: status (position
and speed of the vehicle), contact (possible detection), and
track (fused contacts) reports. The status reports were always
generated so that we could monitor the health and activity of
the vehicles. When an acoustic source was detected, contact
reports were generated by the signal processing and then track
reports from the tracker. At this point using a basic priority
queue (beforelibqueue) we would only receive the higher
priority track reports and contact reports and no status reports.
This was because the number of contact and track reports
exceeded the available throughput of the acoustic channel.This
was unacceptable because we knew where the targets were, but
no longer received updates as to the position of our AUV. Thus,
we needed a way for messages with a lower base value (such
as the status message) to occasionally become more valuable
than those with higher base values (such as the contact and
track messages). To solve this problem,libqueue’s dynamic
priority queues, as described in section III, were created.

With libqueue, the messages received were proportional to
the base value (time sensitivity, via the time-to-live (ttl) was
introduced later). During a tracking event, track and contact
messages were highest priority, but status messages were still
occasionally sent.

C. SWAMSI09

SWAMSI09 was another acoustic sensing experiment, this
time for sea floor mine-like targets. CCL had no messages for
reporting contacts for this type of target. For this reason and
the others given in section II-B1, we determined that CCL was
no longer sufficient for our needs and developed DCCL and
the corresponding encoding library,libdccl.

The ease of defining and redefining DCCL messages allows
for rapid prototyping of new experimental ideas during the
field trial, rather than being rigidly confined to previously
defined messages. We wrote five new messages on the exper-
iment to greatly expand the flexibility of vehicle to topside,
and vehicle to vehicle communications capability.

We used two AUVs to execute a variety of bistatic acoustic
configurations for tracking of proud and buried seabed targets.
Both AUVs traversed a circular pattern around the potential
target, maintaining a constant bistatic angle (see Fig. 10a). En-
tering into this collaboration and maintaining the correctangle
required handshaking and data transfer between both vehicles.
We were able to command the vehicles into this collaborative
state withLAMSS_DEPLOY, and theLAMSS_STATUS mes-
sage (with additional fields added to support this experiment)
was passed between vehicles to maintain the correct position-
ing autonomously.

D. GLINT09

For the previous two experiments, we were using iMicro-
Modem (section V-C1) as the driver for the WHOI Micro-
Modem. Concerns about the robustness and extensibility of
that software led to the development oflibmodemdriver. While
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TABLE V: Summary of field trials.

Name Summary Assets (vehicles all have WHOI Micro-Modem)
Experiment
Datuma

GLINT08
Interoperability of marine vehicles for passive
acoustic target detection

1 Bluefin 21 AUV, 1 NURC OEX AUV, 1
OceanServer Iver2 AUV, 2 Robotic Marine
Kayaks, 1 WHOI Comm Buoy, 2 Ship-deployed
WHOI Micro-Modems

42.5◦N,
10.08333◦E

SWAMSI09
Detection and tracking og seabed objects using
bistatic acoustics. 2 Bluefin 21 AUVs, 1 WHOI Comm Buoy

30.045◦N,
85.726◦W

GLINT09
Interoperability of marine vehicles for multi-
static acoustic target target tracking

1 NURC OEX AUV, 1 OceanServer Iver2 AUV,
2 Robotic Marine Kayaks, 2 Ship-deployed
WHOI Micro-Modems

42.47◦N,
10.9◦E

CHAMPLAIN09 Thermocline gradient following. 1 OceanServer Iver2 AUV, 1 Ship-deployed
WHOI Micro-Modem.

42.2511◦N,
73.3612◦W

GLINT10

Interoperability of marine vehicles for passive
and active acoustic target tracking. Collabora-
tive acoustic communications and environmen-
tal sampling.

1 Bluefin 21 AUV, 1 WHOI Comm Buoy, 2
NURC OEX AUVs, 2 Ship-deployed WHOI
Micro-Modems.

42.47◦N,
10.9◦E

a The experiment datum is a location in the southwest corner ofthe operation region from which all vehicle positions are referenced using the
Universal Transverse Mercator projection with the WGS 84 ellipsoid [31].

(a) During SWAMSI09, the two AUVs “Macrura” and “Unicorn” perform a synchronous circular pattern with a constant angle of
separation. However, due to the sporatic updates from the acoustic modem, it is hard to visualize the performance of the vehicles
in excecuting this maneuver at runtime.

(b) A snapshot of the runtime visualization of the AUV “Unicorn” performing a sinusoidal depth excursion while performing
a pentagon shape. While full, updates are delayed, theLAMSS_STATUS_FILLIN andLAMSS_CTD messages give a detailed
history of the vehicle’s track when the communication environment permits.

Fig. 10: Comparison of the Google Earth interface for Ocean Vehicles (GEOV) [30] visualization available to the vehicle
operator during runtime using data transmitted viagoby-acomms early in its design at SWAMSI09 (a) and in the form
goby-acomms is presented in this paper during GLINT10 (b). Vertical lines indicate acoustic position updates via the
LAMSS_STATUS message and horizontal lines connect these updates.
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the features provided bylibmodemdriverfor the WHOI Micro-
Modem did not vary much from iMicroModem, we saved
significant time debugging.

Furthermore, we expanded our usage oflibdccl. DCCL mes-
saging made another collaborative experiment possible. We
had a mobile acoustic gateway (an autonomous surface craft
with a WHOI Micro-Modem) available to stream high rate
environmental and other data messages. By virtue of the sur-
face craft staying near the AUV (made possible by the AUV’s
LAMSS_STATUS message), the AUV had a short acoustic
propagation path to the surface craft. From there, the surface
craft relayed data to the operators via IEEE 802.11 wireless
ethernet. Also, the depth of the modem was controlled by a
winch that the surface vehicle could command autonomously.
Using theWINCH_CONTROL message, the AUV commanded
the surface craft a depth at which to set the modem to
improve communications. The AUV was performing a bistatic
acoustic detection of a mid-water column depth target. The
source, mounted on a buoy, was autonomously turned on and
off by the AUV using theSOURCE_ACTIVATION message.
The AUV, which was towing an acoustic array, was the re-
ceiver. None of this multi-robot collaboration would have been
possible without the ability to define new messages quickly
and with a high degree of confidence in their syntactical
correctness provided bylibdccl.

E. CHAMPLAIN09

The third case study is the CHAMPLAIN09 adaptive en-
vironmental experiment. In this experiment, a small AUV
outfitted with a Conductivity-Temperature-Depth (CTD) in-
strument was deployed to study the thermocline structure of
Lake Champlain. The AUV was commanded, using a updated
LAMSS_DEPLOYmessage, on the task of adaptively surveying
the thermocline. The vehicle accomplished this task by per-
forming series of sinusoidal (“yoyo”) depth maneuvers and
streamed its samples back using the delta-difference encoded
LAMSS_CTD message. In this manner, the environmental data
was made available in near realtime (i.e. delayed by no more
than a few minutes) to the AUV operator.

The key feature used for this work and later in GLINT10
was delta-differencing, originally applied only to CTD mes-
sages and later added as a general feature tolibdccl. Delta-
difference encoding can be applied to<float> DCCL fields
(and<int> since they are derived from<float>). It gives
an even more compact way to losslessly encode correlated
data. In this case, due to the AUVs finite speed and continuity
of salinity and temperature values, CTD values are correlated
in time. By estimating upper and lower bounds on this corre-
lation, data can be compressed further than DCCL normally
allows by sending the first sample in its entirety (still bounded
by the usual DCCL<max> and <min> “global key”) and
sending the remaining samples in a frame by their difference
to this first sample. The bound on the maximum that this
difference can be (∆max) must be given in<max_delta>
tag, using physical knowledge of the data to be sampled. See
Table VI for the corresponding formulas for the field size and
encoded values. Diagrammatically, the process is explained in

Data (T, S, D)

Global Key
 (<min>, <max>)

DCCL Header

Packet Key

Delta Frame

Delta Frame

Delta Frame

...

_

_

Data

Global Key

+

DCCL <repeat> Message

Encode

Decode

First sample of packet
Remaing samples

+

Fig. 11: Schematic of encoding and decoding a DCCL mes-
sage using delta-difference encoding. The DCCL header is
diagrammed in detail in Fig. 4.

Fig. 11 and an example of the data available to the operator
during runtime is shown in Fig. 12.

For example, perhaps it is knowna priori by means of
historical data or a ship CTD cast that the maximum tem-
perature gradient in a given area is0.05◦C/m and the dive
rate of our glider is0.2m/s. We also know that the water in
the operation region does not exceed(10, 30)◦C. Furthermore,
we feel that tenths of a degree Celcius is sufficient precision.
Finally, we want to sample the thermistor on our CTD at 1
Hz and we are using a 256 byte WHOI Micro-Modem frame.
Putting this all together, we use for temperature (in◦C) a
DCCL <float> with a <min> of 10, a <max> of 30, a
<precision> of 1. The<max_delta> must be calculated
iteratively (such as using the Newton-Raphson method), as
making a smaller<max_delta> creates a smaller message,
increasing the number of samples that can be fit in a frame.
This increases the window of sampling for a given frame, thus
increasing the<max_delta>. That is, the optimum∆max for
given bounds is the solution closest to equality to

lkey + ldelta(∆max) · (∆max/rmax ∗ fs − 1) <= lframe (4)

where lframe is the total message frame size,lkey and
ldelta(∆max) are the sizes for key and delta frames given in
Table VI, rmax is the maximum expected rate of change of
the physical parameter being encoded, andfs is the sampling
frequency. For this examplel = 2048 bits,rmax = 0.05◦C/m·
0.2m/s = 0.01◦C/s, fs = 1Hz, andlkey = 8 bits, so solving
for the smallest∆max (which provides the largest number
of samples in the frame) is3.1◦C, providing 310 samples
per frame. This is a 21% improvement over the 256 (l/lkey)
samples that would fit if the message was not delta-difference
encoded.

∆max is a function of the size of the frame (lframe), so
lframe can also a parameter for optimization based on the
expected maximum rate of change (rmax) of the physical
parameters to be sent if the physical layer supports a variety
of frame sizes.
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TABLE VI: Formulas for delta difference encoding the DCCL<float> type.

DCCL Type Size (bits) Encodea

<float>
(key)

lkey = ⌈log
2
((xmax − xmin) ·

10prec + 2)⌉
xkey =

{

nint((x− xmin) · 10prec) + 1 if x ∈ [xmin, xmax]

0 otherwise

<float>
(delta) ldelta = ⌈log

2
(2∆max · 10prec +2)⌉ x∆ =

{

nint((x+∆max − xkey) · 10
prec) + 1 if x− xkey ∈ [−∆max,∆max]

0 otherwise

· xmin, xmax, prec, ∆max are the contents of the<min>, <max>, <precision>, and<max_delta> tags, respectively.
· nint(x) means roundx to the nearest integer.
· The key valuexkey is the same as the normal<float> type encoding given in Table III.
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Fig. 12: Temperature data from the GLINT10 experiment a CTD instrument mounted on AUV Unicorn available at runtime
via goby-acomms using delta-differenced encoding.

F. GLINT10

All the features and implementation ofgoby-acomms
as presented in the rest of this paper were in place for the
GLINT10 sea trial. The DCCL messages and corresponding
Vbase and ttl used for dynamic priority queuing are given in
Table VII.

The key new items for GLINT10 were

• Expansion of delta-difference encoding mentioned in
Section VI-E to support any arbitrary<float> field, not
just those from a CTD instrument. This enabled the new
“back-fill” LAMSS_STATUS_FILLIN message which
keeps a history of vehicle positions regularly sampled (in
this case twice per minute). These were queued with a
low Vbase of 0.4 relative to the other messages (see Table
VII). Thus, in cases of low throughput due to unfavorable
environmental conditions other data messages would be
sent. However, when the throughput went up the queued
up LAMSS_STATUS_FILLIN messages would be sent,
giving the topside operators a somewhat delayed but
still relevant history of the vehicle’s manuevers. When
developing complex adaptive autonomy, this is critical for
debugging and understanding the vehicles’ performance.
Furthermore, allLAMSS_CTD messages were also de-
coded as status messages since they contain the three
dimensional location of the vehicle at the time of the
sample.

• The auto-discovery decentralized TDMA MAC described
in section IV was tested using two vehicles, one gateway
buoy and one ship deployed WHOI Micro-Modem. Due
to the lack of a cycle initialization packet that could

be lost, transmissions from ranges of up to 4 km were
successfully made. Using the standard centralized TDMA
that we have used for the previous experiments, we saw
transmissions up to 2 km. It is difficult to quantify in-
water performance of MAC schemes without a robust
understanding of the environmental effects on propoga-
tion.

VII. C ONCLUSION

goby-acomms provides an acoustic networking suite that
combines high usability at sea with techniques intended to
make the most out of the very low throughput provided
by acoustic telemetry. It is comprised of four modules that
could be interchanged with a suitable replacement as research
advances in a particular areas:

• libdccl: provides encoding and decoding. The major
contribution from DCCL is the ability to create custom
objects that can be serialized to very short messages, with
an emphasis on message size efficiency over features and
abstraction.

• libqueue: deals with the common problem in acoustic
networks of having too many messages.libqueueprovides
a way to prioritize messages based both on the time
sensitivity and the overall value of the message.

• libamac: implements a simple TDMA scheme with auto-
discovery requiring no control messages to be sent and
thus not using any bandwidth that might be better used
for mission data.

• libmodemdriver: provides an abstract interface for an
acoustic (or other low-bandwidth carrier) modem and
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TABLE VII: Summary of DCCL Messages used in the GLINT10 Experiment

Message Name Category <size>
(bytes)a

Estimated
Equivalent
CCL Size
(bytes)b

ttl c Vbase
c Description

LAMSS DEPLOY Command 31 40 300 1000 Underwater vehicle command message.

LAMSS PROSECUTE Command 31 40 300 1000 Underwater vehicle command message:
prosecute detected target.

ACOUSTIC MOOS POKE Command 32 31 300 10000 Underwater debugging / safety mes-
sage.

LAMSS STATUS Data / Collaboration 27 35 300 1.5 Vehicle Status message (position, speed,
Euler angles, autonomy state)

LAMSS STATUS FILLIN Data 29 52 1800 0.4 Vehicle Status message historical
“back-fill” (delta-difference encoded).

LAMSS CONTACT Data 29 34 600 2 Passive acoustic contact report message.

LAMSS TRACK Data 29 34 300 4 Passive acoustic track report message.

LAMSS BTR Data 64 63 7200 1 Beam-Time Record Data from a towed
passive acoustic array.

LAMSS CTD Data 256 496 1800 1
Salinity, temperature, depth data from
a CTD instrument (delta-difference en-
coded).

a For DCCL: see section II.
b Since CCL does not implement these messages, these size estimates are based on the closest available message in the existed CCL message set.
c For Priority queuing: see section III.

an implementation of this interface for the widely used
WHOI Micro-Modem.

goby-acomms emphasizes robustness through object-
oriented design to provide a communications architecture
that can support real field operations with underwater robots.
The hope is thatgoby-acomms, or at least some of the
ideas within, can move the field of collaborative underwater
robotics and artificial intelligence forward.goby-acomms is
freely available with the Goby Underwater Autonomy Project
from http://launchpad.net/goby. The Goby project is licensed
under the GNU General Public License and gladly accepts
contributions from members of the marine acoustic networking
and robotics community.

VIII. G LOSSARY

Some terms are subject to ambiguity due to the various
disciplines (robotics, programming, acoustics, networking) this
paper draws from. These terms are defined here in the context
we intend them to mean in this paper:

• class: the schema for a an object, the term is used in the
standard way for Object Oriented Programming (C++,
Java, Python, etc.).

• frame: the smallest quantity of data that is either accepted
or rejected in whole by the acoustic hardware layer’s error
correction. The WHOI Micro-Modem uses frames of 32,
64 and 256 bytes depending on the bit rate.

• message: a sequence of bytes to be transmitted over some
channel. Usually refers to an instantiation of a DCCL
type, as defined in section II.

• object: an instantiation of a class.
• schema: used here to refer to W3C XML Schema. Con-

fusion here can occur since DCCL provides a schema
language in its own right, with an XML schema to
validate it. Thus, we choose to refer to DCCL in this

paper as providing a message structure, reserving the term
schemafor the W3C XML Schema.
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