NETSIM

A Realtime Virtual Ocean Hardware-in-the-loop Acoustic Modem Network Simulator

> **Toby Schneider** GobySoft, LLC

gobysoft.org

Henrik Schmidt Massachusetts Institute of Technology

> UComms 2018 Lerici, Italy

Existing Acomms Test-beds

- At-sea testing
 - Benefits:
 - Real environment, choice of location
 - Limitations:
 - High cost and logistics
 - Limited temporal variation
- Hardware Test-beds (e.g. Seaweb, LOON)
 - Benefits:
 - Real environment, remotely accessible
 - Limitations:
 - Spatially constrained
 - Limited mobile node support
 - No concurrent users
 - Significant cost

2005 Rice. Seaweb Acoustic Com/Nav Networks

2014. Alves, et al. The LOON in 2014

NETSIM: Motivation

- Hardware-in-the-loop virtual testbed
 - Benefits:
 - Low cost
 - Always accessible, concurrent users
 - Variety of available environments
 - Limitations:

- Performance is only as accurate as the Virtual Ocean and channel models.
- NETSIM can be a test bed for:
 - Modem designs
 - Networking protocols
 - Real-time channel simulators
 - Vehicle autonomy for improved acomms

NETSIM: Design

Three decoupled major components:

- Audioserver (netsim_core/netsim_manager)
 - real-time audio processing (to/from modems)
 - virtual vehicle position
 - serves connections to modem link layer interface (serial)
- Virtual Ocean Environment simulator and channel model
- Vehicle Simulation (provides positions in virtual env). Can be located anywhere on the internet.

NETSIM: Schneider & Schmidt / UComms 2018

Audioserver: netsim_core

- Audio processing
 - real-time audio record/playback using Jack Linux audio
 - based on Goby3 publish/subscribe middleware
 - multithreaded and scalable
- Current setup (Hardware)
 - M-Audio Fast Track Ultra 8R (8-in, 8-out, 96kHz, 24-bit)

- Intel Xeon X5450 (4 cores @ 3.0 GHz): probably excessive.

Audioserver: netsim_core

- 3 modem example:
 - Modems 1 (blue) & 3 (red) transmit
 - Depending on spatial and temporal separation, packet collision could occur at modem 1
 - Each Rx/Tx pair "sees" a different channel

Audioserver: netsim_manager

- Basic TCP-based protocol for interfacing to vehicle simulations:
 - Latitude, longitude, depth, time, speed heading
 - No constraint on choice of vehicle software (e.g. MOOS, ROS, Goby, etc.)
- Forwards a given simulated vehicle location to the correct virtual environment.
 - For example, vehicles can simultaneously run in the Atlantic and the Arctic on the same audioserver.

MIT Virtual Ocean Autonomy Testbed

Real-Time Signal Construction

Passive Sonar: Target signal modeled as spectrally shaded pseudo-random noise. 50% overlap/add for received signal.

Active Sonar, Communication: Phase coherent transmit within slot. Time-varying impulse response.

Multipath Doppler in Ocean Waveguides

NETSIM: Schneider & Schmidt / UComms 2018

Virtual Ocean Modem Stimulator

Asynchronous Nested Acoustic Modeling (each contact)

NETSIM: Schneider & Schmidt / UComms 2018

Results: Arctic Environment Beaufort Lens 1000 depth (m) 5000 1430 1435 1440 1445 1450 1455 1460 3000 4000 └─ 1420 1440 1500 1520 1460 1480 sound speed (m/s) AUV Communications to ice camp Sargo (33 m deep hydrophone) Alaska (Video)

Results: Arctic Environment

NETSIM: Schneider & Schmidt / UComms 2018

Sharing

- Virtual Ocean: LAMSS: https://github.mit.edu/lamss
- NETSIM: https://github.mit.edu/toby-1/netsim
- Goby3: https://github.com/GobySoft/goby3

Questions?

NETSIM: Schneider & Schmidt / UComms 2018

Virtual Ocean Environment Simulator

- General Features
 - Compatible and consistent topside and embedded versions
 - Real-time element level timeseries for virtual stimulation of general volumetric arrays
 - Computation time less than travel time using nested architecture
 - Range-dependent ocean waveguide multipaths
 - BELLHOP/KRAKENC Legacy Acoustic Models
 - Full 3D Ocean dynamics through interface to MSEAS/HYCOM modeling and date assimilation frameworks
 - Direct NetCDF interface for simulator or onboard baseline environment
 - EOF coefficient updates transmitted to UUV via modem
 - Moored VLA, HLA or volumetric arrays
 - Hull-mounted or towed arrays coupled with AUV dynamic model
 - Correlated ambient noise for 3D volumetric arrays
 - 3D Noise correlation simulated through spectral decomposition of OASES/Kuperman-Ingenito (OASN) model
 - Timeseries realization through Cholesky factorization
 - Temporal and spatial doppler shift (Schmidt and Kuperman, 1994)
- Active Sonar Simulator
 - Sea surface reverberation (Gauss, NRL)
 - Seabed reverberation (in progress)
 - CW, FM and customized waveforms
- Passive Sonar Simulator
 - Hydrophone or vector sensor arrays
 - Pseudo-random sources (ships, submarines)
 - Coded communication and navigation signals
- Modem Network Simulator
 - HITL Modem pool linked with acoustic model
 - Multipath doppler and fading
 - Surface scattering jitter

Correlated Surface Noise Modeling

- Kuperman-Ingenito noise model
 - Implemented using environmental parameters
 - Infinite surface of monopole sources just below ocean surface
 - Becomes sheet of dipole sources
 - Noise spatially stationary in range, but not in depth
 - Normal mode representation
 - Ignores continuous spectrum
 - Wavenumber integration (OASES)
 - Accounts for full wavenumber spectrum, but computationally intensive
- Spherical decomposition of noise field
 - Azimuthally isotropic noise
 - Any vertical spatial noise distribution:
 - Noise spectrum independent of azimuth angle $\phi,$ but dependent on elevation angle θ
 - Same approach can be used to model ducted noise (distant shipping), etc.
 - Spatially stationary in range and depth
 - Computationally efficient for arbitrary volumetric arrays
- Element-level noise timeseries
 - Use OASES/OASN (wavenumber integral representation of Kuperman-Ingenito model) to generate noise dependence with elevation
 - Use the vertical noise directionality as an input to the spherical decomposition of the noise for generating noise covariance for arbitrary volumetric arrays.
 - Real-time Generation correlated noise timeseries using Choleski factorization of covariance matrix and gaussian random process.

Philippine Sea, 5500 m Depth Vertical Noise Directionality 90

Virtual Ocean Array Stimulator

Asynchronous Nested Ambient Noise Modeling

