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Abstract—A hybrid data- and model-based autonomous en- environmental data
vironmental adaptation framework is presented which allows » measured salinity, temperature, pressure:
autonomous underwater vehicles (AUVs) with acoustic sens® calculated sound speed
to follow a path which optimizes their ability to maintain con-
nectivity with an acoustic contact for optimal sensing or conmu- <
nication. The adaptation framework is implemented within the (a) environment-based acoustic model
behavior-based MOOS-IvP marine autonomy architecture and (Generic Robotic Acoustic Modeling)
uses a new embedded high-fidelity acoustic modeling infrastc- modeled acoustics
ture, the Generic Robotic Acoustic Model (GRAM), to provide » transmission loss
real-time estimates of the acoustic environment under chaging » impulse response (delay spread)
environmental and situational scenarios. A set of behaviar that » noise

combine adaptation to the current acoustic environment wih
strategies that extend the decision horizon beyond that ofyp-
ical behavior-based systems have been developed, implertexh

(b) application-specific modeling
(communications, target localization) v

and demonstrated in a series of field experiments and virtual |modeled beamforming modeled communications
experiments in a MOOS-IvP simulation. expected direction to communications quality, P(Q)
. contact successful decoding (Bernoulli)

Index Terms—Underwater technology, Underwater acoustics, :{ symbol SNR

Robot sensing systems
(c) Al reasoning
I. INTRODUCTION i i
. . . actions actions

Autonomous underwater vehicles (AUVS) are increasingly » move to maximize SNR » decide to transmit or not
used in a variety of oceanographic and naval tasks, such| as » move to improve reception
oceanographlf: surveys, target detection and classificatitd _ () explore physical space &
seafloor imaging. Many of these tasks make use of acoustics data from other agents !
as either a remote sensing tool or as a communications signal easured
carrier. Propagation of acoustic signals are highly depend » communications quality
on the acoustic environment: the sea surface, water column, » acoustic P“eis(téri ’
and sea floor. Thus, accurate understanding of this envieahm > environment s,

may be exploited for improving the performance of sonars ] ] o
or acoustic modems, similarly to the optimization stragegi Fig- 1: Block diagram overview of the model-based adapfivit
used in the past by human platform and sonar 0per(—jltof,rggi_mework presented in this work. The right path focuses on
Computational acoustic modeling uses numerical methods fBProving acoustic communications (demonstrated in sacti
approximately solving the wave equation in real environtser!l) whereas the left path models sonar performance for a
whose parameters are too complex to handle analyticafi§fget tracking application (section IV-B). Both applicats
This paper presents the Generic Robotic Acoustic Modelifgnd others) can be run in parallel due to the RPC design of
(GRAM) concept for interfacing the artificial intelligenceGRAM (see section Il). The dotted arrows represent areas of
captaining the AUV to one or more existing acoustic modeltedback not presented in this work that could be exploited
such as the Acoustics Toolbox [1] or OASES [2] modeldOr better performance.
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A. MOOS-IvP Autonomy Software o OASES: a model that relies on wavenumber integration

The MOOS-IVP Autonomy software presented in [3] pro- (@ SOIve problems involving propagation in one or more
vides two main components that form the underpinnings for horizontally stratified layers, making it especially sdite
this work: for seismo-acoustics problems.

« MOOS publish/subscribe middleware: provides inter- Other acoustic models can be incorporated into the frame-

process communications (IPC) over TCP in a puly\_/ork presented in section Il. The Acoustics Toolbox and

lish/subscribe manner via a central “bulletin-board” pro?ASES were chosen for their maturity, open source avail-
and performance (both are written in Fortran, vihis

cess which contains a database of the latest samplean“tyj ) , ,
each data type. This enables the robotic software to gampiled to the platform’s native machine code).
split into many discrete subsystems that can be developed
and debugged independently. II. GRAM: L OwW POWER INSITU GENERALIZED

« The Interval Programming (IvP) Helm multi-objective ACOUSTICMODELING
decision engine: The IvP Helm provides an interface The Generic Robotic Acoustic Model (GRAM) provides
for a collection of behaviors to produce functions o& set of tools implemented in C++ for performing-situ
utility (which are soft decisions and can be multi-modainodeling of the acoustic environment for use by autonomous
over one or more domains (usually heading, speed, agiécision making (such as the IvP Helm used in the experi-
depth of the AUV). At a set frequency (typically onemental studies in sections Il and IV-B). A graphical sturet
Hertz), the IvP Helm solves all the behaviors’ functiongiagram of GRAM is provided in Fig. 2, showing also the
for a single hard decision that is passed to the vehiadiggested division of hardware systems based on the realtim
control system to execute. Unlike traditional behaviomnd performance (and thereby power) requirements. GRAM is
based control such as that championed by Brooks [4lesigned with several considerations that make it moreduit
the IvP Helm behaviors have state and therefore césv running on underwater embedded robotic systems than
run models and act on collected data, as is done in thgectly calling the underlying acoustic modeling code:

behaviors presented in this work. « asynchronous remote procedure call (RPC) design
MOOS-IVP has been used extensively in marine vehicle« runtime reconfigurable
autonomy research, such as cooperative search tasks][5]-[% abstracted interface
and adaptive oceanographic sensing [8], [9].

A. RPC design
B. Computational Acoustic Models GRAM is designed such that each “consumer” (an appli-

This work builds on several computational models that ug&tion or module that needs the result of an acoustic mode)
differing techniques for approximately solving the waveiaq makes asynchronous rgquests independently of the other con
tion in complex ocean environments. The theoretical treatm SUmers. Each request is processed by the GRAM tools and a

of the underlying approximations used for all these modglsiesponse is sent back containing the results of the model cal
discussed in depth in [10]: culation. The requests and responses can be transmitted ove

fransport of choice (e.g. TCP, shared memory, RS-232);én th
sults presented in this paper we use the MOOS middleware
CP-based transport. This design allows for the separation
soft realtime modeling computations from other firm or hard
B BELLHOP [11]: a model that generates ray U35 ealtime systems (“backseat” autonomous decision makidg a
Jectc_)nes, trans_mlssmn loss (_usmg Gauss'af‘ bea‘ﬁf]ontseat” low-level control and actuation), as consusneain
tracing), anq eigenray travel tlme_ OUtPUtS using th_(?ontinue to work using their most recent available datal unti
ray-base(_j h|gh-f_requency approximation of aCoUSHGe new model calculation is complete. This separation also
prop.aga_tlon..Thls is the model usgd for the €8381ows for the hardware performing the modeling to be pui int
studies in .th's work due to the rapid computation ., , power state, saving significant amounts of energy when
of ray tracing over other approaches. O_n e”.‘bedd required duty cycle of the modeling farm is somewhat
systems such as AUVS_’ fas'F co_mputahon IS O1Etel'%ss than one hundred percent. See Fig. 3 for a comparison
more |r_np0rtant thaf‘ high fidelity _due to power power usage for a split model/realtime system (such as
constrgmts and gvanablle computational resourCqjﬁagrammed in Fig. 2) versus a more traditional single CPU
See Fig. 3 for an illustration of how much power € oard design. The specifics of the mission and dynamics of the

gssfgr\fd by having a low duty cycle on the mOde"ngnvironment can change the required duty cycle dramaticall

— KRAKEN [12]: a normal modes based model. ) ]
KRAKEN treats the ocean waveguide as a sunf- Runtime reconfigurable
mation of modes and is thus best suited for more Each request for a model calculation can contain any
accurate modeling of somewhat lower frequenayr all of the parameters of the acoustic environment. This
(fewer modes) problems than BELLHOP is suitedllows for meshing fixed parameter values with real time
for. updates of the environment available from on-board sensors

« Acoustics Toolbox: a collection of computational model
and related tools. The two that are integrated into GRA
are:
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High performance CPU(s)
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| OASES Wavenumber Integration Model |
|

|
| | BELLHOP Ray Tracing Model | | KRAKEN Normal Modes Model | |
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| ~ - |
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GRAM Library (C++)

» Translates GRAM Request into model-specific language |
» Calls requested model
| » Translates model output into GRAM Response |

| iGRAM Application (C++) |

| » Reads GRAM Request and calls GRAM Library |
» Writes GRAM Response from GRAM Library

L G%I\/l Req_uest

Realtime Constraint

GRAM Response _

BHV_MaxSNRDepth
| » Reads Environmental data updates

» Writes GRAM Request / Reads GRAM Response
| » Does noise modeling
» Produces multimodal utility function over depth

BHV_AcommsDepth
» Reads Environmental data updates
» Writes GRAM Request / Reads GRAM Response
» Does Acoustic Commuications specific modeling
» Produces multimodal utility function over depth

& [
pHelmIvP

|Communications Subsysteml

Power & Performance

| » Short horizon O(1 second) decision engine

Sensor Subsystem
» Solves multiple objective functions over entire _ |

| speed, heading, depth domains for scalar desired action |

| “Frontseat” interface | |
“Backseat”: MOOS-IvP J

| “Frontseat”: Low level control, navigation, and sensing |
Vehicle manufacturer specific
. _J

Fig. 2: A structure diagram of an autonomous underwaterclehising the GRAM tools and the MOOS-IvP autonomy
middleware. See [13] for an overview of the “frontseat”-tkaeat” paradigm (Oliveira, et al. also use a similar sdjaraf
hardware in [14]). The present work adds a third physical mating layer, the model farm, which can be thought of a one
step further removed in terms of realtime requirements ftben“backseat”. While this separation is not required, i &e
used to save power, as illustrated in Fig. 3.

hard
low
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operator or a collaborating robot. Transmission of sucla dat
10t 1 can easily be accomplished once the mission is completed and
————————————————— the vehicle is recovered. However, the time sensitivity hef t
data may preclude waiting hours or days before its recovery.
Furthermore, offloading data during a mission guards agains
Split (GRAM) complete loss in the event of catastrophic vehicle failures
Finally, collaboration between two or more robots require
communications during the mission.

To this end, wireless acoustic communication systems have
been developed to allow for subsea telemetry. Sound is ssed a
a carrier rather than the more traditional radio or light esav
due to the very short electromagnetic skin depth of sea water
in all but very low frequencies (which require large antenna
) '_1 o to efficiently generate). Acoustic waves are far from an lidea

10 10 10 digital signal carrier, though. Attenuation due to absiorpt

Model Farm Duty Cycle which increases with frequency puts a practical upper bound

Fig. 3: Comparison of computer board power usagesfit on the usable carrier frequencies and consequently ailailab
low-power CPU (the “backseat”) and high-performance CPhandwidth. Multipath due to surface and bottom reflections
(“model farm”) versusombinedon a single high-performanceas well as refraction caused by the often highly stratified
board. Low-power board shown is the Eurotech Titan (Intgkrtical sound speed profile leads to intersymbol interfeee
520 MHz PXA270 XScale processor) [15]; high-performancand thereby high packet loss. The low speed of sound in water
board is the Advantech PCM-3363 (Intel 1.8 GHz Atom D52fominally 1500 m/s) leads to non-negligible Doppler effec
Dual Core processor) [16]. The duty cycle is the fraction &tojanovic [19], Preisig [20], and Baggeroer [21] cover all
time the acoustic models are being run, with the assumptitirese issues and how they influence the design of an acoustic
the model farm can be shut off in tisplit case the rest of the modem physical layer.
time. Except when the models are being run near constantly,
the sp!it system (?Ilustrated in Fig. 2) saves power, which ig Experimental Setup
especially useful in longer slower missions where hotel grow
usage dominates propulsion power usage [17].

= = = = Combined

o}

Power (Watts)
()Y

1N

The GLINT10 experiment took place in the shallow water
(nominally 110 meters deep) off Porto Santo Stefano, GR,
Italy in the Tyrrhenian Sea within ten kilometers of the

(e.g. Conductivity-Temperature-Depth (CTD) sensor) and/€XPeriment datum at2°27'24” N, 10°52'30” E. The acoustic
transmitted from a remote source (e.g. another AUV, seeelli€nvironment (see Fig. 4) was marked by a warm surface layer
surface craft). (corresponding to a high speed of sound) followed by a sharp

thermocline and cooler water. From the perspective of this
work, the experiment has two goals:

1) Collect statistics on acoustic modem performance as
a function of range and depth for use in validating
the utility of the adaptive behaviors and for develop-
ing feedback learning for future missions. On previous
experiments in a similar environment, qualitative obser-
vations had been made about much improved modem
performance at deeper depths. This experiment hopes to

C. Abstracted interface

GRAM uses an extensible object-oriented representation
of the acoustic environment (written in a language-neutral
Protocol Buffers representation [18]), which is trangaiteto
the specific input format required by the desired acoustic
model. Many of these models use arcane input formats that
are intolerant of syntactical mistakes. Given the costsld¥4
(hundreds of thousands of US dollars) and the operational . : . ;

: validate and quantify this observation.
costs of AUV experiments (thousands of dollars per day), . .

. . . ' 2) Demonstrate an adaptive behavior
accepted software quality practices that emphasize saving BHV AcommsDepth for tracking the modeled
programming time and increasing reliability are of_ utmost . < icsion loss minimum calculated using the
concern to AUV researchers. The abstracted GRAM interfaces sound speed profile obtained by the AUV using the

,F;\Z:Oovlz(izistrjr?)s()elbgza;:\{j ?Xg‘;stzit rtlr(;?' native interfaceo t thermocline detection and tracking behaviors developed
' as part of [9].

* comp!le-t!me type checklng_ S Both of these were performed using a single AUV (“Uni-

« compile-time bounds checking on enumeration fields i S . e

« run-time bounds checking on numeric fields corn”) and a communications b_uoy( Bu.oy ) fixed at 30 meters_
depth. Both assets were equipped with the WHOI acoustic

Micro-Modem in the “C” frequency band using modulation

) i rate “0": see Table | for the corresponding acoustical and

A. Acoustic Communications modulation parameters. This choice of modem hardware was

Most autonomous vehicle tasks share a common elemativen by availability and convenience; the adaptive barav
collection of data that are only useful once they reach a mumia this work are based on fundamental acoustics that affect

IIl. GLINT10 SHALLOW WATER EXPERIMENT
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0r 08/14 TABLE I: GLINT10 Experiment Parameters
10t Geometric |
Source (Buoy) depth 30 m
20 + 08/12 Receiver (AUV) depth variable (primarily 0-60 m)
Source (Buoy) speed 0.03 m/s & = 0.02 m/s)
30t Receiver (AUV) speed 1.47 m/s & = 0.14 m/s)
azimuthally omni-directional; polar is
—~ 40°Ff 3 1 08/10 Source beam pattern 5dB reduced towards surface and bot-
£ » tom.
% 50 : Environmental |
3 ‘ Sea state (Beaufort) 1-3
601 i§  08/08 Sea floor depth 111 m ¢ = 4.7 m)
@
70 Signaling? |
3 Source Level 190 dBre 1uPaat1 m
801 8 08/06 Frequency (carrier) 25120 Hz
§ Bandwidth 4160 Hz
90 ) Frequency-hopping  Frequency  Shift
Modulation Keying (FH-FSK)
10{)500 15I10 15I20 15I30 15I40 08/04 Frequency hops !
Symbol bin width 320 Hz
sound speed (m/s) -
Symbol duration 6.25 ms
Fig. 4: The 111 sound speed profiles calculated using theymbol clearing time 6 symbols = 37.5 ms
Chen/Millero equation [24] from the temperature, salinity Error correction coding rate 1/2 convolutional code
and pressure data collected by the AUV Unicorn throughougymbols / transmission 576
the GLINT10 experiment starting on 4 August 2010. ProﬁlesB,JlV_AcommsDepth
were collected by the AUV performing one or more “yoyo _ .
. . . Acoustic model windowr, 120 s
maneuvers in depth and are averaged over thirty minute— :
Environmental windowr, 1800 s

windows. Initially the stratification is more pronounceddre
. y . P L. a See [22] for further details on coding and modulation and| 28 the packet
a storm early in the experiment caused some mixing of surfacegpeification.

and bottom waters.

A the performance of all acoustic modems. Different modaiati
schemes and adaptive equalization will cause improvedtsesu
Platform T10° in certain environments, but they cannot remedy the uniheyly
noolicati ) signal’s quality. The behaviors developed here work to mapr
pplication | g the underlying signal which should in turn improve modem
o |Presentation g performance regardless of the mo_dem chosen. This work is
o © complementary to that on the physical layer such as [26] and
S Session S [27], and operates on a level above the traditional netvagrki
—g g “stack” in a new layer called the “platform” layer as shown in
2 | Transport [ & Fig. 5. The timescales involved are widely different as well
= ‘g BHV_AcomsDept h aims to improve communications tak-
7 Network e ing into account environmental changes on the order of hours
© : § whereas physical layer communications work is attempted to
Data Link E account for changes on the order of milliseconds.
58]
Physical 410

C. BHV_AcommsDepth: Autonomy Behavior for maximizing
Fig. 5: The work in this section can be thought of aacoustic modem performance over vehicle depth

comprised of a new layer above the traditional seven-layer.l_his IvP Helm behavior was written to arbitrate over the

Open Systems Initiative (OSI) networking stack [25]. Arerth depth decision domain with the goal of improving acoustic

way of thinking about this compared to other work in thecommunications reception between an AUV and a fixed (or

networking system is the timescale of environmental changsq wly moving) receiver, It makes use of the modeled acosist
that are focused on; that is, the physical layer is concernfeg '

. o . 0 form a soft decision based on the expected best communi-
with symbol-to-symbol variation in the channel (millisects), cations throughput P

whereas this work tackles hourly or longer scale variation | : :
the environment Using the newest available sound speed data
' BHV_AcomsDept h makes a request to GRAM for a
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fp=0m fp=800m I, = 1600 m calculate the modeled transmission loss
0 0 0 ro+ATr 2
—_— P(d
H(d) = —10logyo [ | Y PN A @
20 20 20 <« T=T0 PO
10 10 where P(d,r) is the acoustic pressure in AUV depth) (
—_ 0 and range ), and P, is the pressure at the source. Using
E this averaged transmission lo®HV_AcommsDept h seeks
< 60 60 60 o T . .
= to maximize the expected acoustic signal level via an olvect
Q —> .
S 0 80 . function (O(d)) over AUV depth
H(d)
100 100 100 O(d) = max <1 g 7()) 3)
max
120 120 120 where H,,,, IS a normalization constant representing the
60 80 100 ~ 44 46 48 30 40 50

N transmission loss threshold above which the vehicle igjaesi
utility (%) no utility to be at that depth. This can either be the maximum
(a) Three example plots of the BH¥commsDepth objective functio®(d)  f for a given window (as was used in the GLINT10 trial) or

(Eqg. 3) using the ray trace shown in Fig. ®,= 0, Hy,q. = 108 dB, and . . . .
remaining parameters as given in Table I. In the absenceheir dtehaviors, a g|0ba| maximum determined based on the received S'gnal

the vehicle’s decision for depth is marked by an arrow. statistics. For the data collected during this experimant,
H,,.. of 108 dB would be a reasonable choice as less than
BHV_AcommsDepth ~ ~=~--- Minimum Altitude (20m) 1% of messages were received at measured transmission losses
o Depth Avoidance (40.m) T Mean higher than this. This value was used in the objective fomsti
plotted in Fig. 6. Another more aggressive choice could be
201 the minimum probability of error decision rule for the bipar
hypothesis test between a packet being received sucdgssful
40 — \’ or a packet being dropped. Based on the GLINT10 data, this
E o criterion would lead toH,,,,, = 94 dB.
=} 60| The completed objective functio®(d) is then passed to
3 the IvP Helm to solve along with the other behaviors for the
80r heading and speed domains. An example of W) interacts
100k with other objective functions that also operate in the Hept
decision domain is illustrated in Fig. 6b.
120— - : - - -
0 20 40 60 80 100 D. Mission profile
utility (%)

(b) One possible interaction of BHVAcommsDepth with other behaviors. The This experiment was deS|gm_:"d to test th? eﬁeCtlveneS§ of
objective function forrp = 800m is shown along with two other behaviorsmodel-based adaptivity on a single AUV without expensive
(one for avoiding a hypothetical obstacle at 40m and a safeliavior to stay equipment such as an upward-facing Acoustic Doppler Ctirren
20m off the sea floor). Again, the decision is given by an arrow Profiler (ADCP) which could measure sea-surface conditions
Fig. 6: Example BHVYAcommsDepth objective functionsThe required equipment for this experiment was only a CTD
without (a) and with (b) concurrent depth-domain behaviorand enough computational power to run the MOOS-IvP and
GRAM combined autonomy and modeling system.
Each mission was run with a basic straight-line "racetrack”
transmission loss calculation for the range windaw where in the Northings/Eastings local UTM Cartesian plane. The
interesting part of the mission happens in depth, with thed go
Ar = |T|cos(0) 7 (1) that theBHV_AcommrsDept h would run simultaneously with
other behaviors arbitrating over the Northings/Eastingse
formed from the vehicle’s current positiog for a predefined (via a chosen desired speed and heading). In addition, it is
time horizon7, based on its current instantaneous velocitgxpected that other behaviors will be added to influence the
7o and angle® with respect to the Buoy (wher® = 0 is chosen depth of the vehicle, and the multi-objective solver
defined as when the AUV’'s bow is pointing directly awayf the IvP Helm resolving these multiple functions over the
from the buoy’s position). This request is made at leastyeverehicle’s utility for a given depth. Each mission followdus
7, seconds so that the modeled region in range-depth spatan:
(with respect to the receiver) always contains the actuabre 1) Gather a CTD profile by making sinusoidal excursions

that the vehicle currently occupies. in depth, starting with close to the full water column
The sound speed is assumed homogeneous in range (i.e. the and narrowing down to adapt to the thermocline region

Northings/Eastings plane) given the infeasibility of sdingp where the most changes in temperature (and by exten-

all points in the vehicle’s future patiBHV_AcomsDept h sion sound speed in this environment) are occuring. This

then averages the modeled intensity over the range window to  thermocline adaptivity is described in [9].
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2) These CTD data are passed BblV_AconmsDept h Fig. 7 (c) gives the modeled root-mean-square delay spread
which generates an objective function for the IvP Helmg,;s calculated using the experiment mean sound speed
to solve along with the other behaviors for the headingrofile (SSP) (Fig. 7 (a)) where
and speed domains. The BELLHOP model was used = =

i i ; I3 (r = 7)2A(T)dr
with GRAM for this work due to the high frequency (25 TRMS = 0~ _ (5)
kHz) of the acoustic carrier. For this experiment, no be- fo A(r)dr

haviors besideBHV_Acomrs Dept h were running that and A(r) is the intensity of the arrivals where = 0 is the
produced an objective function over depth, so that Wgst arrival. In general, deeper water has a lower delayaspre
could evaluate the performanceBfiV_AcomsDept h  |eading to potentially reduced intersymbol interference.
alone. The experimental data from all the transmissioné &

3) The vehicle moves to the optimal depth determineghs0) sent by the AUV Unicorn to the Buoy were used to
by BHV_AcommsDept h and at least every, seconds compare against the modeled data. The data were split ito tw
reruns the GRAM model from step 2) taking intogroups using a basic division interesting to AUV robotigist
account changes in heading and speed. Less often &k the message received correctly (R=good) or not (R=bad)?
the environmental intervar,) a reset to step 1) is A message was considered to be received correctly if it had
made to remeasure the sound speed profile and for &y errors after decoding (as verified by a cyclic redundancy
changes in the environment. should be much less check in the WHOI Micro-Modem). Any other problem with
than the timescale of changes to the environment. Sing® message meant that it was considered not to be received
the shallow water Mediterranean sound speed profi@rrectly. A probability distribution of the vehicle’s dép
changes significantly on the order of one day timescalg$:(D)) throughout the experiment was estimated from the
7. was chosen to about a two orders of magnitude belayata using an Epanechnikov kernel smoothing estimate. Also
that, or 1800 seconds. a conditional probability of depth given that the messages

were received P(D|R = good)) was computed in a sim-

ilar manner. Of greater interest is the posterior probihbili

(P(R = good|D = d)) which was computed for all depths

1) Modeling and communications statistiche modeling d using the priorP(D) and Bayes’ rule:
and statistical results of the GLINT10 experiment are summa

E. Results

rized in Fig. 7. Fig. 7 (a) shows a BELLHOP ray tracing model P(D = d|R = good)P(R = good)
for the average sound speed profile of the entire experimentF(R = good|D = d) = P(D = d)
give a general overview of the acoustic environment from the (6)

perspective of the Buoy as source and show the significanfThis posterior was plotted in Fig. 7 (d). For ranges greater
downward refraction due to the thermocline from 10 to 3than 800 meters (range bins 3-5), the data show a strong depth
meters depth. Note that this average erases some of the smi@fiendency, with modem performance doubling from twenty
scale features present in each actual profile (taken emerymeters to fifty meters in the farthest range bin. At short esng
seconds and plotted in Fig. 4) that the vehicle actually uses< 800 m), large percentage®’(R = good|D = depth) >
for its modeling. 0.75) of the messages are received which is likely due to
For display purposes, the remaining plots are split into 4@0e strong direct arrival (first bottom bounce occurs-at
meter range bins where all data shown within are averagedlih00 meters) and generally high signal strength. As would be
range over these bins. Only the upper 60 meters of the wagpected given that modem performance depends on signal
column are shown as this is where the AUV spent most of isdrength, this is the inverse of the modeled transmissisa lo
time. Fig. 7 (b) gives the modeled transmission lo&s,(d)) in Fig. 7(b), which shows a depth dependency in the same
using the profiles (instantiations) taken by the vehicletheth bins (decreasingd with increasing depth). These data also
averaged in intensity over the instantiations as well akiwit do not show a strong correlation with the modeled delay
each range bin, that is spreadrzyss. This may be due to the fact that the real delay
spread is significantly influenced by the sea surface, which
1O‘H(d’i)/10> @) was naively modeled using a flat pressure release surface in
this work due to the lack of onboard knowledge about the sea
state. Furthermore, the symbol clearing time of the FH-FSK
whereH (d, i) is given by equation 2 for each instantiation ofodulation employed is 37.5 ms, significantly longer tham th
the sound speed profile In this caseAr = 400 andry = delay spreads modeled here (the root-mean-square valeies ar
Ar(n — 1) wheren = [1,5] corresponds to each of the fivein the 10-20 ms range).
displayed range bins. The error bars (standard deviatidimeof 2) AUV Adaptivity: Fig. 8 shows the position of the AUV
intensity over all the sound speed profile instantiatiom®ws during its missions runninBHV_AconmmsDept h on 8 August
the sensitivity of various parts of the transmission losst pl2010 overlaid with a single representative transmissi@s lo
to changes in the sound speed profile. The regions of higlay trace from that day. The vehicle tracks the modeled
standard deviation are caused by caustics moving locatien @lownbeaming from 400-1000 meters well and also picks up
to small changes in the sound speed profile. In general, deeje convergence zone off the first bottom bounce from 1400-
depths have lowef! in this environment. 2000 meters. As can be seen from the sensitivity analysis in

tmax

1
Hy,(d) = —10logy, (z— Z
max i=0
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(c) Modeled root-mean-square delay spread from the meamdsou (d) Estimated conditional probability of successful retei
speed profile shown in part (a). Due to the 37.5 ms of clearing (R=good) plotted over the conditioning depth. Depths wtthee
time used by the incoherent FH-FSK modulation of the modeen, w AUV was present less tharfd of the transmissions are excluded.
expect that this delay spread will have little effect on thecgssful

receipt of datagrams.

Fig. 7: Modeled (using GRAM and BELLHOP) and measured daienfthe GLINT10 experiment. Note that at longer ranges
(r > 800 m), there is a inverse correlation between the modeledrv&s#on loss (b) and the estimated probability of succéssfu
receipt (d), as expected.
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Fig. 8: Depth position of the AUV Unicorn (white circles) wirespect to range from the Buoy overlaid on a representative
ray trace from 8 August 2010 08:28:19 Z.

Fig. 7(b), the region from 800-1200 has the highest seiityitiv IV. AcousTICCONNECTIVITY IN DEEPOCEAN
to changes in the sound speed profile. The AUV is responding ENVIRONMENTS

to modeled caustics in this region that may or may not be realln contrast to littoral environments, the bulk of the deep

?n%.f?re unllke_ly ttr(w) be vlvhere_ they a:ef prec:;]cted t((; ?e_l_ﬂ%ean is well isolated from atmospheric forcing, reducing
o d ertences n fe_rea enwrorln;;eﬂ(\/ Ar\om eDemot ﬁt the temporal variability on hourly and daily scale to a small
SUggests an area of Improvermen —ACOMBLEPLN 10 45 0tion of volume close to the surface. Thus, the features
filter its objective function with a low pass filter with a cifto

. | tional to th d itivity. B ) of sound speed profile most significant to the acoustic en-
INVETSely proportiona’ fo the Measured sensitivity. by '@_mo’ _vironment are extremely stable, most notably the isotherma
the BHV_AconmmsDept h would make less certain choices in

liaht of taintv. leaving depth decisi to behmi gradient dominating the sound speed profile below the SOFAR
tlr? ¢ r? uncer a'E Y, ?a(\jnng ep ecisions up to be HW’channel, controlling the dominant convergence zone prapag
at have more knowledge. tion characteristic of deep ocean acoustics.

Another feature of the deep ocean which makes depth
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adaptation beneficial is the strong spatial diversity of thepeed profile, noise profiles, and noise directionalityjcdd
ambient noise. Thus, in shallow water, the ambient noisd fisllOOS processes are fusing environmental information from
tends to be dominated by the local, surface-generated.noisi available sources, including i) historical data in oralb
The noise from distant shipping and atmospheric disturesnalatabases; ii) environmental updates received fromFibkl
will undergo significant attenuation due to the strong battoControl via the acoustic communication network; iii) in-situ
interaction inherent to shallow water propagation. In castt measurements by environmental sensors; and iv) on-board
the upward-refracting deep sea sound speed gradient allonsdeling.
noise from distant, natural and man-made sources of ambienThe current environmental estimates resulting from thta da
noise to be carried over long distances with limited or nfusion are assumed to be slowly varying and are therefore
bottom interaction [10]. In very deep ocean environments gtored in the MOOSDB for use by the modeling infrastructure
particular, this can result in an ambient noise field which &nd the autonomy behaviors. For example, the overall depth-
highly depth dependent. Thus, at depths above the criticldpendence of the SSP, and the noise 18l and array gain
depth, the ambient noise field has significant contributiondG, will rarely be available from in-situ local measurements,
from both local surface sources, and distant shipping aadd will therefore be fixed at mission start. On the other hand
storms. Below the critical depth the acoustic field due ttatis occasional updates of the near-surface SSP, the locatiloA of
sources is evanescent, and the noise field is reduced tortiat pal shipping traffic, and local noise measurements may ke use
duced by sources within a horizontal range of approximately update the environmental picture, which is then pubtishe
half a convergence zone, the so-called Reliable Acoustic Pén the appropriate MOOS variables, allowing the platform to
(RAP) cone. Consequently a reduction in noise of several di8lapt to changes in the ambient noise field etc. For example
can be expected near the bottom in such environments, whihe OASES model can be used through GRAM to estimate
may be exploited by the platform autonomy. the current noise directionality, which may subsequently b
Another feature associated with the interplay of signal anted to update the estimate of the array gain for the current
noise which may be exploited is the spatial diversity of thgeometrical configuration.
array gain. Thus, the performance of the acoustic array pro4n addition, theMission Manageris maintaining thesitu-
cessing not only depends on the signal-to-noise ratio (SNRJional awarenessincluding navigation information for the
but also on the angular distribution of the signal and noiggatform itself, collaborating platforms, and acoustintaxts,
components. For a deep receiver platform communicatingguired for the acoustic modeling of the transmission,loss
with a shallow collaborator, the most reliable acoustichpaand keeps track of the current geometry of receiving acousti
will follow the convergence zone path, and the dominamtrrays and sources on-board the platform, which is required
elevation angle at the deep node will depend on the rander the array gain term in the sonar equation.
positive for short ranges, and negative for ranges beyoifd ha Based on the currently availabknvironmental and situ-
a convergence zone (approx. 30 km). Similarly, the noisdional picturethe autonomy system can generate objective
directionality will depend on the horizontal source distition, functions which optimize the sonar equation (Eqg. 7), or
potentially leading to a strong depth dependence of theyarreomponents thereof. For that purpose a dedicated MOOS-IvP
gain which may be exploited for optimal system performanckehaviorBHV_Max SNRDept h has been developed. Thus, as
These features of the signal to noise trade-offs are convisstrated in Fig. 9, it will first retrieve the depth-depance
niently captured in the classicabnar equationwhich may of the ambient noiseéVL from the MOOSDB. Then, it will
be modeled by the GRAM infrastructure in combination witubmit a request to iIGRAM for a current estimate of all
environmental information provided to the undersea ptaifo ray arrivals predicted for the acoustic contact of interest
via the command and control infrastructure. Using a local plane-wave representation the behavior it wil
continuously use this ray expansion to generate an estiofiate
the current array response, representing the tedfis— H
o ) ) in the sonar equation. This performance metric is shown
In its simplest form thePassive Sonar Equatiorelevant i the lower, center plot as contours versus elevation angle
to passive acoustic sensing and to underwater commumcatipyq depth in the water column. The behavior then combines
takes the form [10] the two depth-functions into one depth objective function,
SE=SL—H — NL + AG, @) represent.ing the u_tiIity versus depth for th_e sgnsing dbgec
As described earlier, this objective function is then mdrge
where SE is the resultingignal excessSL is thesource level with other depth behavior objective functions by the IvP tiaul
H thetransmission losNL the noise levelnd AG is thearray  objective optimization algorithm.
gain, all expressed in dB. The reason for choosing variable weighting of the signal and
Figure 9 illustrates how an optimization of the system penoise components in the sonar equation is the fact that their
formance can be straightforwardly achieved in the MOOS-Iuliability can vary significantly. Thus, the average histal
autonomy architecture expanded by the GRAM environmentahbient noise profile may have a significant uncertainty, in
acoustic modeling framework. particular in regions with heavy seasonal shipping or atmo-
The Mission Manageiprocesses are responsible for mainspheric conditions. In such cases the weight of dhe terms
taining the situational awareness of the autonomy system. §hould be reduced. Similarly, if the propagation environme
generate the currergnvironmental picturencluding sound is highly variable, more weight may be applied to the noise

A. Depth Adaptation for Sonar Equation Optimization
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Fig. 9: Functionality of model-based depth adaptation orepdsubmersible for minimizing signal-noise ratio for nbaiiming
optimal acoustic connectivity with near-surface acousbatact. The on-board mission manager process will, bagethe
current environmental and situational information, refjueom GRAM a forecast of the estimated transmission lo$ss T
forecast is then combined with estimates of the other temtha sonar equation for planning the future depth trajgctbus
improving connectivity.

profile in choosing the optimal depth. AUV operating in 100 m deep shallow water can reach any
Although the principle of the depth-adaptation as desdrib@ew depth in less than a couple of minutes. Consequently, the
above is rather simple, there are a couple of subtle issdegecasting horizon required for the adaptive depth chavitje
associated with the use of the concept in deep water. have to be significantly larger. On the other hand, the dawisi
The first is the nature of the caustics characteristic $#§ change depth cannotbe based on a fixed forecasting horizon
the deep convergence zone propagation. As describedrearfi@ €xample, to reach a certain depth in 30 minutes may
caustics also play an important role for depth-adaptatiégduire that the platform cross through a shadow zone, which
in shallow water. However, the convergence zone caustisOPviously detrimental to the acoustic connectivity. $hu
associated with a deep source or receiver can be modeled WW&¢iSions about depth changes have to be made on the basis of
high confidence level due to the extraordinarily stable reanfi  the entire time from the present to the chosen maximum time
the deep sea SSP gradient. Further, in contrast to the shalffrizon. INBHV_MaxSNRDept h this is done by forecasting
water case, the convergence zone caustics of relevancepo d8€ depth objective function over a set of ranges up to and
platforms always have the shadow zone above the causti¢luding the forecasting horizon. Then, the depth denisso
Therefore, robustness requires that a bias towards depthnide based on the following, simple, strategy:
built into the depth objective function. Parameter studiage « If the platform is already at or near the optimal depth
shown that for realistic variations of the near surface S&P a locally, it will remain there by choosing a short time

realistic depth uncertainty of the acoustic contact, thpttde forecast as a basis for the adaptation.

of the caustic can be predicted with an error of order 50 m.« If the local depth is not any longer near the optimal,
Hence, a low-pass filtering of the raw depth-objective fiorct e.g. when approaching a range where a convergence
with a spatial cutoff frequency of 1/50 ™ , starting at the zone caustic is forming, the behavior will select as a
surface, will yield an optimal depth of order 100 m below the target depth the optimal depth at a range within the
predicted caustic, well into the 'safe zone’. forecast horizon, which can be reached with the minimum

Another issue of particular importance to the deep water Platform pitch.
application is the time scales associated with depth clmang€he first criteria will ensure that once the platform has heac
The maximum pitch of an AUV is of orde20°, which for a stable optimum, it will track it until a discretely differe
a typical platform speed of 1.5 m/s yields a maximum ratptimum starts developing somewhere in the section of the
of depth change of 0.75 m/s. Hence, it takes more than 2@ter column allowed for the adaptation. The second caiteri
minutes required to change the depth by 1 km. In contrast, aill ensure that the platform is not forced to change depth
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so fast that it crosses into a shadow zone to reach a futadi@es not allow it to continue to track the caustic, and it
optimum. In other words, the platform will try to reachinstead continues to climb at its maximum pitch.

an optimum depth ’ridge’ tangentially. Of course this is all To illustrate the performance of the low-pass filtering o th
assuming that the contact motion continues at the currefgpth objective function, Fig. 11 shows the raw depth ohject
range rate and heading. Also, the depth control is not mafimction at 43 km range for the example in Fig. 10. The left
in pitch directly, but in depth, so whenever significant deptplot shows the raw depth objective function for minimizihg t
changes are requested, the platform will increase the pitsignal-to-noise ratio, while the right plot shows the loasped
to maximum. However, since this process is repeated at tliltered objective function with a maximum 100 m below the
rate of the IvP Helm updates, typically of order of a secondgpth of the convergence zone caustic.

the depth adaptation will occur smoothly, as illustratedhie

simulation example following. V.. CONCLUSION

In this work, the new Generic Robotic Acoustic Modeling

B. Deep Sea Simulation Example (GRAM) tool was introduced for successfully utilizing ethgy

. acoustic models on embedded processors onboard autonomous
For demonstrating the deep ocean performance of the acous- . . .
. L AT . . ._“~underwater vehicles. GRAM was applied to two represergativ
tic connectivity optimization behavior, we will use the hig

fidelity simulation environment developed and establishé)csOblems'.'mprovmg commu_nlcgn_on N an anlsqtroplc shall _
Wwater environment, and maintaining contact with an acousti

at MIT. This virtual environment provides a virtual ocean .
. o : : target in the deep sea.

environment with high-fidelity simulation of the environmnial In addition to the examples given here. GRAM has an-

acoustics, using the GRAM embedded modeling infrastruc pies g ' P

ture. In addition to the environmental acoustic modelirgg, tpficability for software-only simulation of actual sonaas

. . . ell as hardware-in-the-loop testing of modem systems (ehe
simulator also incorporates hydrodynamic models of both -

: .. signals from an existing hardware modem are delayed and
the submersible and sonar arrays, as well as the ability

. : : L > convolved with the channel measured by GRAM). These tools
simulate the supporting acoustic communication netwaykin

The fidelity of the simulation environment allows the tegtinare available as part of the open source LAMSS project (https

of the exact same autonomy software and configuration {Iéqlsaunchpad.netllamss) and access is available uponsetpie

applied in actual field deployments. € authors.
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