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Abstract—A novel technique is presented for using state
observers in conjunction with an entropy source encoder
to enable highly compressed telemetry of autonomous
underwater vehicle (AUV) position vectors. In this work,
both the sending vehicle and receiving vehicle or human
operator are equipped with a shared real-time simulation
of the sender’s state based on the prior transmitted
positions. Thus, only the innovation between the sender’s
actual state and the shared state need be sent over the
link, such as a very low throughput acoustic modem. The
distribution of this innovation can be modeled a priori or
assembled adaptively. This distribution is then paired with
an arithmetic entropy encoder, producing a very low cost
representation of the vehicle’s position vector.

This system was analyzed on experimental data from
the GLINT10 and AGAVE07 expeditions involving two
different classes of AUVs performing a diverse number
of maneuvers, and implemented on a fielded vehicle in the
MBAT12 experiment. Using an adaptive probability dis-
tribution in combination with either of two state observer
models, greater than 90% compression, relative to a 32-bit
integer baseline, was achieved.

Index Terms—autonomous underwater vehicles, acous-
tic communications, robotic networks

I. INTRODUCTION

A. Motivation

Users of mobile marine platforms such as au-
tonomous underwater vehicles (AUVs) and un-
manned surface vehicles (USVs) are one of the
major beneficiaries of improved acoustic commu-
nication capabilities, since the need to move often

This work was funded by the Office of Naval Research (ONR)
under projects N00014-08-1-0011 and N00014-11-1-0097.

precludes the use of fiber optic communication
tethers. These vehicles are also becoming increas-
ingly “intelligent”; they are outfitted with substantial
computational ability and are capable of fulfilling
complex mission components or entire missions
autonomously; for examples, see [1]–[3].

For many types of AUV missions it is required
or desirable for the vehicle (here, the sender) to
transmit accurate and frequent vehicle position mea-
surements to collaborating vehicles or a human
operator (the receiver). For example, oceanographic
missions require the position where sensor samples
were taken, and collaborative target detection tasks
require a history of positions to avoid unnecessary
redundant coverage, or facilitate coordinated control
maneuvers such as formation flying. Furthermore,
as vehicle navigation decisions become increas-
ingly automated, human operators desire increased
assurance that their highly expensive vehicles are
operating correctly and away from hazards.

This need for vehicle position knowledge can
often consume much or all of the available acoustic
link’s throughput in fielded vehicles. In this paper, a
system is devised that uses a matched state observer
on the sender and receiver to reduce the position
vector to a vector of differences from the modeled
state. The probability distribution of these differ-
ences is modeled a priori or adaptively built from
prior statistics. The resulting distribution is coupled
with an arithmetic entropy encoder to provide highly
compressed position vectors.
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B. Related Work

Much work has been done on understanding the
physical channel for acoustic telemetry; see [4]
for a review of the last decade. While the focus
has been on error-free channel coding and trans-
mission of datagrams, little has been published in
the marine domain on source coding of underwater
measurements as evidenced by [5] and a dearth of
coverage of source coding in the major underwater
networking review papers [6], [7].

One exception is Murphy’s work [8], [9], in
which he uses transform compression (e.g. the dis-
crete wavelet transform) to source encode imagery
and historical time series of scalar data. While
not specifically addressed, one could apply this
technique to source encode vehicle state vectors.
However, the transform codes provide at best an
approximation of the original signal until the entire
sequence is received. Furthermore, the performance
of the transform compressor improves with longer
sequences of data. These limitations make this tech-
nique less suitable when near-realtime telemetry of
accurate vehicle positions is required, and more
suitable for less time-sensitive transmission of pre-
viously collected data.

Outside the marine domain resides the closest
related work, by Koegel and Mauve [10]. They
investigate the information content of a moving
urban or highway land vehicle trajectory (defined as
a time series of vehicle positions). In this domain,
the throughput is much less limited, but the desired
number of trajectories to transmit is high. Thus, the
ratio of trajectory number to available throughput is
similar to the marine domain where we have a small
number of trajectories, but a very low throughput
link. Koegel and Mauve suggest the use of a Kalman
filter for this problem but do not further investigate
it, as is done in this paper.

Others have looked at techniques to losslessly
encode very large sets of trajectories from terrestrial
GPS data, such as the linearization and clustering
approach from [11] and the road-network algorithm
in [12]. Many of these techniques are focused on
the problem of efficiently storing and transmitting
full datasets “offline”. In the marine domain, it
is typically far easier to offload previously col-
lected datasets after vehicle recovery or over elec-
tromagnetic wireless links after the vehicle surfaces.
Thus, this paper focuses on a technique intended to

telemeter realtime or near-realtime data (“online”),
which is the more pressing problem for underwater
systems due to the highly constrained acoustic link.

II. APPROACH

A. Application / presentation network layers
The goal of this system is to transmit a sampling

(at sample period τ ) of a time series of vehicle
positions y(t) where

y(t) =


t

x(t)
y(t)
z(t)

 (1)

is the Cartesian position of the vehicle with refer-
ence to a common known datum, with z given as the
negative of the vehicle’s depth1. y(t) is quantized
to a desired quantity (e.g. 1 meter), which is chosen
based on the precision needed by the receiver. The
work presented in this paper can be considered to
reside on the application and/or presentation lay-
ers in the Open System Interconnection Reference
Model [15].

Position measurements are transmitted as one of
two types of messages:

• Full transmissions: The vector yf which in-
cludes the time and full position of the vehicle
relative to the experiment datum where

yf =


tf

x(tf )
y(tf )
z(tf )

 (2)

This message is used once at the start of
each mission to synchronize the states of the
sender and receiver. The time tf represents the
mission start.

• Delta transmissions:

dy[n] =

dx[n]
dy[n]
dz[n]

 (3)

where n = 0, 1, 2, 3, . . .. This delta trans-
mission is sent continuously following a full

1For the purpose of this work, the transformation used from
geodetic (latitude, longitude) to Cartesian (local) coordinates does not
matter. One could use, for example, the Universal Transverse Mer-
cator transformation with the WGS’84 ellipsoid [13] or the North-
East-Down transformation of an earth-centered earth-fixed frame; see
[14].
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transmission or prior delta transmissions until
the vehicle was removed from operation for
greater than τ seconds, after which a full
transmission is sent to reinitialize the receiver’s
state. Determining the values of dy[n] via state
observation is described in Section III. The
sample number n does not need to be transmit-
ted, assuming the lower layers of the network
stack can provide in-order receipt of messages
without duplicates. In this case, the decoder
simply increments n on each message received.
The sampled y(t) can be reconstructed at time
n = n0 using

y(tf + n0τ) =

[
tf + n0τ

ŷprior[n0] + dy[n0]

]
(4)

where ŷprior[n] = Hx̂prior[n] is the prior es-
timate of the state observer extrapolated to
discrete time step n. Fig. 1 illustrates the pro-
cess of generating these delta transmissions and
Fig. 2 gives the data flow between the various
subsystems presented or used in this paper.

B. Requirements on the lower network layers

As mentioned in section II-A, the requirement
that this encoding system has on the lower net-
working layers is in-order receipt of packets without
duplicates. This can be easily accomplished with
“Stop-and-Wait” (S&W) Automatic Repeat reQuest
(ARQ) along with a single alternating bit to dis-
card duplicates. Specifically, each delta message
(or group of messages within a single packet) is
transmitted by the sender with a field indicating
the sequence number of this transmission; using a
modulus m of two, this field is a single bit. In this
case, each packet is positively acknowledged by the
receiver before the next packet is transmitted. If
one or more acknowledgments is lost, the sender
retransmits the message (after some timeout). In
this case, the receiver obtains packets with two
identical sequence numbers in a row. The repeated
packet is assumed to be a duplicate and is discarded.
Such a scheme is suitable for use on an acoustic
modem that provides datagram transmission with
optional acoustic acknowledgement, such as the
WHOI Micro-Modem [17], which was used for
the field results in section V-C. This approach is
illustrated in Fig. 3, which shows both possible

Mission path
Actual path
Sent point
Sent difference

y

x

(dx0,dy0)

datum
(0,0)

(a) Generation of differences (dx and dy) from the vehicle’s actual
position from the extrapolated position (generated on both sender
and receiver using tracked positions previously transmitted). Two
techniques for this process are explained in Section III.

Pdx

dx

dx0

(b) Example of the probability distribution used to represent the error
between the actual and extrapolated positions. These distributions are
built up in Section IV.

0 1
0

0
-2-dxmin

-1-2 1 2 ......

dx0

dxmindx:

symbol:

dxmax

-1-dxmin

-dxmin

1-dxmin

2-dxmin dxmax-dxminOOR
EOF

(c) Arithmetic coding symbol intervals (each dx is mapped to a
symbol with 1-meter precision).

Fig. 1: Example illustration for the delta transmis-
sions showing the mapping vehicle position (a) to
a given probabilistic model (b) used to generate the
symbol intervals required for arithmetic coding (c).
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bits
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Fig. 2: Data flow for the delta transmission part of
the encoding system presented in this paper. Gray
blocks are subsystems not presented in this paper.
Section III presents the state observers, and section
IV elaborates on the arithmetic entropy encoder.
Goby-DCCL is discussed in [16].

failure modes (acknowledgment lost and message
lost).

By using a modulus higher than two, it is possible
to have more than one packet “in flight” at once,
with a single acknowledgment message confirming
receipt of all these packets simultaneously. Packets
that were missed are selectively retransmitted (“Se-
lective Repeat” ARQ) until all the packets are re-
ceived. The tradeoff here is fewer acknowledgment
messages (and potentially lower latency) at the cost
of larger delta messages (due to the larger sequence
number field of size log2(m), in bits). The best
choice of ARQ is specific to the goals of the mission
and details of the network, and is thus beyond the

sender receiver

ack

sequence: 0

ack

sequence: 1

ack

lost

sequence: 1

ack
Rejected, 
Duplicate
sequence 1sequence: 0

lost

Retransmit
Delta #1

ack

sequence: 0

Transmit
Full

Transmit
Delta #0

Transmit
Delta #1

Transmit
Delta #2

Retransmit
Delta #2

...

Receive
Full

Receive
Delta #0

Receive
Delta #1

Receive
Delta #2

Fig. 3: A sequence diagram showing the full and
delta transmissions along with a sequence number
(the nth delta message congruent modulo m, with
m = 2). Both packet loss possibilities are shown:
when a packet is lost, it is retransmitted after a
timeout (because no acknowledgment is received)
and when an acknowledgement is lost, the duplicate
is rejected using the sequence number m. The
timeout should be chosen using parameters of the
physical propagation of the acoustic signal to ensure
that the original message was truly lost (and not
merely delayed).

scope of this paper. For those interested in more
detail, Azad et al. [18], explain the aforementioned
ARQ strategies and compare their performance in
the underwater domain.

III. STATE OBSERVATION

A state observer is typically used in control
systems to model the internal state of a system often
in order to apply feedback to stabilize the system.
Here, a state observer is used in a different way. A
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model of the system (in this case a vehicle in three-
dimensional motion) is observed by both the sender
and receiver of the communications link using a
reduced set of the data, namely only the previously
telemetered y[n]. The difference between this re-
duced model and the (presumably more accurate)
output of the vehicle’s navigation system (which
may incorporate other state observers and filters)
is taken. This difference (which can be thought of
as an error) is the value used to transmit. This
operation is visualized in Fig. 1a.

Two state observers were used in this work: a
deterministic (“fixed speed”) model and a stochastic
model based on the Kalman filter.

A. Fixed speed observer

The fixed speed model is useful for AUVs
that drive at a roughly constant speed in the xy-
plane while underway, which includes most of the
torpedo-shaped vehicles such as the Bluefin and
REMUS vehicles. This model uses the prior two
transmitted positions to determine the predicted
direction Ψ of the vehicle’s course over ground
where

Ψ = tan−1 y[n− 1]− y[n− 2]

x[n− 1]− x[n− 2]
(5)

The vehicle’s last position is extrapolated using this
direction at the fixed speed s, and this is used as a
reference for the difference (or error) to the actual
vehicle position to be transmitted, such that[

dx[n]
dy[n]

]
=

[
x[n]− (x[n− 1] + τ |v| cos Ψ)
y[n]− (y[n− 1] + τ |v| sin Ψ)

]
(6)

For depth, since maneuvers are less predictable,
the last difference is used:

dz[n] = z[n]− (z[n− 1]− z[n− 2]) (7)

The simplicity of this model means that it is
computationally inexpensive thus adding negligible
overhead to the limited resources on the vehicle.
However, it is not applicable for AUVs that can
change their speeds substantially while underway.
For this, a general purpose model was developed,
using the Kalman filter.

B. Kalman filter observer

1) Assumptions: To keep the model as general
as possible for a moving vehicle, the following
assumptions were made:

• Motion along each Cartesian dimension is in-
dependent of the other dimensions.

• The acceleration increment

dẍ[n] =
∫
τ

...
xdt (8)

is a normally distributed white noise process
in all dimensions with jerk variance σj . In the
target tracking literature, this is referred to as
the Wiener-sequence acceleration model [19].

These assumptions are somewhat unrealistic (e.g.
motion in x and y are rarely independent), but serve
to capture the dynamics of the vehicle sufficiently
for the given task without introducing significant
computational overhead or loss of generality.

2) State space model: Given these assumptions,
a linear state space x[n] is defined as

x[n] =

y[n]
ẏ[n]
ÿ[n]

 (9)

where

y[n] =

x(tf + nτ)
y(tf + nτ)
z(tf + nτ)

 (10)

The dynamics of the vehicle in discrete time are
thus given by

x[n+ 1] = Ax[n] + Gdẍ[n] (11)

with state transition model

A =

I3 τI3
τ2

2
I3

03 I3 τI3
03 03 I3

 (12)

where process noise w[n] is normally distributed

w[n] = Gdẍ[n] ∼ N (0,Q) (13)

Given the Wiener-sequence acceleration model cho-
sen above, the noise covariance Q is given as

Q = σ2
jGGT (14)

where

G =
[
τ2

2
τ2

2
τ2

2
τ τ τ 1 1 1

]T
(15)
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3) Kalman filter: The Kalman filter [20] is a
recursive Bayesian estimator for linear systems with
normally distributed noise assumptions. In the ma-
rine robotics domain, Kalman filters have been
typically used for two purposes: 1) tracking of
unknown targets based on noisy and infrequent
(often sonar) measurements as in [21], [22]; and
2) estimation of the vehicle’s navigation solution
from a variety of noisy sensors such as gyroscopes,
inertial measurement units, pressure sensors and
acoustic sensors (long baseline, Doppler velocity
logging, altimeters), such as presented in [23]–[25].

For this work, the Kalman filter is used to predict
the state of the system based on a reduced set
of measurements {y[n − 1],y[n − 2], . . .}, namely
those measurements that have already been success-
fully transmitted to the receiver. In a sense, this is
similar to the target tracking problem, except that
the “target” (the sender) is an AUV controlled by
the user of the system. This “target” is tracking
itself using only the knowledge that the receiver
(who is also tracking the AUV) has. The goal, as
previously mentioned, is to efficiently communicate
a more accurate state vector with as few bits as
possible. The error between the prediction and the
measured state of the system (which is typically a
more accurate prediction from the sender’s naviga-
tion system, which may employ various stochastic
filters as well) forms the delta transmission vector
dy[n], also called the “innovation” or measurement
residual.

The algorithm presented in this work can be
described as a three-step process:

1) Both sender and receiver predict the next
state vector x̂prior[n] and a priori estimate
covariance Pprior[n] where

x̂prior[n] = Ax̂post[n− 1] (16)
Pprior[n] = APpost[n− 1]AT + Q(17)

2) The sender losslessly encodes (Section IV)
and transmits the delta vector

dy[n] = y[n]−Hx̂prior[n] (18)

using the mapping of estimate to measurement
state vectors given by

H =
[
I3 03 03

]
(19)

This delta vector is then received and decoded
by the receiver. At this point, the “true”

position of the vehicle can be recovered using
(4).

3) Both ends update the filter state vector x̂post[n]
and estimate covariance Ppost[n] with their
respective posteriors

x̂post[n] = x̂prior[n] + K[n]dy[n] (20)
Ppost[n] = (I−K[n]H)Pprior[n] (21)

using the innovation in combination with the
Kalman gain

K[n] = Pprior[n]HTS[n]−1 (22)

where

S[n] = HPprior[n]HT + R (23)

The measurement input to the Kalman filter (y[n])
is produced by a process outside of this technique
(typically the navigation subsystem of the AUV).
Thus, it is possible (or perhaps likely) that the pro-
cess producing y[n] is non-Gaussian. In this case,
the optimality of the Kalman filter is not guaranteed,
and it can diverge completely. Neither of these is
detrimental to this system, however. Non-optimality
may show up as an increased cost to encode (though
not necessarily when using the adaptive distribution
given in Section IV), and divergence causes a new
full transmission to be sent (when the state observer
exceeds dymin or dymax), thus re-initializing both
sender and receiver.

IV. ARITHMETIC CODING

In the previous section a method was discussed
for producing a minimal set of (presumed indepen-
dent) delta values to transmit. A source encoder can
now be chosen to compress these differences.

In this work, arithmetic coding was chosen over
various alternatives because of two main advan-
tages:

• Assuming an accurate model, it produces a
nearly optimal encoded bitset.

• The modeling process is separate from the
coder design. This allows a single implemen-
tation of an arithmetic coder to function on
many distinct sources of data. It also allows for
various models to be evaluated on the source
data without redesigning the coder.

The main drawback is that arithmetic coding has
a reasonably high computational cost. This is gener-
ally not a concern for the underwater vehicle domain
since available computing resources typically far
outpace the throughput of the acoustic channel.
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Fig. 4: The probability distributions (given in (26-
28)) used to arithmetically encode dx and dy in
this work. These models were used to produce the
experimental results given in Fig. 7. Not shown is
the uniform distribution given in (24).

A. Generating a source model

The next step in this process is identifying a suit-
able model. The full transmissions (2) are encoded
using a uniform probability distribution, since the
vehicle could reasonably be redeployed anywhere
in the operation region. The process of mapping the
source delta data from Section III is sketched in
Fig. 1b.

A priori, it seems logical that the probability
distribution governing the delta values dy[n] would
be zero mean, since any maneuver that the vehicle
performs will have an equal number of negative and
positive position differences. For example, see the
hexagon in Fig. 1a. The negative dx on the east
side will be offset by the positive dx on the west
side. The shape of the distribution is unclear, how-
ever, and depends substantially on the maneuvering
choices the vehicle makes (tight circles would lead

to high error using the dynamic model given in
(6), straight lines would be low error). Thus, the
following distributions were compared (all the non-
uniform distributions are shown in Fig. 4):

• Uniform (similar for p[dy] and p[dz]):

p[dx] =


1

dxmax−dxmin−1
dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(24)

where the limits

dymin =

dxmindymin
dzmin

 ,dymax =

dxmaxdymax
dzmax

 (25)

must be determined a priori based on the
tolerance for unencodable symbols if the state
observer difference exceeds these bounds. In a
real system a symbol can be reserved for out-
of-range values and the encoder reset to send
a new “full transmission” (2) when this oc-
curs. The tighter the bounds, however, the less
probability mass that is “wasted” on encoding
values that will never or rarely occur.

• Normal, with variance σ2 = (sτ)2:

p[dx] =

N (0, σ2) dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(26)

The standard deviation sτ was chosen so that
all possible maneuvers including the “worst
case” scenario have about 95% of the prob-
ability mass. The “worst case” is where the
vehicle makes a 180◦ turn immediately after
the preceding transmission so that dx[n] = 2sτ .
This means that σ = sτ since

Φ(µ+ 2.0σ)− Φ(µ− 2.0σ) = 0.95(27)

where Φ is the cumulative mass function of
the normal distribution. This distribution is
used only in conjunction with the fixed speed
observer (Section III-A).

• Normal, with variance σ2 = diag(Pprior[n]):
that is, the variances of the a priori estimate
covariance from the Kalman filter. This dis-
tribution is used only in conjunction with the
Kalman filter observer (Section III-B3).

• Adaptive: This model starts processing the
dataset with the uniform distribution given
above, and then equally incorporates the statis-
tics of all previously transmitted symbols from
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the relative frequencies of the previously en-
countered values. Thus, an accurate model of
the vehicle’s prior positions is built up to
encode future positions. At any sample m0, the
model is

p[dx] =

(fdx + 1) /f0 dx ∈ [dxmin, dxmax)

0 dx 6∈ [dxmin, dxmax)
(28)

where fdx is the frequency of the value dx from
all the prior transmissions [dx[1], . . . , dx[m0−
1]], except at the start of the experiment (m =
1) where fdx = 0. f0 is a normalizing constant
given as

f0 = m0 + dxmax − dxmin (29)

A value of one is added to fdx in (28) so
that a given dx can be encoded before it
is encountered (otherwise such a value could
never be encoded). The model is updated after
encoding and after decoding so that the sender
and the receiver can share the same state.

B. Implementing the arithmetic coder

To ensure this work can be easily fielded on
AUVs, the arithmetic coder was implemented in
the Dynamic Compact Control Language (DCCL),
part of the Goby2 project [16]. The details of the
arithmetic coder were based on the widely used
integer implementation by Witten, Neal, and Clearly
[26] and further clarified in [27]. While the inte-
ger implementation is used in the code to avoid
underflow, overflow, and precision problems, this
paper uses the floating point notation for clarity.
This notation involves encoding a range from [0, 1)
using normalized probability models.

The mapping from delta values to symbol space
S (shown in Fig. 1c) is given by

S[dx] =


dx− dxmin dx ∈ [dxmin, dxmax)

out-of-range dx 6∈ [dxmin, dxmax)

end-of-file dx ∈ ∅
(30)

with two special symbols: end-of-file (EOF) used
to indicate the end of encoding, and out-of-
range (OOR) used to indicate any value outside
[dxmin, dxmax). An EOF symbol is not required
if the number of messages encoded per packet is
arranged between sender and receiver ahead of time.

0100111000100111100000

enddz startdy startdx start
(a) Example DCCL bitstream for a single encoded delta message.
The “dy start” and “dz start” markers are given for illustration only;
the way DCCL distinguishes the start of one field is where the last
field’s decoder left off.

00000000
11111111

00000000
01111111

01001100
01001111

01001110
01001111

ambiguous

ambiguous

ambiguous

unambiguous

...

(b) Example decoding dx from this example bitstream. Both the upper
and lower bounds are tracked, consuming a single bit at a time until
the range unambiguously identifies a symbol.

Fig. 5: Example of the arithmetic decoder for
DCCL, showing tracking of decoded ranges to en-
sure the number of bits consumed by the encoder
and the decoder are identical.

The algorithm for arithmetic coding is well
known and will thus not be reprinted here for
brevity’s sake. However, one innovation was re-
quired to conform to the DCCL requirement that
decoders consume exactly the same number of bits
as the encoder produces. The implementation of an
arithmetic coder given in [26] and elsewhere as-
sumes that the decoder can safely read nonsense bits
past the end of the file, until the actual end-of-file
symbol is decoded. This will not work with DCCL
since extra bits used in decoding end up being taken
from those required for the next field in the message
and thereby corrupting all following fields. Thus, in
the DCCL implementation used here, the decoder
tracks both the upper (current bitset followed by
all ones) and lower (current bitset followed by all
zeros) bounds of the current symbol, adding bits
one at a time until the symbol is unambiguously
decoded. An example of this process is given in
Fig. 5. Relatedly, the end of the bitstream must be
encoded exactly so that the decoder does not leave
extra bits in the stream that would corrupt the next
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field of the message. The authors of [26] always
use two bits to indicate which middle quarter (either
[0.25, 0.5) or [0.5, 0.75)) is wholly contained by the
final encoder range. However, when at least one end
of the encoder range is at one of the bounds (low
= 0 and/or high = 1), fewer bits may be required.
The exact set of end bits (e) is given by

e =



∅ high = 1, low = 0, no follow bits
0 or 1 high = 1, low = 0, follow bits
1 high = 1, 0 < low < 0.5

0 0.5 < high < 1, low = 0

01 low < 0.25, high ≥ 0.5

10 low < 0.5, high ≥ 0.75
(31)

plus any follow bits accrued from prior center
expansions around [0.25, 0.75). This is consistent
with the (rounded-up) information entropy

dHbitse = −log2(p) =



0 high = 1, low = 0

1 high = 1, 0 < low < 0.5

1 0.5 < high < 1, low = 0

2 low < 0.25, high ≥ 0.5

2 low < 0.5, high ≥ 0.75
(32)

for the cases in (31).

V. RESULTS ON EXPERIMENTAL DATA

Here we will examine the performance of the
encoding system developed in the previous sections
on transmitting hypothetical messages pulled from
two experimental datasets:

• The shallow water GLINT10 experiment in the
Tyrrhenian Sea containing in excess of sixty
hours of cumulative dive time with a Bluefin
21” AUV.

• A dive from the Arctic Gakkel Vents expedition
(AGAVE07) with a SeaBED AUV performing
a survey at 4 km depth. The dive was twenty-
one hours in duration.

These two datasets were chosen to contrast signif-
icantly different AUV classes performing different
missions to demonstrate the broad applicability of
this approach. Specific quantities from the experi-
ments and values chosen here for these examples are
given in Table I. For the results on these datasets,
an error free physical link without duplicates is as-
sumed for the purpose of evaluating the performance

of the encoding system alone. Section VII explores
the performance over a more realistic link with non-
zero packet loss.

Finally, this system was implemented and run in
the field during the MBAT12 trial using a Bluefin
21” AUV and the WHOI acoustic Micro-Modem.

A. GLINT10
The desired transmission in this example is a

Cartesian representation of the vehicle’s position
where[
x[n] y[n]

]
= UTMWGS84(lon[n], lat[n])−UTMWGS84(lond, latd)

(33)
and z[n] is the negative of the pressure-derived vehi-
cle depth. UTMWGS84 is the Universal Transverse
Mercator transformation using the WGS’84 ellip-
soid [13], lon[n], lat[n] are the vehicle’s longitude
and latitude, and lond, latd are the longitude and
latitude of the experiment datum, a reference used
for convenience (unrelated to the UTM zone datum).

1) Position data: A representative subset of the
data used is plotted in Fig. 6, and represents one
AUV performing a variety of data collection and
adaptive autonomy missions. The details of the
missions are not of interest here, as the goal is
to develop a technique for communicating position
data regardless of the vehicle’s mission. As can be
seen from Fig. 6a, the AUV performed a variety
of polygonal excursions interrupted by straight-line
waypoints. In depth, both profiling “yoyo” and
constant depth maneuvers were used. In Figs. 6b
and 6d, the Kalman filter state vectors are plotted, as
well as the measured position of the vehicle from the
navigation system. The prior estimate deviates the
most when the vehicle maneuvers. This is expected
since the causal motion model developed in Section
III-B3 has no way to predict these maneuvers and
once they occur they are tracked as random changes
in the vehicle’s jerk. A more specific motion model
would likely improve the tracking here, but at the
cost of loss of general applicability to a variety
of vehicles and mission types. In any case, the
required causality of the model will always limit
the performance of this system to some degree.

2) Encoder results: Each of the distributions
given in Fig. 4 was used with the arithmetic coder
discussed in the prior section to encode the dataset.
The resulting size of each message was recorded
and the statistics plotted in Fig. 7a, along with the
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(b) Detail view of measurements compared to Kalman state
vectors x̂post and x̂prior from time 16:47 to 16:50 as the AUV
turns a corner.
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(c) Depth excursion of the AUV Unicorn over the same data subset as in part (a).
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(d) Zoom of part (c) showing the Kalman state vectors in z (negative depth). The value transmitted (dz) is the difference between the
measurement and the x̂prior as given in (18). As shown here, this difference is highest following a sharp manuever.

Fig. 6: Example subset of AUV Unicorn navigation data used for the experimental analysis from the
GLINT10 cruise.
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TABLE I: Experimental Parameters

Parameter GLINT10 AGAVE07 MBAT12

Delta model bounds: [dymin,dymax) [-50, 51) m
Transmitted x, y, z precision 1 m

Jerk variancea (σ2
j ) 10−3

Measurement covarianceb (R) 25I3

Time between messages (τ ) 10 s 10 s 5 s
Number of full transmissions (Nf ) 199 34 1

Mean size of full transmission 60 bits 61 bits 55 bits
Number of delta transmissions (Nd) 24420 7370 660

Size of delta transmission See Fig. 7 & Table II
Vehicle xy speed (s) 1.5 m/s 0.2 m/s 1.4 m/s

Water depth (D) 110 m 4140 m 20 m
Experiment datum (latd, lond) 42.45667◦N, 10.875◦E 85.61667◦N, 85.75◦E 42.38◦N, 70.96◦W

a The jerk variance was determined using a subset of the GLINT10 data. See section VI for further discussion.
b This measurement error is chosen as a conservative value (2σ = 10 meters) for the random noise in the y(t) values

from the vehicle’s navigation solution. Lower values may improve performance (but at the risk of loss-of-lock
of the Kalman filter).

uncompressed 32-bit integer as a reference point.
The moments of these results are summarized in
Table II. As expected, the Gaussian model per-
formed better than the uniform distribution since
it makes use of the dynamic models from Section
III where low errors are more probable than high
errors (the vehicle in general continues on a similar
path of motion). However, both of the Gaussian
distributions overstate the error significantly from
the adaptive distribution, as seen by the difference in
standard deviation between the two models in Fig. 4.
Once the adaptive distribution was initialized with
sufficient data, it easily outperforms the results using
the other distributions. Furthermore, the fixed speed
dynamic model using the adaptive distribution is an
improvement of 86% over the widely used Compact
Control Language [28], which uses 61 bits to encode
a vehicle position in the “MDAT STATE” message.

Comparing the two dynamic models used, the
Kalman filter has a significant edge with the Gaus-
sian distribution since it produces an uncertainty
model (Pprior) as part of the state estimation pro-
cess. For the adaptive distribution, however, the
fixed speed model performs slightly better, espe-
cially since it has lower standard deviation due to a
smaller number of large (i.e. 16-20 bit) messages.

B. AGAVE07
As with the GLINT10 dataset, the vehicle’s

Cartesian position during AGAVE07 (Fig. 8) was
hypothetically transmitted, but this time using the

AlvinXY transformation from latitude and longitude
to x and y [14]. The size of each delta message was
computed for the same types of models as for the
GLINT10 experiment; these results are plotted in
Fig. 7b. In general, the results from the two datasets
are similar. There are two main differences: 1) the
overall size of the messages generated from the non-
uniform distributions are smaller for the AGAVE07
dive than for the GLINT10 trial; and 2) the fixed
speed model outperforms the Kalman filter model
on the Gaussian distribution for the the AGAVE07
dataset.

Both differences are likely due to the difference
in vehicle speeds. Since the resolution transmitted
(1 m) and time step (τ = 10 s) were kept constant
between experiment datasets, the slower vehicle
(“Jaguar” from AGAVE07) will diverge less from
the expected position. The variance of the normal
distribution for the fixed speed model is based on
speed. In the case of the AGAVE07 results, this is
a narrower distribution, more closely matching the
adaptive model than in the GLINT10 case.

C. MBAT12
In this experiment, the technique described in this

paper was demonstrated in situ on-board a Bluefin
21” AUV (the sender) equipped with a WHOI
acoustic Micro-Modem [17]. The receiver was a
buoy equipped with both a Micro-Modem and a
radio link to the research vessel. For comparison,
the state of the vehicle was transmitted at each
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(b) AGAVE07: Results from the SeaBED AUV “Jaguar” dive on 2007-07-27 using the same distribution types.

Fig. 7: Log-log plot of the number of delta messages generated with a given size (in bits) for each
experiment. An uncompressed 32-bit integer representation is provided for comparison.

TABLE II: Experimental Results

Dynamic Model Distribution Meana Standard deviationa Compression b

GLINT10

Fixed speed Gaussian (σ = sτ ) 14.6 0.157 85%
Fixed speed Adaptive 8.68 2.22 91%

Kalman filter Gaussian (σ2 = diag(Pprior[n])) 12.0 1.42 87%
Kalman filter Adaptive 9.76 3.28 90%
Kalman filter Uniform 20.3 0.0821 79%

AGAVE07

Fixed speed Gaussian (σ = sτ ) 10.1 0.746 89%
Fixed speed Adaptive 7.11 2.23 93%

Kalman filter Gaussian (σ2 = diag(Pprior[n])) 11.4 0.839 88%
Kalman filter Adaptive 7.45 3.00 92%
Kalman filter Uniform 20.3 0.0814 79%

MBAT12

Kalman filter Gaussian (σ2 = diag(Pprior[n])) 11.1 0.481 88%
a Mean and standard deviation given in bits.
b Relative to a 3 element 32-bit integer representation.



JOURNAL OF OCEANIC ENGINEERING 13

6500
7000

7500
8000

−2400
−2200

−2000
−1800

−5000
−4000
−3000
−2000
−1000

0

 

x(m)y (m) 

z 
(m

)

(a) Three-dimensional Cartesian position measurements for the full
dataset.

08:38 09:07 09:36 10:04 10:33 11:02 11:31 12:00
−4170

−4160

−4150

−4140

−4130

−4120

−4110

−4100

−4090

−4080

z 
(m

)

 

 

time (UTC on 2007−07−27)

measurements
kalman estimate posterior
kalman estimate prior

(b) Subset of depth showing the Kalman state vectors.

Fig. 8: SeaBED “Jaguar” dive used from the
AGAVE07 experiment for the results in Fig. 7b.

acoustic datagram transmission in addition to the
state estimate innovations (with τ = 5s). Fig. 9
shows the results from a mission during this exper-
iment, which used the Kalman filter state observer
coupled with the Gaussion distribution for encoding
the delta transmissions. Using the lowest data rate
available with the phase-shift-keying (PSK) modu-
lation on the Micro-Modem (“rate 1”), only 12.6%
of the available data throughput during this mission
was used to transmit the state observer innovations
(including addressing, duplicate rejection, and byte
padding overhead). Thus, using this technique, it is
possible to consider telemetry of vehicle positions
as a reasonably small amount of overhead on the
underwater communications system, rather than its
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Fig. 9: Position of the sender vehicle as seen by the
receiver during the MBAT12 field trial. The state
observer compression technique developed in this
paper is compared to the traditional position sent
with each acoustic data transmission. Note that this
new technique removes the aliasing present in the
vehicle’s depth excursions.

primary purpose as has historically been the case.

VI. ROBUSTNESS

The design of the state observers is intentionally
general to reduce the number of parameters to be
“tweaked” or “tuned” and thus improve the robust-
ness (for a broad range of maneuvering vehicles).
However, there are two major parameters to deter-
mine that have values which are not clear a priori:
the range of included delta values for the arithmetic
entropy encoder (i.e. [dymin,dymax)) and, when
using the Kalman filter estimator, the process noise
(embodied in its variance: σ2

j ) which is used to
model all vehicle maneuvers.



JOURNAL OF OCEANIC ENGINEERING 14

15 20 30 40 50 100 200
100

101

102

47.22

17.64
13.55 13.50 13.51 13.57 13.67

dymax (= −dymin)

m
ea

n 
si

ze
 (b

its
)

 

 

delta transmissions
full transmissions

(a) Performance over various values of the encoding range
[dymin,dymax).

10-1 10-2 10-3 10-4 10-5 10-6 10-7
0

10

20

30

40

50

60

13.44 13.51 14.52 16.27
22.54

55.25

Jerk variance (σ  )
j
2

m
ea

n 
si

ze
 (b

it
s)

58.32

(b) Performance dependence on the variance of the process noise
(which is how vehicle maneuvers are modeled)

Fig. 10: Using the GLINT10 dataset, the perfor-
mance (in mean size of messages) of this system
over a range of parameter values. The contributions
to the mean size from the delta and full transmission
are shown separately. The values in bold were used
for the rest of the analysis in this chapter and are
also given in Table I.

The first parameter ([dymin,dymax)) is illustrated
in Fig. 10a, which shows the tradeoff in choosing
these bounds. Too tight, and the state observer
consistently exceeds the bounds, and a full trans-
mission must be resent to reinitialize both sender
and receiver states. However, there is also a small
price to pay for making them too loose, which is the
small amount of probability mass required for each
discrete value with the range of dymin to dymax,
taking away mass from all the remaining values,
making the more probable values (e.g. 1, 0, -1)
slightly more costly to encode. However, this cost is

small compared to having to reinitialize the states
by sending full transmissions frequently. Thus, as
is clear from Fig. 10a, it is preferable to err on the
side of too loose bounds than too tight.

The second parameter (σ2
j ) was originally cho-

sen using a subset of the experimental data from
GLINT10 to determine a reasonable order-of-
magnitude value (σ2

j = 10−3). Figure 10b shows the
overall performance (message size in bits, including
full transmissions and delta transmissions) for a
wide range of process noise values. This figure
shows that the algorithm is robust over about four
order of magnitude from 10−2 to 10−5 (too low or
too high and the filter perpetually fails to track).
It is also worth remembering that the fixed speed
tracker does not require this parameterization and
is applicable to a large number of classes of AUVs
found in the field today.

Finally, by design, the tradeoff for inaccuracy
in determining these parameters is not accuracy in
the received telemetry, but rather cost (in bits) of
sending these data. This means that the receiver is
never uncertain about the quality of the data that it
has received.

VII. PERFORMANCE COMPARISON TO
TRADITIONAL APPROACH

As mentioned in Section II, the delta technique
developed in this chapter provides an evenly sam-
pled historical time series (regardless of packet loss)
by retransmitting dropped packets (using ARQ).
Such an evenly sampled history is useful for in-
situ analysis of instrument data attached to these
position messages, or performance evaluation. Since
ship time is highly expensive, it is valuable to do
as much data analysis and debugging as possible
while the vehicle is underway (rather than waiting
until the end of the mission).

However, there are times when only the latest
position of the vehicle is desired. Traditionally, the
latest status message is sent in full without the
expectation of acknowledgment. However, does this
state observation technique still provide any benefit
in this case? Using the experimental results from
MBAT12 (Table II), the simulated mean cost to send
a delta message was plotted against the packet loss
(modeled as an independent Bernoulli process) as
Fig. 11a. This metric was computed for a variety
of packet sizes, ranging from the full transmission
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Fig. 11: Performance comparison of traditional “newest when possible” system (full transmission with
no retransmits) with the delta state observer technique in the case when a full historical time series is
unneeded. Where the curves asymptotically approach infinite cost or latency is the point where the channel
is too lossy to transmit all the delta messages. In this case, the desired τ would have to be increased.
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size (55 bits) to 32 bytes (256 bits), a commonly
used acoustic modem maximum transmission unit
(MTU). In addition, a curve representing the tra-
ditional system using full transmissions with no
retransmission upon loss is provided. Thus, depend-
ing on the packet size, this delta-based technique
is cheaper (uses fewer bits on average) than a
traditional full position system up to packet losses
of 65% or higher.

On the other hand, the delta system presented in
this paper requires that older innovations be cor-
rectly received before newer innovations can be used
(otherwise the sender and receiver state observers
do not share the same state). This leads to increased
latency over the full position system that increases
monotonically with packet loss. This excess latency
is shown in Fig. 11b, and as would be expected,
increases monotonically with increasing packet loss.
The tolerance for excess latency versus increased
message cost (in bits) is mission specific. A hybrid
system that switches between this delta technique
(for lower packet loss links) and a traditional full
system (for higher packet loss links) may be neces-
sary to reach the desired tradeoff of latency versus
throughput for a given mission.

VIII. CONCLUSION

A technique for transmitting the position vector
of an AUV at relatively high rates at very low
cost (in bits) was developed and demonstrated on
two experimental data sets and implemented in the
field, leading to mean compression ratios as high as
93%. While developed and shown here specifically
for sending vehicle position vectors, this technique
could be extended to send scalar environmental
measurements using sensor data coupled with a
static or dynamic ocean model. Also, it could be
used to transmit the position of an unknown target
by using the target’s estimated position (computed
using an on-board sonar and signal processing sub-
system) paired with a dynamic model of the target’s
motion.

In the case of lossy networks, this technique
still provides a reduced message size, even when
only the latest position of the vehicle is desired.
However, this system does introduce extra latency
due to the need to retransmit old messages before
sending new ones. Using the results from MBAT12,
we showed that this latency is reasonable (a factor of

the sampling period τ or less) up to 40% packet loss.
Such a system is suitable for use with the currently
available acoustic modems that provide only on the
order of 101 to 102 bytes per minute of throughput.
This paper shows that continuous telemetry of vehi-
cle position is possible while staying well within the
abilities of these modems, allowing for additional
mission-specific messaging to take place as well.

ACKNOWLEDGMENT

The authors extend many thanks to Hanumant
Singh and the SeaBED group at the Woods
Hole Oceanographic Institution for making the
AGAVE07 dataset available for use in this work.
We also equally appreciate the support of the NATO
Centre for Maritime Research and Experimentation
(formerly NURC) for making the GLINT10 exper-
iment possible.

REFERENCES

[1] Y. Zhang, M. Godin, J. Bellingham, and J. Ryan, “Using an
autonomous underwater vehicle to track a coastal upwelling
front,” IEEE Journal of Oceanic Engineering, vol. 37, no. 3,
pp. 338 –347, Jul. 2012.

[2] S. Petillo, A. Balasuriya, and H. Schmidt, “Autonomous adap-
tive environmental assessment and feature tracking via au-
tonomous underwater vehicles,” in OCEANS 2010 IEEE -
Sydney, May 2010, pp. 1 –9.

[3] M. Purcell, D. Gallo, G. Packard, M. Dennett, M. Rothenbeck,
A. Sherrell, and S. Pascaud, “Use of REMUS 6000 AUVs in
the search for the air france flight 447,” in OCEANS 2011, Sep.
2011, pp. 1 –7.

[4] A. Baggeroer, “An overview of acoustic communications from
2000-2012,” in Underwater Communications: Channel Mod-
elling & Validation, 2012.

[5] M. Chitre, personal communication, UComms 2012 conference,
2012.

[6] M. Chitre, S. Shahabudeen, and M. Stojanovic, “Underwater
acoustic communications and networking: Recent advances and
future challenges,” Journal of the Marine Technology Society,
vol. 42, no. 1, pp. 103–116, 2008.

[7] I. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic
sensor networks: research challenges,” Ad hoc networks, vol. 3,
no. 3, p. 257279, 2005.

[8] C. Murphy and H. Singh, “Human-guided autonomy for acous-
tically tethered underwater vehicles,” in OCEANS 2008, Sep.
2008, pp. 1 –8.

[9] C. Murphy, “Progressively communicating rich telemetry from
autonomous underwater vehicles via relays,” Ph.D. disserta-
tion, Massachusetts Institute of Technology and Woods Hole
Oceanographic Institution, 2012.

[10] M. Koegel and M. Mauve, “On the spatio-temporal information
content and arithmetic coding of discrete trajectories,”
Mobile and Ubiquitous Systems: Computing, Networking,
and Services, p. 1317, 2012. [Online]. Available: http:
//www.springerlink.com/index/P1032Q10R1542638.pdf



JOURNAL OF OCEANIC ENGINEERING 17

[11] D. Feldman, C. Sung, and D. Rus, “The single pixel GPS:
learning big data signals from tiny coresets,” in Proc. 20th
ACM International Conference on Advances in Geographic
Information Systems, 2012.

[12] A. Civilis, C. Jensen, and S. Pakalnis, “Techniques for efficient
road-network-based tracking of moving objects,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 17, no. 5,
p. 698712, 2005.

[13] NIMA, “Department of defense world geodetic system
1984: Its definition and relationships with local
geodetic systems. second edition, amendment 1,” NIMA,
Tech. Rep. TR8350.2, 2000, available at http://earth-
info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf,
accessed January 3, 2010.

[14] C. Murphy and H. Singh, “Rectilinear coordinate frames for
deep sea navigation,” in Autonomous Underwater Vehicles
(AUV), 2010 IEEE/OES. IEEE, 2010, pp. 1–10.

[15] H. Zimmermann, “OSI reference model–The ISO model of ar-
chitecture for open systems interconnection,” Communications,
IEEE Transactions on, vol. 28, no. 4, pp. 425–432, 2002.

[16] T. Schneider and H. Schmidt, “Goby-acomms version 2: ex-
tensible marshalling, queuing, and link layer interfacing for
acoustic telemetry,” in 9th IFAC Conference on Manoeuvring
and Control of Marine Craft, Arenzano, Italy, 2012.

[17] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball,
“The WHOI Micro-Modem: an acoustic communications and
navigation system for multiple platforms,” in IEEE Oceans
Conference, 2005.

[18] S. Azad, P. Casari, F. Guerra, and M. Zorzi, “On ARQ strategies
over random access protocols in underwater acoustic networks,”
in OCEANS, 2011 IEEE-Spain. IEEE, 2011, pp. 1–7.

[19] X. Rong Li and V. Jilkov, “Survey of maneuvering target track-
ing. part i. dynamic models,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 39, no. 4, pp. 1333 – 1364, Oct.
2003.

[20] R. E. Kalman, “A new approach to linear filtering and pre-
diction problems,” Transactions of the ASME–Journal of Basic
Engineering, vol. 82, no. Series D, pp. 35–45, 1960.

[21] S. Rao, “Modified gain extended kalman filter with application
to bearings-only passive manoeuvring target tracking,” in Radar,
Sonar and Navigation, IEE Proceedings-, vol. 152, 2005, p.
239244.

[22] R. Lum and H. Schmidt, “Exploiting adaptive processing and
mobility for multistatic tracking by AUV networks,” in Pro-
ceedings of 4th International Conference on Underwater Acous-
tic Measurements: Technologies and Results, Kos, Greece, Jun.
2011.

[23] M. Blain, S. Lemieux, and R. Houde, “Implementation of a
ROV navigation system using acoustic/Doppler sensors and
kalman filtering,” in OCEANS 2003. Proceedings, vol. 3, 2003,
p. 12551260.

[24] D. Loebis, R. Sutton, J. Chudley, and W. Naeem,
“Adaptive tuning of a kalman filter via fuzzy logic
for an intelligent AUV navigation system,” Control
Engineering Practice, vol. 12, no. 12, pp. 1531–1539,
Dec. 2004. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0967066103002582

[25] S. E. Webster, R. M. Eustice, H. Singh, and L. L. Whit-
comb, “Advances in single-beacon one-way-travel-time acoustic
navigation for underwater vehicles,” International Journal of
Robotics Research, vol. 31, no. 8, p. 935950, Jul. 2012.

[26] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic
coding for data compression,” Communications of the ACM,
vol. 30, no. 6, p. 520170, 1987. [Online]. Available:
http://dl.acm.org/citation.cfm?id=214771

[27] K. Sayood, Introduction to Data Compression. Elsevier, Dec.
2005.

[28] R. P. Stokey, L. E. Freitag, and M. D. Grund, “A compact
control language for AUV acoustic communication,” Oceans
2005-Europe, vol. 2, p. 11331737, 2005.

Toby Schneider (M’05) received a B.A. in
physics at Williams College in Williamstown,
MA, USA in 2007, and a Ph.D. in oceano-
graphic engineering in 2013 from the Joint
Program between the Massachusetts Institute
of Technology (MIT) in Cambridge, MA, USA
and the Woods Hole Oceanographic Institution
(WHOI) in Woods Hole, MA, USA.

He is currently a postdoctoral associate for
the Laboratory for Autonomous Marine Sensing Systems at MIT
working on problems at the interface of marine robotic autonomy and
communications. Further professional details about Dr. Schneider are
available on his website: http://gobysoft.org.

Henrik Schmidt received the M.S. and Ph.D.
degrees from the Department of Structural En-
gineering, Technical University of Denmark,
Lyngby, Denmark, in 1974 and 1978, respec-
tively. He is a Professor of Mechanical &
Ocean Engineering at the Massachusetts In-
stitute of Technology (MIT), Cambridge. Fol-
lowing a postdoctoral fellowship at the Risoe
National Laboratory in Denmark, he joined

the Centre for Maritime Research and Experimentation in Italy in
1982, where he worked until he joined the MIT faculty in 1987. His
research has focused on underwater acoustic propagation and signal
processing, and most recently on the development of environmentally
adaptive acoustic sensing concepts for networks of autonomous
underwater vehicles.

Prof. Schmidt is a Fellow of the Acoustical Society of America,
and he is the 2005 recipient of the ASA Pioneers of Underwater
Acoustics Medal.


