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Problem
Using environmental information, is it possible to 
adaptively control an AUV to improve acoustic modem 
performance in a shallow water environment?
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GLINT08 Experiment
Acoustic Equipment: WHOI MicroModem (Band C) 
mounted on Bluefin 21 AUV (mobile) and buoy (fixed):

frequency: f = 23-27 kHz•	
wavelength: λ = 6.5-5.6 cm•	

Environment overview:
Mediterranean Sea, near Elba, Italy. Shallow water (nearly 
constant 100 m depth). Visibly calm seas.

Initial Model Assumptions: 
Flat, smooth bottom (roughness less than wavelength  •	
over fresnel radius of 2-4 meters)
Flat, smooth surface (in general, not a good assumption •	
even in calm seas) 
Sound speed homogenous in range and over course of •	
one day
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AUV & Buoy Positions at Transmission
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Vehicle (red to white) •	
ran at 0-60 m at a 
range of 380 - 2100 m 
from buoy
Buoy (yellow) •	
essentially fixed at 30 
m depth
We will ignore •	
transmissions at < 10m 
depth

AUV (start of experiment):
AUV (end of experiment): 

Buoy:
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Ray Tracing | Ray Paths
Ray equations (derived from the Helmholtz equation):

with these initial conditions for a fan of rays each with 
angle θ to the source:
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Ray Tracing | Transmission Loss
BELLHOP uses finite element rays:

Amplitude of the ray (     ) is computed by the dynamic ray 
equations:

For high frequency problems, ray tracing is fast 
compared to normal modes and sufficiently accurate.
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References: M.B. Porter, Y-C Liu. Finite Element Ray Tracing, Theoretical and Computational Acoustics
                 F.B. Jensen, W.A. Kuperman, M.B. Porter, H. Schmidt. Computational Ocean Acoustics.



t. schneider | MIT/WHOI joint progam | laboratory for autonomous marine sensing systems

Sound Speed Profile

dots: AUV sampled profile (Jul 31 2008 12:16-19:41 UTC)
yellow line: ship cast profile (Jul 31 2008 16:10 UTC)
Single ship cast acceptable approximation
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Ray Tracing | Modeled TL

Incoherent transmission loss for R/V Alliance CTD profile (Jul 31 2008 
16:10 UTC) from a 30 m source (buoy) in a 100 m homogenous (in range) 
waveguide.

Incoherent TL (dB
)

buoy
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SNR (before equalizing)

SNR of received message:		  low			  high	

Incoherent TL (dB
)
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SNR (after equalizing)

SNR of received message:		  low			  high	

Incoherent TL (dB
)
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SNR versus Modeled TL
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Expect trend of lower •	
SNR with increased TL
Some trend: can •	
hope to improve 
with better surface/
bottom modelling and 
fewer assumptions of 
homogeneity.
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Acomms Improvement Behavior
Incoherent TL (dB

)

Given sound velocity profile and position of receiving vehicle (or buoy), 
change depth to optimize placement in sound field. 
currently being implemented, then test in simulation.

“reachable” space 
given current heading

possible best path 
(and stay at this 
depth?)

current 
position

buoy

range

closest point
 of approach

comms buoy

AUV

xy (top down) view
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Hypothesis Testing
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Want to “decide” before sending a message whether it will 
be received

hypothesis 0: message will be received•	
hypothesis 1: message will be dropped•	

choose H0 if
fL|H(l |H0)

fL|H(l |H1)
> η (1)

η = P1/P0 to minimize error.

choose H1

choose H0 if
fL|H(l |H0)

fL|H(l |H1)
> η (1)

η = P1/P0 to minimize error.

choose H1

choose H0 if
fL|H(l |H0)

fL|H(l |H1)
> η (1)

η = P1/P0 to minimize error.

choose H1
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Hypothesis Testing | Glint08 Jul 31
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Given choice of hypothesis:
transit to depth within ‘  ’ regime or•	
choose different rate (with different probabilities)•	

choose H0 if
fL|H(l |H0)

fL|H(l |H1)
> η (1)

η = P1/P0 to minimize error.

choose H1
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