
Goby3: A new open-source middleware for nested
communication on autonomous marine vehicles

Toby Schneider
GobySoft, LLC

Woods Hole, MA, USA
Email: toby@gobysoft.org

Abstract—Software systems for robotics increasingly
require support for robust interprocess communication
with common interfaces, which has given rise to the use
of “middleware” software projects. However, autonomous
underwater vehicles (AUVs) have a significantly different
intervehicle communication regime than other branches
of robotics due to the physical realities of the ocean as a
communication medium.

Goby3 is a new middleware, the first specifically
designed to address intervehicle, interprocess, and in-
terthread communication on AUVs in a unified manner.
Goby3 is based on C++11 and is minimally restrictive
on the types that can be published and subscribed using
it. A reference implementation is given that uses C++
shared pointers for interthread, ZeroMQ for interprocess,
and Goby-Acomms for intervehicle communication. This
implementation is shown to give similar or better perfor-
mance to existing middlewares.

I. INTRODUCTION

Developing and maintaining software systems for au-
tonomous underwater vehicles (AUVs) and autonomous
surface craft is rapidly becoming one of the most com-
plex tasks for successful development of these platforms
as hardware components (sensors, actuators, computing
elements) reach a plateau of maturity and commodiza-
tion.

Managing this complexity can be accomplished
through several means: abstraction and standardization
of interfaces, modularization of software components,
and leveraging of existing open source resources. To
assist in these goals, various software projects have
become widely used in the marine robotics community.
These projects are referred to as “middlewares” for
their intermediary role in between the operation system
resources (especially those pertaining to communication)
and the robotic application software. Several examples of
middleware that have been used on marine vehicles in-
clude MOOS [1], the Robot Operating System (ROS) [2],

and the Lightweight Communications and Marshalling
(LCM) project [3].

From the prospective of middleware, the marine en-
vironment poses a significant unique challenge: the ex-
tremely low throughput typically available for interve-
hicle communications, since acoustic modems and low
throughput electromagnetic-based systems (e.g. satellite
modems) are often the only practical choice. None of
the existing middlewares address this specific challenge,
and approaches to intervehicle communication tend to be
decoupled from intravehicle communication. At the same
time, users are increasingly fielding multiple AUVs due
to reduced vehicle cost and increased need for spacial
coverage.

Thus, version 3 of the Goby Underwater Autonomy
project (Goby3) offers a new middleware specifically
designed for allowing nested autonomy [4], where de-
cisions are made as close to the data source as possible
to avoid excessive data traffic. However, as needed,
messages can be requested to a scope further from the
source. To increase its general applicability, the design of
Goby3 can support any choice of transport mechanisms
used (e.g. TCP/IP for interprocess) or data marshalling
schemes (e.g. Google Protocol Buffers, DCCL, JSON,
msgpack). However, a reference implementation that
makes use of various high-quality open source libraries
is presented for immediate use by the community.

A. Existing middleware used in the marine community

To the degree any middleware is run on an marine
robot, the most common choices are ROS or MOOS,
and to a lesser degree LCM. All of these middlewares
provide an interprocess communication mechanism and
a suggested or required marshalling scheme for convert-
ing native system types (e.g. C++ classes) into bytes
and vice-versa at the receiver. ROS also provides an
interthread communication mechanism (“nodelets”).



The ROS and MOOS transport mechanisms are built
on the Transmission Control Protocol (TCP) and thus
provide reliability at the transport layer for published
packets. LCM uses the User Datagram Protocol (UDP)
multicast functionality, and thus provides no reliability
guarantees (but increased performance for high through-
put applications).

ROS and LCM use a conceptually similar interface
description language (IDL) that allows the user to define
data structures in a language neutral format from a
collection of primitive types (integers of various sizes,
floating point values, strings, etc.). These message def-
initions are then compiled by a tool provided by the
middleware into one or more language-specific repre-
sentations (e.g. C++ class, Python class) that can be
used in the user’s code. The standalone Protocol Buffers
also provides a similar (though richer) functionality, but
without any transport mechanism. MOOS uses a single
class for all data transferred, the C++ “CMOOSMsg,”
which is a thin wrapper around either a string, a double-
precision floating point value, or an array of bytes. Thus,
users of MOOS generally develop their own marshallings
schemes or adopt a standalone library such as Protocol
Buffers.

Interoperability between applications written in dif-
ferent middlewares is generally inefficient as it requires
writing code that both ferries data between two different
transport mechanisms and converts between similar yet
incompatible data representations (marshalling schemes).
Goby3 aims to improve this situation by transporting
objects of any types that can be serialized to bytes in
a cross-platform compatible manner. This includes types
from existing middlewares (e.g. LCM types, ROS msgs)
and standalone projects (e.g. Protocol Buffers, msgpack).

B. Nested Communications

Nested communications (which is a subset of Nested
Autonomy [5]) is a concept that splits the collection of
possible communicating entities into subgroups where
each subgroup shares a common order-of-magnitude
with regards to data throughput. For example, processes
on a single vehicle will likely communicate at similar
speeds, regardless of whether they reside on a single
computer or multiple computers, given the speed of
copper- and fiber-based Ethernet. However, processes
between vehicles will communicate at a vastly different
rate if the two vehicles are only linked by underwater
acoustic wireless connections.

The innermost scope is that which communicates the
fastest, out to the slowest outermost scope. All messages

interthread

interprocess

intervehicle

intersquadron

Fig. 1. Nested communications using the scopes in the Goby3
reference implementation.

0

102

104

106

108

1010

1012

Th
ro

ug
hp

ut
, b

/s

interthread interprocess intervehicle intersquadron

Fig. 2. Logarithmic plot of example order of magnitudes for various
nested scopes, based on DRAM speeds for interthread, Gigabit
Ethernet for interprocess, and various rates of the WHOI acoustic
Micro-Modem for intervehicle and intersquadron (assuming lower
bit rate for longer range on the latter).

sent to outer scopes are automatically sent to all inner
scopes. An illustration of four possible scopes is given
in Fig. 1 and the order of magnitude data transfer speeds
are shown in Fig. 2.

II. THE PUBLISH/SUBSCRIBE MODEL USING NESTED

COMMUNICATIONS

The publish/subscribe paradigm is common to many
of the middlewares, since its asynchronous nature lends
itself well to systems that have many heterogenous parts
operating on different realtime constraints.



InterThread
Transporter

InterThread
Transporter

InterThread
Transporter

Process 1

Process 2

Thread 2

Thread 1

Thread 3

Vehicle 1 

Vehicle 2 
(callback)

(callback)

(callback)

(publish)

(publish)

Process 3

Fig. 3. An example of data flow and the interaction of Forwarder and Portal classes. In this example, one data type/group (illustrated in
red) and another data type/group (illustrated in blue) is published by thread 1 (of process 1 on vehicle 1). The red data are subscribed to
by thread 2 (of process 1 on vehicle 1) and also by the single-threaded process 2 (of vehicle 1). The blue data have been subscribed to by
process 3 (on vehicle 2). This simplified example assumes vehicle2 only runs one process, and process 2 has only one thread.

In the nested implementation of publish/subscribe in
Goby3, an entity publishes its value (of some type)
to a “group” at the given nested scope. On the first
publication, it is advertised to any existing nodes that
are subscribed to that group and type. If no subscribers
exist, the published values are not transmitted anywhere.

Multiple types can be transmitted in the same group,
but subscribers will only receive (in the form of a
callback function) the type(s) they have specifically
subscribed for. This allows both publications and sub-
scriptions to be strictly typed and not require any parsing
or serialization of messages directly by the end-user.

Subscribers can request a variable of a given type
or types from a group. Subscriptions will be forwarded
into the innermost scope that is fully qualified, and if
the variable is being published at that scope, all future
publications will be escalated to the subscriber’s scope.
This allows data to stay as local as possible until needed
by an outer scope, saving bandwidth while maintaining
operational flexibility.

Each layer of the nested communications is imple-
mented through two C++ classes, the Forwarder (e.g.
InterVehicleForwarder) class and the Portal class (e.g. In-
terProcessPortal). The Forwarder class is used by entities
one scope inside (threads in the case of InterProcessFor-
warder, processes in the case of InterVehicleForwarder,

etc.) which do not directly talk to the transport mecha-
nism at that layer. As the name implies, the Forwarder
passes publications and receives subscribed data from the
Portal class via the inner transport layer (e.g. interthread
in the case of InterProcessForwarder). The Portal class
actually communicates on the wire with other instantia-
tions of the Portal, and only one Portal exists for each
entity at that scope (e.g. one InterProcessPortal for each
process, one InterVehiclePortal for each vehicle).

The publish/subscribe interface for the end-user ap-
plication is essentially the same for for Portals and
Forwarders, except Portals need to be configured with
the transport related parameters and Forwarders do not
since they use the inner scope transport mechanism.

The exception to this is the interthread layer, which
has only one implementation class (the InterPro-
cessTransporter) which is shared by all the threads and
is essentially the same as a Portal class design (since a
Forwarder would be meaningless as there is no further
inner scope to forward data through).

An example of the interaction between these classes
is given in Fig. 3.

III. REFERENCE IMPLEMENTATION

The Goby3 reference implementation is entirely in
C++ as defined by the 2011 standard (C++11). C++11



TABLE I
TYPES SUPPORTED BY GOBY3 IN COMPARISON WITH EXISTING MIDDLEWARES

Goby3 ROS LCM MOOS
interthread Any C++ type ROS msg/srv
interprocess Any serializable type ROS msg/srv LCM types CMOOSMsg (string, double, bytes)
intervehicle DCCL messages

provides numerous new features that are necessary to
create this middleware without significant reliance on
external projects such as Boost. The major new features
used by Goby3 are C++ std::threads, lambda expressions,
std::function, and smart pointers (std::shared ptr).

Goby3 includes a reference implementation that uses
three scopes and corresponding transport mechanisms:

• interthread: Zero-copy communication between
threads using C++11 shared pointers. Since no data
are copied (just the pointers), the types used at the
interthread layer do not need to be serializable into
a byte stream. In our experience, multithreading
can be error prone and confusing for newcomers to
AUV software. The Goby3 interthread layer allows
the transfer of any C++ objects between threads
in a publish/subscribe manner that shares the same
paradigm and software interface as the outer layers.
This allows application designers to write reliable
and memory safe multithreaded applications using
the same familiar publish/subscribe paradigm, with-
out understanding or debugging custom thread data
sharing concepts.

• interprocess: TCP/IP or UNIX socket communi-
cation using ZeroMQ [6]. This layer of Goby3
uses the ZeroMQ transport layer to allow either
single-computer interprocess communications via
UNIX sockets or multi-computer (e.g. connected
by a gigabit copper Ethernet) interprocess networks
using TCP. The assumption is that these processes
are all resident on a single vehicle or other node
(mooring, or topside on the research vessel).

• intervehicle: Acoustic, satellite, or other “slow-
link” communications using the Goby-Acomms li-
brary [7].

The supported data types (or marshalling schemes) for
each of the three scopes in the reference implementation
are:

• interthread: Any C++ type.
• interprocess: Any serializable C++ type (e.g. Pro-

tocol Buffers, the Dynamic Compact Control Lan-
guage version 3 (DCCL3), or msgpack).

10-6

10-4

10-2

10

102

104

M
ea

n 
m

es
sa

ge
 la

te
nc

y 
fr

om
 p

ub
lis

h 
to

 su
bs

cr
ib

e 
(s

)

Goby3 (small message)
ROS (small message)
LCM (small message)
MOOS (small message)
Goby3 (large message)
ROS (large message)
LCM (large message)
MOOS (large message)

interthread interprocess intervehicle

Fig. 4. Logarithmic plot of measured throughputs for the scopes
supported by a given middleware (interthread for Goby3 and ROS,
interprocess for all). The small message used was a hypothetical
sample from a CTD sensor encoded in the middleware’s native
marshalling scheme, with Protocol Buffers used for Goby3 (about
30 bytes encoded depending on the middleware). The large message
was 1 megabyte of text data. For the intervehicle case on Goby3,
an acoustic Micro-Modem data rate was used for the small message,
and an Iridium satellite data rate for the large message.

• intervehicle: The Dynamic Compact Control Lan-
guage version 3 (DCCL3) [8]. DCCL3 is a in-
terface description language (based on Protocol
Buffers) and extensible suite of marshalling al-
gorithms specifically designed for extremely low
throughput links such as acoustic modems.

These data types are also summarized in Table I
in comparison to the data types that other existing
middlewares use.

IV. RESULTS

The success of some of the major aims of Goby3 will
only be borne out with use by the wider community: 1)
bringing the ease of publish/subscribe to interthread and
intervehicle communications and 2) easing the interop-
erability of different systems by relaxing the marshalling
scheme requirements that existing middlewares have.

However, the performance of Goby3’s reference im-
plementation needs to be acceptable to merit the wider



use that will be necessary to truly assess and realize
the aforementioned aims. Thus, benchmark testing of the
Goby3 reference implementation was performed against
the MOOS, LCM, and ROS middlewares. Two sizes
of messages were tested: a small one on the order of
tens of bytes, with the exact size depending on the
details of the middleware’s marshalling scheme and a
large one equal to about 1 megabyte. Ten thousand
to one million messages of each size were published
and subsequently received by a subscriber. The mean
time to publish, transfer, and receive each message was
calculated. The results of this testing are plotted in Fig.
4 for the scopes supported by each middleware. This
figure shows that the performance of Goby3 is similar
or better to that of the comparable middlewares. Some
of the minor performance deficit relative to ROS is due
to the flexibility of Goby3 (which allows any serializable
type whereas ROS only allows ROS msgs).

V. CONCLUSION

Existing middlewares do not address the “slow link”
problem that is very common for marine intervehicle
communications. In the author’s experience, solutions to
intervehicle communication tend to be “add-ons” to the
main middleware used for interprocess communication,
and thus tend to be difficult to extend or modify when
new data needs to be shared between vehicles or the op-
erator topside. Goby3 is designed to provide a common
interface to ease this mismatch.

Existing middlewares tightly couple a required trans-
port layer with a required marshalling scheme. Goby3
relaxes the marshalling scheme requirement as much
as is reasonable, allowing easier development between
applications and research groups which “talk” different
data marshalling “languages”. In addition, the core de-
sign of Goby3 does not mandate any particular transport
layers so a different choice (e.g. UDP for interprocess)
could be implemented by the user while still using
other parts (e.g. intervehicle and/or interthread) from
the reference implementation. This modularity aims to
provide flexibility at the same time as providing working,
field-quality level code that is ready to use.

Goby3 is open source software (distributed under
the LGPL license) and at the time of this writing is
in what is generally considered an “alpha” stage of
development. Infrastructure (such as middlewares) are
critically important pieces of AUV software, but difficult
to find the time, interest, or money to create well.
Thus, the more shared work that can be done in the
AUV community on this topic, the better. Feedback

and contributions at this stage is greatly appreciated.
The project page for software, issue tracking, etc. is
https://github.com/GobySoft/goby.

REFERENCES

[1] M. R. Benjamin, J. J. Leonard, H. Schmidt, and P. M. Newman,
“An overview of MOOS-IvP and a brief users guide to the IvP
Helm autonomy software,” Journal of Field Robotics, 2009.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no.
3.2, 2009, p. 5.

[3] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight
communications and marshalling,” in Intelligent robots and sys-
tems (IROS), 2010 IEEE/RSJ international conference on. IEEE,
2010, pp. 4057–4062.

[4] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard,
“Nested autonomy for unmanned marine vehicles with MOOS-
IvP,” Journal of Field Robotics, vol. 27, no. 6, pp. 834–875,
2010.

[5] H. Schmidt, M. R. Benjamin, S. M. Petillo, and R. Lum, “Nested
autonomy for distributed ocean sensing,” in Springer Handbook
of Ocean Engineering, M. R. Dhanak and N. I. Xiros, Eds.
Springer, 2016, pp. 459–480.

[6] P. Hintjens, ZeroMQ: Messaging for Many Applications.
O’Reilly Media, Inc., 2013.

[7] T. Schneider and H. Schmidt, “Goby-Acomms version 2: exten-
sible marshalling, queuing, and link layer interfacing for acoustic
telemetry,” in 9th IFAC Conference on Manoeuvring and Control
of Marine Craft, Arenzano, Italy, 2012.

[8] T. Schneider, S. Petillo, H. Schmidt, and C. Murphy, “The
dynamic compact control language version 3,” in OCEANS 2015-
Genova. IEEE, 2015, pp. 1–7.


