
Goby Underwater Autonomy Project

User Manual for Version 2.1.11.
Released on 2018.11.08.

<https://launchpad.net/goby>

Contents

Contents 1

1 Introduction 3
1.1 What is Goby? . 3
1.2 Structure of this Manual . 4
1.3 Prerequisites . 4
1.4 Getting the Code . 4
1.5 Changes / incompatiblities with version 1 5
1.6 How to get help . 6

2 Goby-Acomms 7
2.1 Introduction . 7
2.2 Dynamic Compact Control Language: DCCL 9
2.3 Time dependent priority queuing: Queue 12
2.4 TimeDivisionMultipleAccess (TDMA)MediumAccess Control (MAC):

AMAC . 16
2.5 Abstract Acoustic (or other slow link) Modem Driver: ModemDriver 20

1

https://launchpad.net/goby

CONTENTS 2

3 Goby Common Modules 25
3.1 Goby Common Applications . 25
3.2 Liaison . 27
3.3 Gateway Applications . 29

4 Goby MOOS Modules 30
4.1 Goby MOOS Applications . 30
4.2 pTranslator . 32
4.3 Translator techniques . 36
4.4 pAcommsHandler . 37
4.5 MOOS Plugins for Goby Liaison . 41
4.6 Migrating from Version 1 to Version 2 49
4.7 iFrontSeat . 50
4.8 iCommander . 60
4.9 pREMUSCodec . 60

5 What’s next 61

Glossary 62

Bibliography 63

1Introduction

1.1 What is Goby?

The Goby Underwater Autonomy Project is an autonomy architecture tailored for
marine robotics with a focus on intervehicle communication.

Currently, Goby provides several libraries, with a primary focus on Goby-Acomms:

• Goby-Acomms: The Goby Acoustic Communications library (goby-acomms)
has been provided since Version 1.0. See the Developers’ documentation for
details on these library and the various modules it contains at [1]. Users of
the MOOS application pAcommsHandler should see Chapter 4.

• Goby-Common: A library providing tools for the rest of Goby to use. For
release 2.0, Goby-Common provides a debug logging tool (goby::glog),
various utilities (e.g. time functions), and the groundwork for an autonomy
architecture. The Goby-Common architecture that ties together various
marshalling schemes (Google Protocol Buffers, MOOS, LCM, etc.) and
provides a message passing middleware based on ZeroMQ (for ethernet) and
Goby-DCCL (for acoustic communications and other “slow links”).
Goby-Common will be provided in a more complete (and documented) form
in release version 3.0.

• Goby-Util: A utility library that provide functions for dealing with type
conversions (goby::util::as<>()), binary conversions, etc. This library is
intended to be small, as Goby makes use of the C++ Standard Library and
Boost for most utility tasks.

• Goby-PB: The Google Protocol Buffers / C++ implementation of
Goby-Common. Like much of Goby-Common, this will be finalized in release
3.0, but is preliminarily provided in release 2.0 to support tools such as
goby_liaison.

• Goby-MOOS: The MOOS [2] / C++ implementation of Goby-Common. This
library provides translator tools from MOOS messages (CMOOSMsg) to and
from the Google Protobuf messages used internally. It provides a
Goby-Acomms modem driver for the MOOS-IvP uField toolbox [3], allowing
multivehicle network simulation without acoustic modem hardware. See
also [4] for more on MOOS-IvP.

3

CHAPTER 1. INTRODUCTION 4

1.2 Structure of this Manual

This manual covers general use of the Goby libraries and the applications provided
with them. If you are interested in a complete API and further details, please read
the online Developers’ documentation at [1] In fact, you may want to go download
and install Goby now before reading further: https://launchpad.net/goby.

1.3 Prerequisites

Goby (for both DCCL and the various external APIs) makes significant use of the
Google Protocol Buffers (protobuf) mechanism for serializing structured data. This
library is very well documented and is widely adopted in numerous open source
projects. Please take a few moments to familiarize yourself with the project here:
https://developers.google.com/protocol-buffers/docs/overview.

1.4 Getting the Code

By far the easiest way to get Goby is to use any currently supported Ubuntu
distribution (see http://en.wikipedia.org/wiki/List_of_Ubuntu_
releases#Version_timeline), and install it using apt-get:

sudo apt-add-repository ppa:goby-dev/ppa
sudo apt-get update
sudo apt-get install libgoby2

and then, optionally, install one or more additional packages:

for the core applications
sudo apt-get install goby2-apps
for the MOOS applications
sudo apt-get install goby2-moos
for the developer header files
sudo apt-get install libgoby2-dev
for the documentation
sudo apt-get install goby2-doc
for the unit tests
sudo apt-get install goby2-test

You can also compile Goby from source using the bazaar version control software:

bzr co lp:goby/2.0

https://launchpad.net/goby
https://developers.google.com/protocol-buffers/docs/overview
http://en.wikipedia.org/wiki/List_of_Ubuntu_releases#Version_timeline
http://en.wikipedia.org/wiki/List_of_Ubuntu_releases#Version_timeline

CHAPTER 1. INTRODUCTION 5

The dependencies for Goby are minimally

• Google Protocol Buffers (see https://code.google.com/p/protobuf/)

• Boost (see http://www.boost.org/).

Certain optional libraries and/or functionality require additional dependencies:

• ZeroMQ for the communications applications: goby_modemdriver,
goby_bridge, goby_file_transfer, goby_store_server, goby_rudics_shore.

• MOOS or MOOS 10 (see http://themoos.org/) and PROJ.4 for the Goby
MOOS library and applications (see Chapter 4).

• Wt for web-browser based GUI applications (goby_liaison)

• Crypto++ for encrypting DCCL messages.

• GMP for the Iridium driver.

• NCurses for the debugging terminal GUI.

1.5 Changes / incompatiblities with version 1

Goby version 2 has been significantly reworked to based on the valuable feedback
from users of version 1 and our experience in numerous field trials. The major
changes include:

• Goby-Acomms:

– DCCL has been rewritten to be based on Google Protocol Buffers (no
more XML). This means much richer type support and cleaner code.
Also, any field or message can be encoded using a user-defined codec
for that particular job.

– WHOI Micro-Modem driver (MMDriver) supports all the modem’s
major functionality: ping, LBL ranging, data, communications
statistics, user mini-packet. The DriverBase interface for writing
custom modem drivers has been streamlined.

– AMAC is simpler and more intuitive: now it is basically a std::list plus a
timer.

https://code.google.com/p/protobuf/
http://www.boost.org/
http://themoos.org/

CHAPTER 1. INTRODUCTION 6

– Many fewer dependencies: only required are Boost and Google
Protocol Buffers (which compile nicely on nearly all platforms).

Because of these substantial changes, full backwards compatibility support is
provided for users of MOOS (pAcommsHandler) since that community was the
primary user base of that release. Other users must migrate code from version 1
before using version 2. Help on migrating from release 1 is given in Chapter 4.6.

1.6 How to get help

The Goby community is here to support you. This is an open source project so we
have limited time and resources, but you will find that many are willing to
contribute their help, with the hope that you will do the same as you gain
experience. Please consult these resources and people, probably in this order of
preference:

1. This user manual.

2. The Wiki: http://gobysoft.com/wiki.

3. Questions and Answers on Launchpad:
https://answers.launchpad.net/goby.

4. The developers’ documentation: http://gobysoft.com/doc/2.0.

5. Email the listserver goby@mit.edu. Please sign up first:
http://mailman.mit.edu/mailman/listinfo/goby.

6. Email the lead developer (T. Schneider): tes@mit.edu.

http://gobysoft.com/wiki
https://answers.launchpad.net/goby
http://gobysoft.com/doc/2.0
mailto:goby@mit.edu
http://mailman.mit.edu/mailman/listinfo/goby
mailto:tes@mit.edu

2Goby-Acomms

2.1 Introduction

2.1.1 Problem

Acoustic communications are highly limited in throughput. Thus, it is
unreasonable to expect “total throughput” of all communications data.
Furthermore, even if total throughput is achievable over time, certain messages
have a lower tolerance for delay (e.g. vehicle status) than others (e.g. CTD sample
data).

Also, in order to make the best use of this available bandwidth, messages need to
be compacted to a minimal size before sending (effective encoding). To do this,
Goby-Acomms provides an interface to the Dynamic Compact Control Language
(DCCL1) encoder/decoder.

For the interested reader, the publications listed in the Developers’
documentation [1] give a more in-depth look at the problem.

2.1.2 Goby contributions to the solution

Goby is hardly a complete solution to this problem, but it’s a start. It provides four
key components (listed in order from closest to the application to closest to the
physical link) intended to address the limits of traditional networking systems in
light of the extreme bandwidth and latency constraints of underwater links:

1. The Dynamic Compact Control Language (DCCL) (section 2.2) is a
marshalling (or synonymously serialization) scheme that creates highly
compressed small messages suitable for sending over links with very low
maximum transmission units (order of 10s to 100s of bytes) such as typical
underwater acoustic modems. DCCL provides greater efficiency (i.e. smaller
messages) than existing marine (CCL, Inter-Module Communication) and
non-marine (Google Protobuf, ASN.1, boost::serialization, etc.) techniques
by pre-sharing all structural information and bounding message fields to
minimum and maximum values (which then create messages of any bit size,
not limited by integer multiples of octets such as int16, int32, etc.). The

1the name comes from the original CCL written by Roger Stokey for the REMUS AUVs, but with
the ability to dynamically reconfigure messages based on mission need. If desired, DCCL can be con-
figured to be backwards compatible with a CCL network using CCL message number 32

7

CHAPTER 2. GOBY-ACOMMS 8

DCCL structure language is independent of a given programming language
and provides compile-time type safety and syntax checking, both of which
are important for fielding complex robotic systems. Finally, DCCL is
extensible to allow user-provided source encoders for any given field or
message type.

2. The transport layer of Goby-Acomms provides time dynamic priority
queuing (Goby-Queue, section 2.3). In our experience, acoustic links on
fielded vehicles have been typically run at over-capacity; that is, there are
more data to send than will ever be send over the link. Thus, the data that
are to be sent must be chosen in some fashion. Historically, priority queues
are widely used to send more valuable data first. However, different types of
data also have different time sensitivities, which Goby-Queue recognizes via
the use of a (clock time based) time-to-live parameter. Finally, the demand
for a given type of data can increase over time since last receiving a message
of that type. Goby-Queue extends the traditional priority queue concept to
balance these various demands and send the most valuable data under this
set of metrics.

3. Acoustic modems such as the WHOI Micro-Modem do not provide any
shared access of the acoustic channel. Coordinating shared access can be
accomplished by assigning slots of time in which each vehicle can transmit,
which is the time-division multiple access (TDMA) flavor of medium access
control (MAC). The Goby-Acomms acoustic MAC (AMAC), section 2.4
extends the basic TDMA idea to include passive (i.e. no data overhead)
auto-discovery of vehicles in a small, equally time-shared network. Thus,
AMAC simplifies the amount of pre-deployment configuration required to
configure small networks of AUVs.

4. The Goby ModemDriver (section 2.5) provides an abstract interface for
acoustic modems (and other “slow link” devices, such as satellite modems),
as there is no standard for interfacing to such devices. Many acoustic
modems provide functionality beyond the strict definition of a modem
(which is defined as sending data from one point to another). Examples of
these extra features include navigation (long base line or LBL, ultra-short
base line or USBL) and ranging measurements (“pings”). Goby
ModemDriver allows an application intent only on transmitting data to
operate on any implemented modem without concerning itself with the
details of that device. On the other hand, if the application needs to use
some of the extra features, it can do so via a set of well-defined extensions.

CHAPTER 2. GOBY-ACOMMS 9

These components are loosely coupled. For example, it is possible to use the
ModemDriver (with or without AMAC) to send encoded messages of any origin.
You can also use DCCL without any of the other components. However, Queue
requires DCCL (it does not queue other types of messages). Thus, you can design
systems using only one, several, or all of the components of Goby, as you need and
see fit.

2.2 Dynamic Compact Control Language: DCCL

DCCL allows you to take object based “messages” (similar to C structs) defined in
the Google Protocol Buffers language and extend them to be more strictly
bounded. It provides a set of default encoders for these bounded Protocol Buffers
messages (now called DCCL messages) to provide a more minimal encoding than
the default Protocol Buffers encoding (which is reasonably decent already, but
still has too much overhead for extremely slow links).

Thus, broadly speaking, DCCL provides an alternative (more compact and
extensible) encoding scheme for Google Protocol Buffers, at some cost of
additional development time and the requirement that the sender and receiver
share the exact .proto definition file (which the normal protobuf encoder does not
require). In our experience, this extra effort is worth it for acoustic (and other
“very slow link” networks, such as satellite).

2.2.1 Configuration: DCCLConfig

Configuration of individual DCCL messages (the vast majority of DCCL
configuration) is done within the .proto definition. All the non-message specific
available configuration for goby::acomms::DCCLCodec is given in its TextFormat
form as:

1 crypto_passphrase: "twinkletoes%24"

• crypto_passphrase: If provided, this preshared key is used to encrypt the
body of all messages using AES (Rijndael) encryption. Omit this field to turn
off encryption. Note that the contents of messages received by nodes with
the wrong encryption key are undefined, and such failure is not currently
detected.

CHAPTER 2. GOBY-ACOMMS 10

2.2.2 Configuration: Designing DCCL messages using Protocol Buffers Extensions

A full guide to designing DCCL messages is given at
http://gobysoft.com/doc/2.0/acomms_dccl.html along with a full list of
the DCCL extensions to the Google Protobuf MessageOptions (i.e. (dccl.msg).*) and
FieldOptions (i.e. (dccl.field).*). Therefore, we will not replicate that
information here. However, we will give a broad overview of the DCCL
configuration.

DCCL messages are protobuf messages with “invisible” extensions. By “invisible,”
we mean that DCCL messages can be compiled by the standard protobuf compiler
(protoc) without requiring the Goby-Acomms library. This allows DCCL messages
to be shared with users that do not need the functionality of DCCL (e.g. are only
using traditional IP networks), but need to communicate with groups that need
the additional compression afforded by DCCL. The goal is to break down the
barriers for using acoustic links on robotic systems, while still maintaining the
efficiency necessary for effective use of these highly restricted links.

A simple, but realistic, protobuf message might look like this:

1 package example;
2
3 message MinimalStatus
4 {
5
6 required double time = 1;
7 required int32 source = 2;
8 required int32 dest = 3;
9 required double x = 4;
10 required double y = 5;
11 required double depth = 6;
12 }

The field numbers (e.g. 1 in time = 1) are used by the default protobuf encoding
(but not by DCCL) to allow backwards compatibility of messages. DCCL requires
that both sender and receiver have the identical message definition (.proto file),
so for our purpose you just need to make sure no two fields share the same field
number. These numbers have no effect in the DCCL encoding.

A priori, we know certain physical bounds on the message fields. These can be
conservative (if a field goes out-of-bounds, the receiver sees it as empty; that is,

http://gobysoft.com/doc/2.0/acomms_dccl.html

CHAPTER 2. GOBY-ACOMMS 11

.has_field() == false), but even conservative bounds will often make a field
consume far fewer bytes than the system equivalent.

Integer ((u)int32, (u)int64) fields take a max and min value2, and DCCL creates the
smallest (bit-sized) integer than can hold that value. For reals (float and double),
an additional precision value is provided: this represents the number of decimal
digits of precision to preserve (negative values are also allowed). Thus,
precision=1means round to the nearest tenth, precision=-2means round to the
nearest hundred.

Booleans (bool) and enumerations (enum) are automatically bounded their nature,
and require no additional configuration. Strings (string) (which are generally
discouraged on an acoustic link since they tend to be sparse) are bounded by a
maximum length. Similarly, bytes are pre-encoded data that are passed through
unmodified in DCCL. Applying these bounds to the example message above (along
with the required .proto file imports) yields:

1 import "dccl/protobuf/option_extensions.proto";
2
3 package example;
4
5 message MinimalStatus
6 {
7 option (dccl.msg).id = 21;
8 option (dccl.msg).max_bytes = 10;
9
10 required double time = 1 [(dccl.field).codec="_time",
11 (dccl.field).in_head=true];
12
13 required int32 source = 2 [(dccl.field).max=31,
14 (dccl.field).min=0,
15 (dccl.field).in_head=true];
16
17 required int32 dest = 3 [(dccl.field).max=31,
18 (dccl.field).min=0,
19 (dccl.field).in_head=true];
20
21 required double x = 4 [(dccl.field).max=10000,
22 (dccl.field).min=-10000,
23 (dccl.field).precision=1];
24
25 required double y = 5 [(dccl.field).max=10000,

2the DCCL bounds must be a subset of the system type’s bounds

CHAPTER 2. GOBY-ACOMMS 12

26 (dccl.field).min=-10000,
27 (dccl.field).precision=1];
28
29 required double depth = 6 [(dccl.field).max=6400,
30 (dccl.field).min=0,
31 (dccl.field).precision=-1];
32 }

The option ”in_head” tags the field as belonging in the user header. The only
distinction between the header and body of a DCCL message is for encryption: the
body is encrypted but the header is not (it is used as the nonce). The option codec
allows a different DCCL codec to be used than the default for that field type (_time
is a codec that encodes time of day to the nearest second assuming that messages
are received within 12 hours of transmission). If you wish to write custom
encoders, see the DCCLTypedFixedFieldCodec class in the Developers’
documentation.

2.3 Time dependent priority queuing: Queue

Goby-Queue manages a queue for each DCCL message. When it is prompted by
data by the modem, it has a priority ”contest” between the queues. the queue
with the current highest priority (as determined by the value_base and ttl fields)
is selected. The next message in that queue is then provided to the modem to
send. For modem messages with multiple frames per packet, each frame is a
separate contest. Thus a single packet may contain frames from different queues
(e.g. a rate 5 PSK packet has eight 256 byte frames. frame 1 might grab a STATUS
message since that has the current highest queue. then frame 2 may grab a BTR
message and frames 3-8 are filled up with CTD messages (e.g. STATUS is in
blackout, BTR queue is empty)). See
http://gobysoft.com/doc/2.0/acomms_queue.html for more information.

2.3.1 Configuration: QueueManagerConfig

The configuration options for goby::acomms::QueueManager are:

1 modem_id: 1
2 message_entry {

http://gobysoft.com/doc/2.0/acomms_queue.html

CHAPTER 2. GOBY-ACOMMS 13

3 protobuf_name: ""
4 ack: true
5 blackout_time: 0
6 max_queue: 100
7 newest_first: true
8 ttl: 1800
9 value_base: 1
10 manipulator:
11 role {
12 type:
13 setting: FIELD_VALUE
14 field: ""
15 static_value:
16 }
17 }
18 on_demand_skew_seconds: 1
19 minimum_ack_wait_seconds: 0

• modem_id: A unique integer value for this particular vehicle (like a MAC
address). Should be as small as possible for optimal bounding of the source
and destination fields of the message. 0 is reserved for broadcast (analogous
to 255.255.255.255 for IPv4).

• message_entry: Configures the QueueManager to queue this DCCL type:

– protobuf_name: String representing the DCCL message to manipulate.
Messages are named the same as
google::protobuf::Descriptor::full_name(), which is the package
followed by the message name, separated by dots: e.g.
“example.MinimalStatus” for the message shown in Section 2.2.

– ack: Whether an acoustic acknowledgment should be requested for
messages sent from this queue. If ack is true, messages will not be
dequeued until a positive ack is received (or it expires due to exceeding
the ttl).

– blackout_time: Minimum number of seconds allowed between sending
messages from this queue.

– max_queue: Allowed size of the queue before overflow. If newest_first is
true, the oldest elements are removed upon overflow, otherwise the
newest elements are. 0 is a special value signifying infinity (no
maximum).

CHAPTER 2. GOBY-ACOMMS 14

– newest_first: true (true=FILO, false=FIFO) whether to send newest
messages in the queue first (FILO) or not (FIFO).

– ttl: the time in seconds a message lives after its creation before being
discarded. This time-to-live also factors into the growth in priority of a
queue. see value_base for the main discussion on this. 0 is a special
value indicating infinite life (i.e. ttl = 0 is effectively the same as ttl =
∞)

– value_base: base priority value for this message queue. priorities are
calculated on a request for data by the modem (to send a message).
The queue with the highest priority (and isn’t in blackout) is chosen.
The actual priority (P) is calculated by P (t) = Vbase

(t−tlast)
ttl where

Vbase is the value set here, t is the current time (in seconds), tlast is the
time of the last send from this queue, and ttl is the ttl option.
Essentially, a message with low ttl will become effective quickly again
after a sent message (the priority line grows faster).

– manipulator: One or more manipulators to apply to the queuing of this
message.
* NO_MANIP: A do nothing (noop) manipulator. Same as omitting this
field.

* NO_QUEUE: Do not queue this message when generated on this node
(but messages will still be received (dequeued).

* NO_DEQUEUE: Do not dequeue (receive) this message on this node
(but messages will be queued). When both NO_QUEUE and NO_DEQUEUE
are set, there isn’t much point to having the message loaded at all.

* LOOPBACK: Dequeue all instances of this message immediately upon
queuing. The message is still queued and sent to its addressed
destination. Often used with PROMISCUOUS.

* ON_DEMAND: A special (advanced) feature where QueueManager
assumes this queue is always full and asks for data immediately
from the application upon request from the modem side. Useful
for ensuring time sensitive data does not get stale.

* LOOPBACK_AS_SENT: Like loopback, but rather than dequeuing upon
queuing, this manipulator dequeues a copy locally upon a data
request from the modem. Often used with PROMISCUOUS.

* PROMISCUOUS: Dequeue all messages of this type even if this
modem_id does not match the destination address.

* NO_ENCODE: Same as NO_QUEUE, provided for backwards compatibility
with Goby v1.

CHAPTER 2. GOBY-ACOMMS 15

* NO_DECODE: Same as NO_DEQUEUE, provided for backwards
compatibility with Goby v1.

– role: allows the assignment of a field in the DCCL message to a
particular role. This takes the place of a fixed header that strictly
hierarchical protocols might use.
* type: the type of this role. Valid values are SOURCE_ID (which
represents the source address of this message), DESTINATION_ID
(the destination address of this message), TIMESTAMP (the time this
message was created: used for the ttl calculation).

* setting: how is the value of this role obtained: FIELD_VALUE (read
this role’s value from the message field given by field) or STATIC
(read this value from this configuration’s static_value field).

* field: If setting == FIELD_VALUE, the field name (e.g. dest) in the
message whose contents should be used for in this role. Do not set
this if using setting == STATIC

* static_value: The static value to use for setting == STATIC. Has no
effect if setting == FIELD_VALUE.

• on_demand_skew_seconds: (Advanced) this sets the number of seconds before
data encoded on demand are considering stale and thus must be demanded
again with the signal QueueManager::signal_data_on_demand. Setting this to 0
is unadvisable as it will cause many calls to
QueueManager::signal_data_on_demand and thus waste CPU cycles needlessly
encoding.

• minimum_ack_wait_seconds: (Advanced) how long to wait for an
acknowledgment before resending the same data.

For example, to queue the message given in Section 2.2, the following snippet
could suffice:

1 message_entry {
2 protobuf_name: "example.MinimalStatus"
3 ack: false
4 blackout_time: 30
5 max_queue: 1
6 newest_first: true
7 ttl: 900

CHAPTER 2. GOBY-ACOMMS 16

8 value_base: 0.5
9 role { type: DESTINATION_ID field: "dest" }
10 role { type: SOURCE_ID field: "source" }
11 role { type: TIMESTAMP field: "time" }
12 }

2.4 Time Division Multiple Access (TDMA) Medium Access Control
(MAC): AMAC

The AMAC unit uses time division (TDMA) to attempt to ensure a collision-free
acoustic channel.

AMAC supports two variants of the TDMA MAC scheme: centralized and
decentralized. As the names suggest, Centralized TDMA (type: MAC_POLLED)
involves control of the entire cycle from a single master node, whereas each
node’s respective slot is controlled by that node in Decentralized TDMA. Within
decentralized TDMA, Goby supports a fixed (preprogrammed) cycle
(type: MAC_FIXED_DECENTRALIZED) that can be updated by the application. The
autodiscovery mode (type: MAC_AUTO_DECENTRALIZED) supported in version 1 is no
longer provided in version 2. To disable the AMAC, use (type: MAC_NONE). See
http://gobysoft.com/doc/2.0/acomms_mac.html for more details.

2.4.1 Configuration: MACConfig

The goby::acomms::MACManager is basically a std::list<ModemTransmission>. Thus, its
configuration is primarily such an initial list of these slots. Since
ModemTransmission is extensible to handle different modem drivers, the AMAC
configuration is also automatically extended. Some fields in ModemTransmission do
not make sense to configure goby::acomms::MACManager with, so these are omitted
here:

1 modem_id: 1
2 type: MAC_NONE
3 slot {
4 src: -1
5 dest: -1
6 rate: 0
7 type: UNKNOWN
8 ack_requested: true

http://gobysoft.com/doc/2.0/acomms_mac.html

CHAPTER 2. GOBY-ACOMMS 17

9 slot_seconds: 10
10 unique_id: 0
11 [micromodem.protobuf.type]: BASE_TYPE
12 [micromodem.protobuf.narrowband_lbl] {
13 transmit_freq:
14 transmit_ping_ms:
15 receive_freq:
16 receive_ping_ms:
17 turnaround_ms:
18 transmit_flag: true
19 lbl_max_range: 2000
20 }
21 [micromodem.protobuf.remus_lbl] {
22 enable_beacons: 15
23 turnaround_ms: 50
24 lbl_max_range: 1000
25 }
26 [goby.moos.protobuf.type]: BASE_TYPE
27 [PBDriverTransmission.type]: BASE_TYPE
28 }
29 start_cycle_in_middle: true

Further details on these configuration fields:

• type: type of Medium Access Control. See
http://gobysoft.com/doc/2.0/acomms_mac.html#amac_schemes for
an explanation of the various MAC schemes.

• slot: use this repeated field to specify a manual polling or fixed TDMA cycle
for the type: MAC_FIXED_DECENTRALIZED and type: MAC_POLLED.

– src: The sending modem_id for this slot. Setting both src and dest to 0
causes AMAC to ignore this slot (which can be used to provide a blank
slot).

– dest: The receiving modem_id for this slot. Omit or set to -1 to allow
next datagram to set the destination.

– rate: Bit-rate code for this slot (0-5). For the WHOI Micro-Modem 0 is a
single 32 byte packet (FSK), 2 is three frames of 64 bytes (PSK), 3 is two
frames of 256 bytes (PSK), and 5 is eight frames of 256 bytes (PSK).

– type: Type of transaction to occur in this slot. If DRIVER_SPECIFIC, the
specific hardware driver governs the type of this slot (e.g.
[micromodem.protobuf.type]: MICROMODEM_MINI_DATA.

http://gobysoft.com/doc/2.0/acomms_mac.html#amac_schemes

CHAPTER 2. GOBY-ACOMMS 18

– slot_seconds: The duration of this slot, in seconds.
– unique_id: Integer field that can optionally be used to identify certain
types of slots. For example, this allows integration of an in-band (but
otherwise unrelated) sonar with the modem MAC cycle.

Relevant extensions of goby::acomms::protobuf::ModemTransmission for the WHOI
Micro-Modem driver (DRIVER_WHOI_MICROMODEM):

• slot

– [micromodem.protobuf.type]: Type of transaction to occur in this slot.
This value is only used if type == DRIVER_SPECIFIC. Valid values include:
BASE_TYPE (use the type given in type above), MICROMODEM_TWO_WAY_PING
($CCMPC, MICROMODEM_REMUS_LBL_RANGING ($CCPDT),
MICROMODEM_NARROWBAND_LBL_RANGING ($CCPNT), MICROMODEM_MINI_DATA
($CCMUC).

– [micromodem.protobuf.narrowband_lbl]: Narrowband long-baseline
configuration. These are merged with any global settings given in the
ModemDriver configuration (Section 2.5), with the values set here
taking precedence.

– [micromodem.protobuf.remus_lbl]: REMUS long-baseline configuration.
These are merged with any global settings given in the ModemDriver
configuration (Section 2.5), with the values set here taking precedence.

Several examples:

• Continous uplink from node 2 to node 1 with a 15 second pause between
datagrams (this is node 1’s configuration; it is the same for node 2 except for
modem_id = 2):

1 modem_id: 1
2 type: MAC_FIXED_DECENTRALIZED
3 slot { src: 2 dest: 1 type: DATA slot_seconds: 15 }

• Equal sharing for three vehicles (destination governed by next data packet):

CHAPTER 2. GOBY-ACOMMS 19

1 modem_id: 1 # 2 or 3 for other vehicles
2 type: MAC_FIXED_DECENTRALIZED
3 slot { src: 1 type: DATA slot_seconds: 15 }
4 slot { src: 2 type: DATA slot_seconds: 15 }
5 slot { src: 3 type: DATA slot_seconds: 15 }

• Three vehicles with both data and WHOI Micro-Modem two-way ranging
(ping):

1 modem_id: 1 # 2 or 3 for other vehicles
2 type: MAC_FIXED_DECENTRALIZED
3 slot { src: 1 type: DATA slot_seconds: 15 }
4 slot {
5 src: 1
6 dest: 2
7 type: DRIVER_SPECIFIC
8 [micromodem.protobuf.type]: MICROMODEM_TWO_WAY_PING
9 slot_seconds: 5
10 }
11 slot {
12 src: 1
13 dest: 3
14 type: DRIVER_SPECIFIC
15 [micromodem.protobuf.type]: MICROMODEM_TWO_WAY_PING
16 slot_seconds: 5
17 }
18 slot { src: 2 type: DATA slot_seconds: 15 }
19 slot { src: 3 type: DATA slot_seconds: 15 }

• One vehicle interleaving data and REMUS long-base-line (LBL) navigation
pings:

1 modem_id: 1
2 type: MAC_FIXED_DECENTRALIZED
3 slot { src: 1 type: DATA slot_seconds: 15 }
4 slot {
5 src: 1
6 dest: 2
7 type: DRIVER_SPECIFIC
8 [micromodem.protobuf.type]: MICROMODEM_REMUS_LBL_RANGING

CHAPTER 2. GOBY-ACOMMS 20

9 [micromodem.protobuf.remus_lbl] {
10 enable_beacons: 0xf # enable all four: b1111
11 turnaround_ms: 50
12 lbl_max_range: 500 # meters
13 }
14 slot_seconds: 5
15 }

2.5 Abstract Acoustic (or other slow link) Modem Driver:
ModemDriver

The ModemDriver unit provides a common interface to any modem capable of
sending datagrams. It currently supports the WHOI Micro-Modem acoustic
modem, UDP over the Internet, and is extensible to other acoustic (or slow link)
modems. More details on the ModemDriver are available here:
http://gobysoft.com/doc/2.0/acomms_driver.html.

2.5.1 Configuration: DriverConfig

Base driver configuration:

1 modem_id: 1
2 connection_type: CONNECTION_SERIAL
3 line_delimiter: "\r\n"
4 serial_port: "/dev/ttyS0"
5 serial_baud: 19200
6 tcp_server: "192.168.1.111"
7 tcp_port: 50010

• modem_id: A unique integer value for this particular vehicle (like a MAC
address). Should be as small as possible for optimal bounding of the source
and destination fields of the message. 0 is reserved for broadcast (analogous
to 255.255.255.255 for IPv4).

• connection_type: How the modem is attached to this computer. Some of the
drivers do not use this connection. Valid options: CONNECTION_SERIAL (uses a
serial connection, e.g. /dev/ttyS0), CONNECTION_TCP_AS_CLIENT (connect using
TCP where this application is a client, and the modem is a server),

http://gobysoft.com/doc/2.0/acomms_driver.html

CHAPTER 2. GOBY-ACOMMS 21

CONNECTION_TCP_AS_SERVER (connect using TCP where this application is a
server, and the modem is a client).

• line_delimiter: A string representing the “end-of-line” of each message
from the modem.

• serial_port: Only for CONNECTION_SERIAL, the name of the serial port on this
machine.

• serial_baud: Only for CONNECTION_SERIAL, the baud rate to use when talking
to the modem.

• tcp_server: Only for CONNECTION_TCP_AS_CLIENT, the IP address or domain
name of the modem TCP server.

• tcp_port: For CONNECTION_TCP_AS_CLIENT, the port to connect to on
tcp_server; for CONNECTION_TCP_AS_SERVER, the port to bind on.

Extensions for the WHOI Micro-Modem (DRIVER_WHOI_MICROMODEM):

1 [micromodem.protobuf.Config.reset_nvram]: false
2 [micromodem.protobuf.Config.nvram_cfg]: ""
3 [micromodem.protobuf.Config.hydroid_gateway_id]: 0
4 [micromodem.protobuf.Config.narrowband_lbl] {
5 transmit_freq:
6 transmit_ping_ms:
7 receive_freq:
8 receive_ping_ms:
9 turnaround_ms:
10 transmit_flag: true
11 lbl_max_range: 2000
12 }
13 [micromodem.protobuf.Config.remus_lbl] {
14 enable_beacons: 15
15 turnaround_ms: 50
16 lbl_max_range: 1000
17 }
18 [micromodem.protobuf.Config.mm_version]: 1

• [micromodem.protobuf.Config.reset_nvram]: If true, reset all the modem’s
configuration settings at startup (before applying those specified in
nvram_cfg). In general, it is a good idea to set this to true so that the
modem’s NVRAM (configuration) state is known.

CHAPTER 2. GOBY-ACOMMS 22

• [micromodem.protobuf.Config.nvram_cfg]: This repeated field specifies an
NVRAM configuration sentence to send. For example, to set $CCCFG,DTO,10,
use “DTO,10” as the value for this field.

• [micromodem.protobuf.Config.nvram_cfg]: You must omit this in all cases
except when using a Hydroid Buoy which uses a modified talker to
communicate with the Micro-Modem. In that case, set this to the Buoy
identification number.

• [micromodem.protobuf.Config.narrowband_lbl]: Default configuration used
for each MICROMODEM_NARROWBAND_LBL_RANGING transmission. Overwritten by
any settings also specified in the AMAC configuration. See
http://gobysoft.com/doc/2.0/acomms_driver.html for the details of
these fields.

• [micromodem.protobuf.Config.remus_lbl]: Default configuration used for
each MICROMODEM_REMUS_LBL_RANGING transmission. Overwritten by any
settings also specified in the AMAC configuration. See
http://gobysoft.com/doc/2.0/acomms_driver.html for the details of
these fields.

• [micromodem.protobuf.Config.mm_version]: Micro-Modem major version.
Only Micro-Modem 1 is currently supported (and Micro-Modem 2 in
backwards-compatible mode). Thus, currently, this field should always be 1.

Extensions for the example driver (DRIVER_ABC_EXAMPLE_MODEM):

1 [ABCDriverConfig.enable_foo]: true
2 [ABCDriverConfig.enable_bar]: false

This “modem” is simply an example on how to write drivers. See http:
//gobysoft.com/doc/2.0/acomms_driver.html#acomms_writedriver. Do
not use this for real work.

Extensions for the MOOS uField driver (DRIVER_UFIELD_SIM_DRIVER) that uses the
MOOS-IvP uField toolbox [3] as the transport:

http://gobysoft.com/doc/2.0/acomms_driver.html
http://gobysoft.com/doc/2.0/acomms_driver.html
http://gobysoft.com/doc/2.0/acomms_driver.html#acomms_writedriver
http://gobysoft.com/doc/2.0/acomms_driver.html#acomms_writedriver

CHAPTER 2. GOBY-ACOMMS 23

1 [goby.moos.protobuf.Config.moos_server]: "localhost"
2 [goby.moos.protobuf.Config.moos_port]: 9000
3 [goby.moos.protobuf.Config.incoming_moos_var]: "ACOMMS_UFIELD_DRIVER_IN"
4 [goby.moos.protobuf.Config.outgoing_moos_var]: "ACOMMS_UFIELD_DRIVER_OUT"
5 [goby.moos.protobuf.Config.ufield_outgoing_moos_var]: "NODE_MESSAGE_LOCAL"
6 [goby.moos.protobuf.Config.rate_to_bytes]:
7 [goby.moos.protobuf.Config.modem_id_lookup_path]: ""

• [goby.moos.protobuf.Config.moos_server]: Address for the MOOSDB.

• [goby.moos.protobuf.Config.moos_port]: Port for the MOOSDB.

• [goby.moos.protobuf.Config.incoming_moos_var]: MOOS variable to use for
incoming messages.

• [goby.moos.protobuf.Config.outgoing_moos_var]: MOOS variable to use for
outgoing messages.

• [goby.moos.protobuf.Config.ufield_outgoing_moos_var]: The MOOS variable
uField uses for relaying messages.

• [goby.moos.protobuf.Config.rate_to_bytes]: This repeated field is the size in
bytes of the given rate. The order these are defined in the configuration file
maps onto the rate. The first is rate 0, the second is rate 1, and so on. To
emulate the WHOI Micro-Modem, use:

1 [goby.moos.protobuf.Config.rate_to_bytes]: 32
2 [goby.moos.protobuf.Config.rate_to_bytes]: 192
3 [goby.moos.protobuf.Config.rate_to_bytes]: 192
4 [goby.moos.protobuf.Config.rate_to_bytes]: 512
5 [goby.moos.protobuf.Config.rate_to_bytes]: 512
6 [goby.moos.protobuf.Config.rate_to_bytes]: 2048

• [goby.moos.protobuf.Config.modem_id_lookup_path]: Path to a file containing
the mapping of MOOS Community names to modem IDs. This file should
look like:

1 // modem id, vehicle name (should be community name), vehicle type
2 0, broadcast, broadcast
3 1, endeavor, ship
4 3, unicorn, auv
5 4, macrura, auv

CHAPTER 2. GOBY-ACOMMS 24

Extensions for the UDP driver (DRIVER_UDP), a basic driver for Goby that sends
packets using UDP over IP:

1 [UDPDriverConfig.local] {
2 ip: "127.0.0.1"
3 port:
4 }
5 [UDPDriverConfig.remote] {
6 ip: "127.0.0.1"
7 port:
8 }
9 [UDPDriverConfig.max_frame_size]: 65536

• [UDPDriverConfig.local]: Source port of the local machine (ip is not used).
This can be omitted, and then a dynamic port is used.

• [UDPDriverConfig.remote]: Address and port to send messages to.

• [UDPDriverConfig.max_frame_size]: Maximum UDP frame to send (in bytes).

Extensions for the ZeroMQ/Protobuf storage driver (DRIVER_PB_STORE_SERVER):

1 [PBDriverConfig.request_socket] {
2 socket_type:
3 socket_id: 0
4 transport: EPGM
5 connect_or_bind: CONNECT
6 ethernet_address: "127.0.0.1"
7 multicast_address: "239.255.7.15"
8 ethernet_port: 11142
9 socket_name: ""
10 }
11 [PBDriverConfig.query_interval_seconds]: 1
12 [PBDriverConfig.max_frame_size]: 65536
13 [PBDriverConfig.reset_interval_seconds]: 120
14 [PBDriverConfig.rate_to_bytes]:

This driver is still under development and thus is not for general use at the
moment.

3Goby Common Modules

3.1 Goby Common Applications

The Goby Common applications use a validating configuration reader based on the
Google Protocol Buffers TextFormat class. The configuration of any given
application is available by passing the --example_config flag (or -e for short) to
that application. Additionally, any of the configuration that may be given in a file
is also available as command line options. Provide --help (or -h) to see the
command line options.

They all share a common subset of the configuration (base):

1 base {
2 app_name: "myapp_g"
3 loop_freq: 10
4 platform_name: "unnamed_goby_platform"
5 pubsub_config {
6 publish_socket {
7 socket_type:
8 socket_id: 0
9 transport: EPGM
10 connect_or_bind: CONNECT
11 ethernet_address: "127.0.0.1"
12 multicast_address: "239.255.7.15"
13 ethernet_port: 11142
14 socket_name: ""
15 }
16 subscribe_socket {
17 socket_type:
18 socket_id: 0
19 transport: EPGM
20 connect_or_bind: CONNECT
21 ethernet_address: "127.0.0.1"
22 multicast_address: "239.255.7.15"
23 ethernet_port: 11142
24 socket_name: ""
25 }
26 }
27 additional_socket_config {
28 socket {
29 socket_type:
30 socket_id: 0

25

CHAPTER 3. GOBY COMMONMODULES 26

31 transport: EPGM
32 connect_or_bind: CONNECT
33 ethernet_address: "127.0.0.1"
34 multicast_address: "239.255.7.15"
35 ethernet_port: 11142
36 socket_name: ""
37 }
38 }
39 glog_config {
40 tty_verbosity: QUIET
41 show_gui: false
42 file_log {
43 file_name: ""
44 verbosity: VERBOSE
45 }
46 }
47 }

• app_name: Name of the application (defaults to binary name, i.e. oart of
argv[0] after last /).

• loop_freq: How often to run the synchronous loopmethod.

• platform_name: Name of the node or platform this is running on .

• pubsub_config: Socket configuration for the publish-subscribe part of
Goby-Common. If omitted, no connections or bindings will be made (if an
application is standalone).

– publish_socket: The socket used for publishing messages.
* socket_type: Must always be PUBLISH (you can safely omit the field
here).

* socket_id: Generally a unique id, unless you want several sockets
of the same type to send and receive together. You can safely omit
this field; it defaults to 103999.

* transport: IPC (UNIX sockets), TCP, PGM (Pragmatic General
Multicast), EPGM (PGM encasulated in UDP). In generally, you will
use TCP or IPC.

* connect_or_bind: CONNECT is used on the client side, BIND is used on
the server side. Generally, you will BIND the side on a well-known
location, and CONNECT the sides that may be more dynamic.

CHAPTER 3. GOBY COMMONMODULES 27

* ethernet_address: For TCP, PGM and EPGM, the ethernet address to
use.

* multicast_address: For PGM and EPGM, the multicast address of the
group to join.

* ethernet_port: The network port to connect or bind to.
* socket_name: For IPC, the name (path) of the UNIX socket to create
or connect to.

– subscribe_socket: The socket used for received subscribed messages.
Except where noted, the fields are the same as for publish_socket.
* socket_type: Must always be SUBSCRIBE (you can safely omit the
field here).

* socket_id: Generally a unique id, unless you want several sockets
of the same type to send and receive together. You can safely omit
this field; it defaults to 103998.

• additional_socket_config: (Advanced) Used to add additional ZeroMQ
connections or bindings.

• glog_config: Configure the goby::glog logging utility.

– tty_verbosity: Verbosity of the debug logging to standard output in
the controlling terminal. Choose DEBUG1-DEBUG3 for various levels of
debugging output, VERBOSE for some text terminal output, WARN for
warnings only, and QUIET for no terminal output.

– file_log: A repeated field to log the debugging output to one or more
files. If omitted, no files are logged.
* file_name: Path to file to log. The symbol %1% (if present) will be
replaced by the current UTC date and time at application launch.

* verbosity: Verbosity of this file log. Same enumeration options as
tty_verbosity.

3.2 Liaison

Goby Liaison (goby_liaison) is an extensible web-browser based GUI for managing
various aspects of Goby. It is written using the Wt [5] library and allows users to
manage their Goby systems from any machine (GNU/Linux, Windows, Mac OS X)
running a modern web browser (e.g. Firefox, Chrome).

CHAPTER 3. GOBY COMMONMODULES 28

The majority of Liaison is provided by plugin shared libraries that are loaded at
runtime using the environmental variable GOBY_LIAISON_PLUGINS, which is a colon
separated list of libraries (either absolute paths or in paths known to ld, such as
/usr/lib).

The core of Goby Liaison is a server that allows connections from one or more
clients through any major modern web browser. The core configuration options
are given by:

1 base {
2 ...
3 }
4 http_address: "localhost"
5 http_port: 54321
6 docroot: "/usr/share/goby/liaison"
7 additional_wt_http_params: "--accesslog=/tmp/access.log"
8 update_freq: 5
9 load_shared_library: ""
10 load_proto_file: ""
11 load_proto_dir: ""
12 start_paused: false

• base: Shared configuration for all goby_common applications. See section 3.1.

• http_address: IP address or domain name for the interface to bind on. Use
0.0.0.0 to bind on all interfaces. Use localhost to allow connections only
from the local machine for security.

• http_port: TCP port to bind on.

• docroot: Path to the Wt docroot, where various resources are found (e.g. CSS,
images, etc.). The default is usually correct for your installation.

• additional_wt_http_params: Additional command line parameters (separated
by spaces) to pass to the Wt server. See http://www.webtoolkit.eu/wt/
doc/reference/html/overview.html#config_wthttpd.

• update_freq: How often to update elements that require data from the
server side without client input.

• load_shared_library: Load a shared library (probably containing Google
Protobuf messages) for use.

http://www.webtoolkit.eu/wt/doc/reference/html/overview.html#config_wthttpd
http://www.webtoolkit.eu/wt/doc/reference/html/overview.html#config_wthttpd

CHAPTER 3. GOBY COMMONMODULES 29

• load_proto_file: Load a .proto file directly and compile it at runtime for use.
When possible, use load_shared_library.

• load_proto_dir: Path to a directory containing .proto files. All the .proto
files in this directory will be loaded and compiled for use.

• start_paused: For modules that require server side updates without client
input, setting this true will start up Liaison with these modules paused. This
prevents any server side initiated data from being pushed to the client. Set
true for use on low-throughput links (e.g. wireless at sea).

Additional configuration may be available from the loaded plugins. For example,
see the MOOS plugins in section 4.5.

To connect to a server using the default configuration, simply type
http://localhost:54321 into the address bar of your favorite web browser.

3.3 Gateway Applications

Goby, which uses ZeroMQ as a transport layer, sometimes also needs to talk to
other systems using incompatible transport mechanisms. To do this, “gateway”
applications can be developed that pass packets between the ZeroMQ (Goby)
“world” and the other system’s world. Thus far, one gateway has been written, the
moos_gateway_g (see section 4.5.1) for interfacing with the MOOS middleware.

4Goby MOOS Modules
The acoustic communications portion of Goby was developed originally for the
MOOS autonomy architecture. Thus, the relevant MOOS modules pAcommsHandler
and others are still maintained (in goby/src/moos) for the use of the MOOS-IvP
community. MOOS-IvP is explained in [4] and is available at
http://moos-ivp.org. The usage of these modules is documented here. See
http://gobysoft.org/wiki/InstallingGoby for how to install Goby.

4.1 Goby MOOS Applications

The Goby MOOS applications share a common subclass of CMOOSApp that
provides a validating configuration reader based on the Google Protocol Buffers
TextFormat class. The configuration is still embedded within the .moos file, but
the syntax is somewhat different. Here you can control logging to a text file and
terminal verbosity. You can also initialize a variable in the MOOS database at
startup. Many of these parameters will automatically be set to a global MOOS
variable (specified outside any ProcessConfig block) if left empty. For example,
the global MOOS variable LatOrigin will set the Goby MOOS configuration variable
common::lat_origin. This allows Goby MOOS applications to conform to MOOS de
facto conventions.

Any Goby MOOS application will give all its valid configuration parameters with

> pGobyApp --example_config

1 ProcessConfig = pGobyApp
2 {
3 common {
4 log: true
5 log_path: "./"
6 log_verbosity: DEBUG2
7 community: "AUV23"
8 lat_origin: 42.5
9 lon_origin: 10.9
10 time_warp_multiplier: 1
11 app_tick: 10
12 comm_tick: 10
13 verbosity: VERBOSE
14 show_gui: false

30

http://moos-ivp.org
http://gobysoft.org/wiki/InstallingGoby

CHAPTER 4. GOBY MOOS MODULES 31

15 initializer {
16 type: INI_DOUBLE
17 moos_var: "SOME_MOOS_VAR"
18 global_cfg_var: "LatOrigin"
19 dval: 3.454
20 sval: "a string"
21 trim: true
22 }
23 }
24 }

Some details about the configuration values:

• log: boolean to indicate whether to log terminal output or not to files in the
path by log_path.

• log_path: folder to log all terminal output to for later debugging. Similar to
system logs in /var/log.

• log_verbosity: verbosity of the log file. See verbosity for the various
settings.

• community: the name of the current vehicle community. If omitted, read
from the Community= global MOOS configuration field.

• lat_origin: a decimal degrees latitude indicating the local cartesian origin.
If omitted, read from the LatOrigin= global MOOS configuration field.

• lon_origin: a decimal degrees longitude indicating the local cartesian origin.
If omitted, read from the LongOrigin= global MOOS configuration field.

• app_tick: same as AppTick.

• comm_tick: same as CommsTick.

• verbosity: choose DEBUG1-DEBUG3 for various levels of debugging output,
VERBOSE for some text terminal output, WARN for warnings only, and QUIET for
no terminal output.

• show_gui: if true, the running terminal opens an NCurses GUI helpful to
debugging and visualizing the many data flows of pAcommsHandler. The
verbosity in this GUI is governed by verbosity.

CHAPTER 4. GOBY MOOS MODULES 32

• initializer: since many times it is useful to have a MOOS variable including
in a message that remains static for a given mission (vehicle name, etc), we
give the option to publish initial MOOS variables here (for later use in
messages [until overwritten, of course]). If global_cfg_var is set,
pAcommsHandler looks for a global (i.e. specified at the top of the MOOS file
or outside any ProcessConfig blocks) value in the .moos file with the name to
the right of the colon and publishes it to a MOOS variable with the name to
the left of the colon. For example:

initializer { global_cfg_var: "LatOrigin" moos_var: "LAT_ORIGIN" }

looks for a variable in the .moos file called LatOrigin and publishes it to the
MOOSDB as a double variable LAT_ORIGIN with the value given by LatOrigin.

4.2 pTranslator

pTranslator is a translator between MOOS types (strings and doubles) and Google
Protocol Buffers messages (which includes DCCL messages). All of the
functionality of pTranslator is also present in pAcommsHandler, but pTranslator is
provided as a standalone application for cases when Goby-Acomms is not needed,
but the translation functionality is. Also, pTranslator loops back all created
messages and immediately publishes them, whereas pAcommsHandler publishes
messages received acoustically, and creates messages to be transmitted.

The configuration for pTranslator is as follows:

1 ProcessConfig = pTranslator
2 {
3 common {
4 ...
5 }
6 load_shared_library: ""
7 load_proto_file: ""
8 translator_entry {
9 protobuf_name: ""
10 trigger {
11 type: TRIGGER_PUBLISH
12 moos_var: ""
13 period:
14 mandatory_content: ""
15 }

CHAPTER 4. GOBY MOOS MODULES 33

16 create {
17 technique: TECHNIQUE_PROTOBUF_TEXT_FORMAT
18 moos_var: ""
19 format: ""
20 repeated_delimiter: ","
21 algorithm {
22 name: ""
23 primary_field:
24 }
25 }
26 publish {
27 technique: TECHNIQUE_PROTOBUF_TEXT_FORMAT
28 moos_var: ""
29 format: ""
30 repeated_delimiter: ","
31 algorithm {
32 name: ""
33 output_virtual_field:
34 primary_field:
35 reference_field:
36 }
37 }
38 use_short_enum: false
39 }
40 modem_id_lookup_path: ""
41 multiplex_create_moos_var: ""
42 }

• common: Parameters that can be set for any of the Goby MOOS applications.
See section 4.1.

• load_shared_library: Repeated string, each with a path to a shared library
containing compiled DCCL (Google Protocol Buffers) messages.

• load_proto_file: Repeated string, each with one path to a .proto file
containing compiled DCCL (Google Protocol Buffers) messages. These will be
compiled at runtime and loaded. It is preferable to use load_shared_library
when possible, as syntactical and type mistakes in the DCCL messages will
be caught at compile-time rather than delayed to runtime.

• translator_entry: Repeated entry: there should be one translator_entry
defined for each Google Protobuf message type that you wish to translate to
or from.

CHAPTER 4. GOBY MOOS MODULES 34

– protobuf_name: Fully qualified name (packages separated by ., e.g.
example.MinimalStatus) to the Protobuf message that this translator
should use. This message must be loaded either by load_shared_library
or load_proto_file.

– trigger: The event that causes this translation to occur.
* type: Either TRIGGER_PUBLISH (do a translation every time a given
MOOS variable is published to) or TRIGGER_TIME (do a translation
on a regular frequency).

* moos_var: For TRIGGER_PUBLISH, the MOOS variable that causes the
translation to occur.

* period: For TRIGGER_TIME, the period (in seconds) between
translations.

* mandatory_content: For TRIGGER_PUBLISH, if this is defined, the
moos_varmust contain this substring in order to trigger this
translation. Use of this field allows a single MOOS variable to
trigger several different translations.

– create: Upon triggering, this defines how the Protobuf message is
created from one or more MOOS variables. Repeat this field for
multiple MOOS variables. The create directives are processed in the
order they are defined and thus later creates that write the same fields
will overwrite earlier ones.
* technique: The parsing technique to use. See section 4.3.
* moos_var: The MOOS variable to use for this create.
* format: For TECHNIQUE_FORMAT, the format string to use. This is
similar to scanf, but instead of type specifiers, numerical
specifiers are used, surrounded by % on both sides. For example, if
the format value is foo=%1%, this create will parse a moos_var
containing foo=5 and put the value 5 into field 1 of the Protobuf
message given by protobuf_name.

* repeated_delimiter: When parsing for repeated Protobuf fields,
this is the string that delimits fields. For example, if foo=%1%, field
1 is repeated int32 field_name = 1, and the value to parse is
foo=10;12;13;14, repeated_delimiter should be “;” in order to
parse these four numbers into a “vector” of values in that field.

* algorithm: An algorithm to modify the parsed field before placing
it in the Protobuf message. These are largely provided for
backwards compatibility for Goby v1, and are not necessarily
encouraged for new use. See

CHAPTER 4. GOBY MOOS MODULES 35

http://gobysoft.com/dl/goby1-user-manual.pdf for a
detailing of the available algorithms. Several algorithms can be
chained (processed in the order they are defined) by repeated this
algorithm field with the same primary_field.
· name: Name of the algorithm, e.g. to_upper.
· primary_field: The field number to apply this algorithm to.

– publish: Upon receipt of a Protobuf message, how to publish it back to
one or more MOOS variable(s). Several publish entries should be
specified to publish to several MOOS variables.
* technique: The serialization technique to use. See section 4.3.
* moos_var: The MOOS variable to write to for this publish.
* format: For TECHNIQUE_FORMAT, the format string to use. This is
similar to printf, but instead of type specifiers, numerical
specifiers are used, surrounded by % on both sides. For example, if
the format value is foo=%1%, this publish will write a moos_var
containing foo=5 if field 1 in the Protobuf message was 5.

* repeated_delimiter: When writing repeated Protobuf fields, this is
the string that is used to delimit fields.

* algorithm: Several algorithms can be chained (processed in the
order they are defined) by repeated this algorithm field with the
same primary_field.
· name: Name of the algorithm, e.g. to_upper.
· primary_field: The field number to apply this algorithm to.
· output_virtual_field: A “virtual” field number (one that
doesn’t exist in the actual Protobuf message) that is used to
specify the output of this algorithm. This virtual field can
then be used in the format string like a real field.
· reference_field: The field(s) required by the algorithm as
references, if the algorithm requires them (e.g. utm_x2lon).

– use_short_enum: If true, the front of the enumeration value is removed
if it matches the field name plus a _. For example, if the enum field is
foo, and the enumerations are FOO_OPTION1, FOO_OPTION2, then OPTION1
and OPTION2 are published. If false (the default), the enumeration
values are published as defined. This is mostly here for backwards
compatibility with Goby 1.

http://gobysoft.com/dl/goby1-user-manual.pdf

CHAPTER 4. GOBY MOOS MODULES 36

4.3 Translator techniques

There are three broad categories of translator techniques: 1) those that use the
Google Protocol Buffers tools (TECHNIQUE_PREFIXED_PROTOBUF_TEXT_FORMAT,
TECHNIQUE_PROTOBUF_TEXT_FORMAT, TECHNIQUE_PROTOBUF_NATIVE_ENCODED), 2) one that
uses the de factoMOOS convention of key=value pairs delimited by commas
(TECHNIQUE_COMMA_SEPARATED_KEY_EQUALS_VALUE_PAIRS), and 3) one that is based
roughly on printf/scanf (TECHNIQUE_FORMAT).

More details on each translator type:

• TECHNIQUE_PROTOBUF_TEXT_FORMAT: exactly the same as if you used the Google
TextFormat class:
https://developers.google.com/protocol-buffers/docs/
reference/cpp/google.protobuf.text_format.

• TECHNIQUE_PREFIXED_PROTOBUF_TEXT_FORMAT (recommendated for most uses).
Same as TECHNIQUE_PROTOBUF_TEXT_FORMAT but prefixed with @PB[TypeName] ,
so that you can put multiple Protobuf Types in a single MOOS Variable (if
you really need to). It’s also quite human readable and allows for programs
to read / write generic Protobuf messages. This technique is useful enough,
there are two shortcut functions for use in your C++ MOOS code
(#include "goby/moos/moos_protobuf_helpers.h"): serialize_for_moos and
parse_for_moos.

• TECHNIQUE_PROTOBUF_NATIVE_ENCODED: exactly the same as if you used the
default binary Google encoding (binary), represented as a byte string. This
tends to break the MOOS tools that assume strings are ASCII / UTF-8.

• TECHNIQUE_COMMA_SEPARATED_KEY_EQUALS_VALUE_PAIRS: all fields represented as
key1=value1,key2=value2,...Messages with submessages are flattened and
the keys assembled by concatenation separated with _. This is similar to the
existing NODE_REPORT variable used in MOOS-IvP.

• TECHNIQUE_FORMAT: sort of like printf / scanf, except instead of typed
directives (e.g. %d), Goby uses numeric directives that correspond the
protobuf message field id (e.g. foobar=%2%). Submessages can be referenced
using “:” (e.g. %5:1%, where field 5 is a Message), repeated fields can be
referenced using “.” (e.g. %7.1%, where field 7 is repeated). Note the ending %
on each directive, which is different than printf.

https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format

CHAPTER 4. GOBY MOOS MODULES 37

4.4 pAcommsHandler

pAcommsHandler provides a:

1. MOOS Application wrapper for the Goby-Acomms communication library.

2. set of translation tools for converting the DCCL messages (written as an
extension of Google Protocol Buffers) to MOOS types (strings and doubles)
and vice-versa.

3. full backwards-compatibility support module for version 1 XML messages.

This section describes only the parts relevant for interface to MOOS (variables and
translator entries that allow you to read and write to and from DCCL (Protobuf)
messages). You should read Chapter 2 before starting this section and reference it
as necessary.

4.4.1 Parameters for the pAcommsHandler Configuration Block

Example moos file

pAcommsHandler has a large number of configuration options, many of which
you will never use or leave as default. You can always get a complete listing of
MOOS file parameters with their syntax by running

> pAcommsHandler --example_config

These configuration values are provided here (with . . . where the relevant
configuration is provided elsewhere in this document):

1 ProcessConfig = pAcommsHandler
2 {
3 common {
4 ...
5 }
6 modem_id: 1
7 driver_type: DRIVER_NONE
8 driver_cfg {
9 ...
10 }
11 mac_cfg {

CHAPTER 4. GOBY MOOS MODULES 38

12 ...
13 }
14 queue_cfg {
15 ...
16 }
17 dccl_cfg {
18 ...
19 }
20 route_cfg {
21 ...
22 }
23 moos_var {
24 prefix: "ACOMMS_"
25 driver_raw_in: "NMEA_IN"
26 driver_raw_out: "NMEA_OUT"
27 driver_raw_msg_in: "RAW_INCOMING"
28 driver_raw_msg_out: "RAW_OUTGOING"
29 driver_receive: "MODEM_RECEIVE"
30 driver_transmit: "MODEM_TRANSMIT"
31 queue_receive: "QUEUE_RECEIVE"
32 queue_transmit: "QUEUE_TRANSMIT"
33 queue_ack_transmission: "ACK"
34 queue_ack_original_msg: "ACK_ORIGINAL"
35 queue_expire: "EXPIRE"
36 queue_size: "QSIZE"
37 queue_flush: "FLUSH_QUEUE"
38 mac_cycle_update: "MAC_CYCLE_UPDATE"
39 mac_initiate_transmission: "MAC_INITIATE_TRANSMISSION"
40 }
41 load_shared_library: "/usr/lib/libmy_dccl_messages.so"
42 load_proto_file: "/usr/include/mylib/message.proto"
43 translator_entry {
44 ...
45 }
46 multiplex_create_moos_var: "LIAISON_COMMANDER_OUT"
47 modem_id_lookup_path: ""
48 transitional_cfg {
49 modem_id: 1
50 message_file {
51 path: "/home/toby/goby/src/acomms/examples/chat/chat.xml"
52 manipulator: NO_MANIP
53 }
54 generated_proto_dir: "/tmp"
55 }
56 }

CHAPTER 4. GOBY MOOS MODULES 39

Filling out the .moos file

Many of the parameters are sufficiently explained in the above list of
configuration parameters. What follows is a detailed explanation of the
parameters that need further explanation.

• common: Parameters that can be set for any of the Goby MOOS applications.
See section 4.1.

• modem_id: integer that specifies the modem_id of this current vehicle /
community. For the WHOI Micro-Modem this is the Micro-Modem “SRC”
configuration parameter (as set by $CCCFG,SRC,#). For the remainder of the
document, modem_id refers to the value $CCCFG,SRC,modem_id. This
configuration parameter will be set on startup. Setting this within the main
block for pAcommsHandler sets it for all the modules (driver_cfg, queue_cfg,
mac_cfg)

• driver_type:

– DRIVER_WHOI_MICROMODEM is a driver for the WHOI Micro-Modem.
– DRIVER_ABC_EXAMPLE_MODEM is a simple test “modem”. Do not use this for
real work, but rather for learning how to write new drivers for Goby.

– DRIVER_UFIELD_SIM_DRIVER is a driver for the MOOS-IvP uField toolbox.
– DRIVER_PB_STORE_SERVER is a ZeroMQ (TCP, UNIX sockets) driver for the

goby_store_server database.
– DRIVER_UDP is a user datagram protocol (UDP) driver. This is probably
the easiest driver to start with for learning pAcommsHandler.

– DRIVER_NONE disables the modem driver.

• driver_cfg: Configures the base driver and the specific driver selected. See
section 2.5.

• mac_cfg: Configures the acoustic Medium Access Control. See section 2.4.

• queue_cfg: Configures the Priority Queuing layer. See section 2.3.

• dccl_cfg: Configures the Dynamic Compact Control Language. See section
2.2.

• route_cfg: Configures a basic static routing module. This is experimental
and subject to change.

CHAPTER 4. GOBY MOOS MODULES 40

• moos_var: Rename any or all of the MOOS variables published by
pAcommsHandler.

• load_shared_library: Repeated string, each with a path to a shared library
containing compiled DCCL (Google Protocol Buffers) messages.

• load_proto_file: Repeated string, each with one path to a .proto file
containing compiled DCCL (Google Protocol Buffers) messages. These will be
compiled at runtime and loaded. It is preferable to use load_shared_library
when possible, as syntactical and type mistakes in the DCCL messages will
be caught at compile-time rather than delayed to runtime.

• translator_entry: List of entries indicating when to make (trigger) and how
to create outgoing DCCL messages, and how to publish incoming DCCL
messages. This can be thought of as providing a generic interface between
MOOS strings and Google Protocol Buffers messages. See section 4.2 for a
full explanation on how to configure this translation.

• multiplex_create_moos_var: Used by goby_liaison to publish multiple
commands (outgoing messages) on a single MOOS variable.

• modem_id_lookup_path: path to a text file giving the mapping between
modem_id and vehicle name and type for a given experiment. This file should
look like:

1 // modem id, vehicle name (should be community name), vehicle type
2 0, broadcast, broadcast
3 1, endeavor, ship
4 3, unicorn, auv
5 4, macrura, auv

• transitional_cfg: Provides the same functionality as dccl_cfg does in
pAcommsHandler from version 1 of Goby. Behind the scenes, XML messages
are read, translated to version 2 Protobuf DCCL messages, and written to the
generated_proto_dir, and subsequently loaded using load_proto_file. The
appropriate translator_entrys are also created from these messages. Do not
use this configuration or the XML representation of DCCL messages for any
new projects. See the version 1 documentation
(http://gobysoft.org/doc/1.1/) for more details on the XML
representation of DCCL messages.

http://gobysoft.org/doc/1.1/

CHAPTER 4. GOBY MOOS MODULES 41

4.5 MOOS Plugins for Goby Liaison

Goby2 provides two applications (“tabs”) inside Liaison (see section 3.2) that can
launched by setting the environmental variable GOBY_LIAISON_PLUGINS to include
the library libliaison_plugins_goby_moos.so. For example, in bash:

export GOBY_LIAISON_PLUGINS=/usr/lib/libliaison_plugins_goby_moos.so
goby_liaison

Please note that multiple plugin libraries can be loaded by separating the library
paths with colons. The MOOS Plugins are: 1) MOOSCommander, an application
that allows operator entry of any Protobuf message, and 2) MOOSScope, a tool that
allows examining some subset of the current MOOSDB variables.

4.5.1 Connecting the Goby Liaison to the MOOSDB using moos_gateway_g

Liaison does not use the standard CMOOSCommClient TCP transport that MOOS
uses, but rather ZeroMQ [6]. However, the Goby application moos_gateway_g was
written to allow messages to pass between these two different “worlds.” The
moos_gateway_gmakes a ZeroMQ publish/subscribe connection on one side, and a
CMOOSCommClient connection to a MOOSDB on the other. Messages are passed
between the two worlds using a set of configured filters.

The configuration available is (moos_gateway_g --example_config):

1 base {
2 ...
3 }
4 moos_server_host: "localhost"
5 moos_server_port: 9000
6 moos_comm_tick: 5
7 moos_subscribe_filter: ""
8 goby_subscribe_filter: ""

• base: Shared configuration for all goby_common applications. See section 3.1.
This includes the publish-subscribe configuration required to connect to the
Goby ZeroMQ side of the gateway.

• moos_server_host: IP address or domain name for the MOOSDB

• moos_server_port: Port to connect to the MOOSDB

CHAPTER 4. GOBY MOOS MODULES 42

• moos_comm_tick: Frequency to call into the MOOSDB to retrieve mail.

• moos_subscribe_filter: A repeated string containing a substring to subscribe
for in the MOOSDB. That is, "NAV_" will subscribe to NAV_X, NAV_Y, NAV_DEPTH,
etc. The empty string ("") subscribes to everything.

• goby_subscribe_filter: Same as the moos_subscribe_filter but for the Goby
side.

4.5.2 MOOS Commander GUI (Liaison)

The MOOS Commander tab is shown (with annotations) in Fig. 4.1. This is tool that
allows a human operator to send DCCL messages (typically commands) to one or
more robots. It supports sending any DCCL message (and any regular Protobuf
message) known either at compile time (load_shared_library) or runtime
(load_proto_file).

When the MOOS plugins are loaded, the Commander tab can be configured with
the following settings with the file passed to Liaison:

1 [goby.common.protobuf.pb_commander_config] {
2 load_protobuf_name: ""
3 value_width_pixels: 500
4 modify_width_pixels: 100
5 sqlite3_database: "/tmp/liaison_commander_autosave.db"
6 database_pool_size: 10
7 database_view_height: 400
8 database_width {
9 comment_width: 200
10 name_width: 200
11 ip_width: 150
12 time_width: 150
13 }
14 modal_dimensions {
15 width: 800
16 height: 200
17 }
18 subscription: ""
19 time_source_var: ""
20 }

• load_protobuf_name: Repeated field, each with the full name of a Protobuf
message as given by the google::protobuf::Descriptor::full_name(). This is

CHAPTER 4. GOBY MOOS MODULES 43

Figure 4.1: The MOOS Commander tab in Goby Liaison

CHAPTER 4. GOBY MOOS MODULES 44

the package name(s), followed by the message name, delimited by periods.
For example, example.MinimalStatus. The messages will be loaded from
load_shared_library, load_proto_file, and/or load_proto_dir configuration
values given in the Liaison configuration, and made available for sending
using the MOOS Commander GUI.

• value_width_pixels: Change the display width of the value field (in pixels).

• modify_width_pixels: Change the display width of the modify field (in pixels).

• sqlite3_database: Path to an SQLite3 database file to use (or create) to store
all previously sent messages. Delete or modify this file to remove the
history.

• database_pool_size: The connection pool size for database connections.
Generally this should be larger than the number of expected simultaneously
connection clients to Liaison.

• database_view_height: The height of the Message log section of the GUI (in
pixels).

• database_width: The widths (in pixels) of various components of the
Message log section.

• modal_dimensions: The dimensions (in pixels) of the modal (popup) dialog
when sending a message.

• subscription: A repeated field, each contains a MOOS variable name to
subscribe for. Subscribed variables will be shown in the lower left corner of
the Commander GUI.

• time_source_var: The source of time e.g. DB_TIME from the MOOS database to
be used for codec="_time" DCCL fields.

4.5.3 MOOS Scope GUI (Liaison)

1 [goby.common.protobuf.moos_scope_config] {
2 subscription: ""
3 column_width {
4 key_width: 150
5 type_width: 60
6 value_width: 200

CHAPTER 4. GOBY MOOS MODULES 45

7 time_width: 150
8 community_width: 80
9 source_width: 80
10 source_aux_width: 120
11 }
12 sort_by_column: COLUMN_KEY
13 sort_ascending: true
14 scope_height: 400
15 regex_filter_column: COLUMN_KEY
16 regex_filter_expression: ".*"
17 history {
18 key: ""
19 show_plot: false
20 plot_width: 800
21 plot_height: 300
22 }
23 }

• subscription: A repeated field, each with the string name of a MOOS
variable. You can optionally use * at the end of the string for basic globbing.
Use regex_filter_expression below for more advanced filtering. You can
subscribe to "*" for all variables. Note that receiving mail for subscribed
variables consumes network bandwidth, so it may be useful to subscribe to a
small subset of variables before filtering when on a limited network
connection.

• column_width: Width (in pixels) for the individual scope columns.

• sort_by_column: Which column to sort by on startup: Options are COLUMN_KEY,
COLUMN_TYPE, COLUMN_VALUE, COLUMN_TIME, COLUMN_COMMUNITY, COLUMN_SOURCE,
COLUMN_SOURCE_AUX, COLUMN_MAX.

• sort_ascending: If true, sort ascending; if false, sort descending.

• scope_height: Height (in pixels) of the scope display.

• regex_filter_column: Which column to apply the regex_filter_expression to.

• regex_filter_expression: A regular expression used to filter the scope
results. Defaults to ".*" which is an all-pass filter.

• history: Enable one or more history panels showing the log of a given MOOS
variable.

CHAPTER 4. GOBY MOOS MODULES 46

– key: The MOOS variable name to show history for.
– show_plot: If true, shows a graph of the variable history. Only valid for
MOOS double types.

– plot_width: Width of the plot in pixels.
– plot_height: Height of the plot in pixels.

4.5.4 Example working configuration

Here are the configuration files for moos_gateway_g and goby_liaison with the
MOOS plugins enabled from a working system as an example:

1 # moos_gateway_g
2 base {
3 platform_name: "resolution"
4 pubsub_config {
5 publish_socket {
6 transport: IPC
7 socket_type: PUBLISH
8 connect_or_bind: BIND
9 socket_name: "../.tmp/moos_gateway_g_pub_resolution"
10 }
11 subscribe_socket {
12 transport: IPC
13 socket_type: SUBSCRIBE
14 connect_or_bind: BIND
15 socket_name: "../.tmp/moos_gateway_g_sub_resolution"
16 }
17 }
18 glog_config {
19 tty_verbosity: QUIET
20 }
21 }
22 moos_server_host: "localhost"
23 moos_server_port: 9001
24 moos_comm_tick: 5
25 moos_subscribe_filter: ""
26 goby_subscribe_filter: ""

CHAPTER 4. GOBY MOOS MODULES 47

Figure 4.2: The MOOS Scope tab in Goby Liaison

CHAPTER 4. GOBY MOOS MODULES 48

1 # GOBY_LIAISON_PLUGINS=libliaison_plugins_goby_moos.so goby_liaison
2 base {
3 platform_name: "resolution"
4 pubsub_config {
5 publish_socket {
6 transport: IPC
7 socket_type: PUBLISH
8 connect_or_bind: CONNECT
9 socket_name: "../.tmp/moos_gateway_g_sub_resolution"
10 }
11 subscribe_socket {
12 transport: IPC
13 socket_type: SUBSCRIBE
14 connect_or_bind: CONNECT
15 socket_name: "../.tmp/moos_gateway_g_pub_resolution"
16 }
17 }
18 glog_config {
19 tty_verbosity: QUIET
20 file_log {
21 file_name: "../logs/simulation/goby_liaison_%1%.txt"
22 verbosity: DEBUG2
23 }
24 }
25 }
26 http_address: "localhost"
27 http_port: 50001
28 update_freq: 10
29 start_paused: false
30 [goby.common.protobuf.moos_scope_config] {
31 subscription: "ACOMMS*"
32 column_width {
33 key_width: 150
34 type_width: 60
35 value_width: 200
36 time_width: 150
37 community_width: 80
38 source_width: 80
39 source_aux_width: 120
40 }
41 sort_by_column: COLUMN_KEY
42 sort_ascending: true
43 scope_height: 400
44 regex_filter_column: COLUMN_KEY
45 regex_filter_expression: ".*"
46 }
47 [goby.common.protobuf.pb_commander_config] {
48 subscription: "ACOMMS_ACK_ORIGINAL"

CHAPTER 4. GOBY MOOS MODULES 49

49 subscription: "ACOMMS_NETWORK_ACK"
50 subscription: "ACOMMS_EXPIRE"
51 time_source_var: "DB_TIME"
52 load_protobuf_name: "LAMSS_DEPLOY"
53 load_protobuf_name: "LAMSS_TRANSIT"
54 load_protobuf_name: "LAMSS_PROSECUTE"
55 load_protobuf_name: "SIMULATE_TARGET"
56 load_protobuf_name: "SURFACE_DEPLOY"
57 load_protobuf_name: "ACOUSTIC_MOOS_POKE"
58 load_protobuf_name: "goby.acomms.protobuf.MACUpdate"
59 sqlite3_database: "../.tmp/liaison_commander_autosave.db"
60 }
61 load_shared_library: "../../lamss/lib/liblamss_protobuf.so"

4.6 Migrating from Version 1 to Version 2

pAcommsHandler from Goby version 2 (Goby2) provides nearly full backwards
compatibility directly using the XML messages from Goby version 1 (Goby1).

In order to use XML messages from Goby1 in Goby2, simply rename the dccl_cfg
section of the pAcommsHandler1 configuration block to transitional_cfg. In
general this is all that needs to be done, as pAcommsHandler2 will automatically
internally convert the XML files to .proto files and load them. Some special
features of the XML files are not supported in version 2:

• Algorithms without a corresponding source variable.

• Algorithms with reference fields (e.g. subtract:timestamp) for message
creation. Reference fields are still allowed upon publish.

• <format> tags must be specified in the boost::format %1%, %2%, etc. format,
not using %d printf specifiers. The typed specifiers would work in Goby v1
but are not supported at all in Goby v2.

While the XML files can be used directly as a temporary measure, it is
recommended to transition all your XML files to .proto files for direct use with
pAcommsHandler2. To ease your transition, there is a tool dccl_xml_to_dccl_proto
that will automatically convert your XML files for you. The usage is

dccl_xml_to_dccl_proto message_xml_file.xml [directory for generated .proto (default = pwd (.)]

CHAPTER 4. GOBY MOOS MODULES 50

In Goby1, the XML files contained both structure information and MOOS
translation information. In Goby2, these are separated to allow better support of
non-MOOS systems.

The tool will write the generated .proto files (the structure information) to the
directory specified as the second command line parameter (defaults to the
current/working directory). It will write to standard output the required
additions to the pAcommsHandler2 configuration file for the queuing and
translation information present in the XML file. Simply copy these parts to your
MOOS file and you can continue to use your old messages natively.

4.7 iFrontSeat

4.7.1 Introduction

Motivation

Broadly, our goal in Goby is facilitate the development of a autonomy, sensing,
and communications infrastructure that can operate on a heterogeneous
collection of vehicles. One way to help effect this is to split the system into two
components: the frontseat and backseat computing systems. The frontseat is
provided by the vehicle manufacturer and is typically proprietary. It is
responsible for low level control of the vehicle. The backseat runs the high level
autonomy (typically the IvP Helm), sensing, and communications (typically Goby)
components. The requirements of the frontseat on the backseat is minimally a
continuous (e.g. 1 Hz) stream of course directives, such as desired heading, speed,
and depth of the AUV. The requirements of the backseat on the frontseat is a best
attempt to carry out these directives constrained by the dynamics of the vehicle,
as well as a feed of the vehicles’ navigation solution.

Not surprisingly, a piece of software is required to interface between the frontseat
and the backseat. This code (iFrontSeat) is the subject of section.

Historically, a new interface has been written for each vehicle that was to be used
with MOOS-IvP1. This led to a proliferation of approaches for handling the state
transitions and control, primarily from pHelmIvP. In some cases,
misunderstandings involving various aspects of MOOS-IvP led to vehicle
runaways. Furthermore, as MOOS-IvP becomes even more widely adopted and the
number of manufacturers of robotic assets increases, it seems sensible to
minimize the duplication of effort involved in writing interfaces.

1For example, the applications iHuxley, iRecon, iOceanServerComms, . . .

CHAPTER 4. GOBY MOOS MODULES 51

Design overview

iFrontSeat (and its corresponding components in the library libgoby_moos) is
comprised of two major components (the full UML structure diagram is given in
Fig. 4.3):

• A base class FrontSeatInterfaceBase and MOOS Application iFrontSeat
providing the IvP Helm state transition logic and MOOSDB subscriptions and
publications. This is written once and used by all the specific drivers.

• A collection of derived classes (which are compiled into individual shared
libraries) to implement the interface provided by FrontSeatInterfaceBase for
a given manufacturer or vehicle type. The currently available drivers
include:

– BluefinFrontSeat: Implements FrontSeatInterfaceBase for the Bluefin
Robotics family of AUVs using the Huxley software.

Running iFrontSeat

iFrontSeat always requires exactly one driver library to be loaded before any
command-line parameters will be accepted. The driver libraries are
runtime-loaded because this allows for a driver developer to create his or her own
driver without changing any of the Goby source code. The driver library is loaded
from the environmental variable IFRONTSEAT_DRIVER_LIBRARY. For example, use the
bash shell, one can load iFrontSeat with the Bluefin driver (see section 4.7.3) with
this invocation:

IFRONTSEAT_DRIVER_LIBRARY=libgoby_frontseat_bluefin.so.25 iFrontSeat

The library specified must be a complete path or on the ld library search path (e.g.
set using LD_LIBRARY_PATH). Alternatively, you could export
IFRONTSEAT_DRIVER_LIBRARY from one of the shell configuration files (e.g.
~/.bashrc), and then simply run iFrontSeat on the command line.

4.7.2 Shared MOOS Side Components

iFrontSeat is a Goby MOOS application, which means it uses a validating
configuration reader based on Google Protocol Buffers instead of the standard
MOOS ProcessConfigReader. The syntax is similar, and you can always get all the
valid configuration parameters by running

CHAPTER 4. GOBY MOOS MODULES 52

llibgoby_frontseat
_abc

libfrontseat_gavia libfrontseat_remu
s

libgoby_moos

libgoby_frontseat_bluefin

iFrontSeat

+handle_mail_*()
+handle_driver_signal_*()

FrontSeatLegacyTranslator

-handle_mail_*()
+handle_driver_signal_*()

iFrontSeat

+send_command_to_frontseat(in : CommandRequest) : void
+send_data_to_frontseat(in : FrontSeatInterfaceData) : void
+send_raw_to_frontseat(in : FrontSeatRaw) : void
+frontseat_state() : FrontSeatState
+frontseat_providing_data() : bool
+helm_state() : HelmState
+state() : InterfaceState

«signal» +data_from_frontseat
«signal» +command_response
«signal» +raw_from_frontseat
«signal» +raw_to_frontseat

FrontSeatInterfaceBase

#initialize_huxley()
-load_nmea_mappings()
-append_to_write_queue()
-check_send_heartbeat()
-try_send()
-try_receive()
-write()
-process_receive()
-bf*()

BluefinFrontSeat

GaviaFrontSeat

1

1

11

+loop()
+publish()
+subscribe()

GobyMOOSApp

+OnNewMail()
+OnStartUp()
+OnConnectToServer()
+Iterate()

CMOOSApp

+moos_var()
+require_helm() : bool
+helm_running_timeout() : double
+frontseat_connected_timeout() : double
+status_period() : unsigned int

«protobuf»
iFrontSeatConfig

+huxley_tcp_address() : std::string
+huxley_tcp_port() : unsigned int

«protobuf»
BluefinFrontSeatConfig

1
1

1

1

+STANDBY
+LISTEN
+COMMAND
+HELM_ERROR
+FS_ERROR

«enumeration»
InterfaceState

+NOT_CONNECTED
+IDLE
+ACCEPTING_COMMANDS
+IN_CONTROL
+ERROR

«enumeration»
FrontSeatState

+NOT_RUNNING
+DRIVE
+PARK
+ERROR

«enumeration»
HelmState

«protobuf»
CommandRequest

«protobuf»
CommandResponse

«protobuf»
FrontSeatInterfaceData

«protobuf»
FrontSeatRaw

«protobuf»
BluefinExtraData

«protobuf»
DesiredCourse

«protobuf»
NodeStatus

«datatype»
CTDSample

«protobuf»
BluefinExtraCommands

11 1

1

1

1

RemusFrontSeat AbcFrontSeat

Figure 4.3: Structure diagram of iFrontSeat and supporting libraries. Green com-
ponents are implemented once and used by all the drivers (see section 4.7.2). Pink
components need to bemodified/implemented for each specific driver (see section
4.7.3).

CHAPTER 4. GOBY MOOS MODULES 53

iFrontSeat --example_config

Many of these parameters can be left to their defaults, except for special cases and
advanced usages.

This was the configuration of iFrontSeat at the time of writing this technical
report. Be sure to check iFrontSeat --example_config for the latest possible valid
configuration.

1 ProcessConfig = iFrontSeat
2 {
3 common {
4 // configuration common to all Goby Applications
5 // ...
6 }
7 }
8 require_helm: true
9 helm_running_timeout: 10
10 frontseat_connected_timeout: 10
11 status_period: 5
12 moos_var {
13 prefix: "IFS_"
14 raw_out: "RAW_OUT"
15 raw_in: "RAW_IN"
16 command_request: "COMMAND_REQUEST"
17 command_response: "COMMAND_RESPONSE"
18 data_from_frontseat: "DATA_IN"
19 data_to_frontseat: "DATA_OUT"
20 status: "STATUS"
21 }
22 exit_on_error: false
23 legacy_cfg {
24 subscribe_desired: true
25 subscribe_ctd: false
26 subscribe_acomms_raw: false
27 pub_sub_bf_commands: false
28 publish_nav: true
29 publish_fs_bs_ready: false
30 }
31
32 // vehicle driver specific configuration
33 // ...
34 }

The configuration for iFrontSeat has three main parts:

CHAPTER 4. GOBY MOOS MODULES 54

1. The common configuration which is the same for all Goby MOOS applications.
Please see section 4.1 for details. Setting verbosity: DEBUG2 is useful for
debugging (and also show_gui: true, which displays an NCurses screen with
useful debugging information).

2. The configuration for the shared MOOS side components, described below
in this section.

3. The vehicle driver specific configuration, described in Chapter 4.7.3.

The configuration for the shared MOOS components is:

• require_helm: Require the IvP Helm even for a listening mission where the
frontseat is in control (default=true).

• helm_running_timeout: If require_helm: true, how long (in seconds) to wait
for the IvP Helm to start before moving to the Helm Error state. (default=10)

• frontseat_connected_timeout: How long (in seconds) to wait for the
Frontseat to be connected before moving to the Frontseat Error state.
(default=10)

• status_period: Seconds between publishing the status of iFrontseat. The
special value 0 disables posting of the status message (default=5).

• moos_var: Change the default values of the MOOS variables published or
subscribed to by iFrontSeat. Throughout the manual, these defaults are
referenced. If you change the values here, keep this in mind when reading
the rest of the manual.

– prefix: Prefix all MOOS variable names with this string
(default=“IFS_”)

– raw_out: variable used to post raw (e.g. NMEA-0183) messages from
iFrontSeat to the vehicle frontseat. (default=“RAW_OUT”)

– raw_in: variable used to post raw messages from the vehicle frontseat
to iFrontSeat. (default=“RAW_IN”)

– command_request: variable used for commands that iFrontSeat should
request the vehicle frontseat to carry out.
(default=“COMMAND_REQUEST”)

CHAPTER 4. GOBY MOOS MODULES 55

– command_response: if supported by the frontseat driver, the variable
used to post the result (success or failure with error information) of a
given request. (default=“COMMAND_RESPONSE”)

– data_from_frontseat: the variable used to post any navigation and/or
sensor data from the frontseat. (default=“DATA_IN”)

– data_to_frontseat: the variable used to post any data to be sent to the
frontseat. (default=“DATA_OUT”)

– status: the variable used to post the state of the frontseat, IvP helm,
and iFrontSeat. (default=“STATUS”)

• exit_on_error: If true, exit the application if it enters one of the error states.
Use only for debugging. (default=false)

• legacy_cfg: Numerous options to automatically convert legacy variables
(e.g., from iHuxley) into the iFrontSeat messages. Generally new projects
will not use any of these options and thus this configuration block can be
omitted. See section 4.7.2 for details on which of these flags to enable if
legacy compatibility is desired.

MOOS Variable Interface

The preferred way to use iFrontSeat is via the new IFS_ set of variables. The
contents of these string MOOS variables are the output of the
TECHNIQUE_PREFIXED_PROTOBUF_TEXT_FORMAT translator explained section 4.3.
Essentially, they are the TextFormat human-readable output of the Google Protocol
Buffers messages defined in

goby/moos/protobuf/frontseat.proto

To get access to the C++ equivalent classes generated by the Protobuf C++ compiler
(protoc), include this header:

#include "goby/moos/protobuf/frontseat.pb.h"

Do not parse these messages manually. You can automatically parse and serialize
these values to and from the corresponding Protobuf C++ classes using the
functions serialize_for_moos and parse_for_moos, which are declared in the
header file:

#include "goby/moos/moos_protobuf_helpers.h"

CHAPTER 4. GOBY MOOS MODULES 56

The MOOS variables subscribed to by iFrontSeat include (note the names are
configurable, the defaults are given here):

• IFS_COMMAND_REQUEST: Command from to give to the frontseat driver to be
asked of the vehicle’s computer. This is typically the desired course
(heading, speed, and depth) of the vehicle. Other special commands may be
defined by the specific vehicle driver. Protobuf Message type:
CommandRequest.

• IFS_DATA_TO_FRONTSEAT: Data that must be passed to the frontseat driver. For
example, the Bluefin AUVs require Conductivity-Temperature-Depth (CTD)
measurements when the CTD is connected to the backseat computer.
Protobuf Message type: goby.moos.protobuf.FrontSeatInterfaceData.

The MOOS variables published by iFrontSeat include:

• IFS_COMMAND_RESPONSE: Response to each command request, if a response is
requested. Protobuf Message type: goby.moos.protobuf.CommandResponse.

• IFS_STATUS: The current state of the IvP Helm, the frontseat system, and the
interface itself. Protobuf Message type:
goby.moos.protobuf.FrontSeatInterfaceStatus.

• IFS_DATA_FROM_FRONTSEAT: Data from the frontseat driver. This may include
navigation data (vehicle’s current pose, speed, depth, latitude, longitude,
etc), or other vehicle specific data. Protobuf Message type:
goby.moos.protobuf.FrontSeatInterfaceData.

• IFS_RAW_IN: Raw communications packets (e.g. NMEA-0183) from the
frontseat computer to iFrontSeat. Protobuf Message type:
goby.moos.protobuf.FrontSeatRaw

• IFS_RAW_OUT: Raw communications packets (e.g. NMEA-0183) from
iFrontSeat to the frontseat computer. Protobuf Message type:
goby.moos.protobuf.FrontSeatRaw

Legacy MOOS Variable Interface

iFrontSeat aims to replace several existing pieces of software, and by necessity
provides a number of features to ease transition. This functionality may change or
be removed in future versions, so where possible please use the new IFS_
variables. This legacy functionality is implemented in:

CHAPTER 4. GOBY MOOS MODULES 57

goby/src/apps/moos/iFrontSeat/legacy_translator.cpp
goby/src/apps/moos/iFrontSeat/legacy_translator.h

The transitional MOOS variables subscribed to by iFrontSeat include:

• If subscribe_ctd: true, then CTD_CONDUCTIVITY (siemens/meter),
CTD_TEMPERATURE (degrees C), CTD_PRESSURE (decibars), CTD_SALINITY (unitless -
practical salinity scale). These double values are buffered, then upon receipt
of CTD_TEMPERATURE are converted into a FrontSeatInterfaceDatamessage
containing a CTDSample and published to IFS_DATA_TO_FRONTSEAT.

• If subscribe_desired: true, then DESIRED_HEADING (degrees), DESIRED_SPEED
(meters/second), DESIRED_DEPTH (meters). These desired course values
(typically published by pHelmIvP) are buffered and upon receipt of
DESIRED_SPEED are converted to a CommandRequest and posted to
IFS_COMMAND_REQUEST.

• If pub_sub_bf_commands: true, then PENDING_SURFACE: This double value posted
by BHV_PeriodicSurface creates a CommandRequest of the special Bluefin type:
BluefinExtraCommands::GPS_REQUEST. This allows the shallow water vehicles
that require a GPS fix to occasionally come to the surface for GPS.

• If subscribe_acomms_raw: true, then ACOMMS_RAW_INCOMING,
ACOMMS_RAW_OUTGOING: The raw NMEA-0183 feed from the WHOI
Micro-Modem (or other acoustic modem) posted by the Goby-Acomms
MOOS application pAcommsHandler. These are converted into a
FrontSeatInterfaceDatamessage containing the special Bluefin extension
BluefinExtraData.micro_modem_raw_in or
BluefinExtraData.micro_modem_raw_out and published to
IFS_DATA_TO_FRONTSEAT. Bluefin still requires our raw Micro-Modem feed as a
backup to the hardware tail-cone abort (which uses the Micro-Modem).

The transitional MOOS variables published by iFrontSeat include:

• If publish_nav: true, then NAV_X (meters), NAV_Y (meters), NAV_LAT (degrees),
NAV_LONG (degrees), NAV_Z (meters, negative down), NAV_DEPTH (meters,
positive down), NAV_YAW (degrees), NAV_HEADING (degrees), NAV_SPEED
(meters/second), NAV_PITCH (radians), NAV_ROLL (radians), NAV_ALTITUDE
(meters). All these double values are generated from the
FrontSeatInterfaceDatamessage when it contains node_status information.

CHAPTER 4. GOBY MOOS MODULES 58

• If publish_fs_bs_ready: true, then BACKSEAT_READY: Published as 1 (true)
when the Helm State becomes HELM_DRIVE, otherwise 0 (false).

• If publish_fs_bs_ready: true, then FRONTSEAT_READY: Published as 1 (true)
when the FrontSeat State becomes FRONTSEAT_ACCEPTING_COMMANDS, otherwise
0 (false).

• GPS_UPDATE_RECEIVED: Published as Timestamp=double seconds since Unix
when a BluefinExtraCommands::GPS_REQUEST command responds successfully.

4.7.3 Vehicle Drivers

BluefinFrontSeat

The driver BluefinFrontSeat is designed for the Bluefin Robotics Standard Payload
Interface (SPI) Version 1.8 and newer, which must be requested directly from
Bluefin Robotics.

Knowledge of some details of Bluefin’s SPI will be assumed here; please reference
that document as needed while reading this section.

The configuration accepted by iFrontSeat for the BluefinFrontSeat driver is as
follows:

1
2 [bluefin_config] {
3 huxley_tcp_address: ""
4 huxley_tcp_port: 29500
5 reconnect_interval: 10
6 nmea_resend_attempts: 3
7 nmea_resend_interval: 5
8 allowed_nmea_demerits: 3
9 allow_missing_nav_interval: 5
10 heartbeat_interval: 1
11 extra_bplog: ""
12 send_tmr_messages: true
13 disable_ack: false
14 accepting_commands_hook: BFMSC_TRIGGER
15 }

This configuration values are placed in the .moos file in the
ProcessConfig = iFrontSeat block:

CHAPTER 4. GOBY MOOS MODULES 59

• huxley_tcp_address: IP address or domain name of the Huxley server
machine.

• huxley_tcp_port: TCP port of the Huxley server. (default=29500)

• reconnect_interval: How many seconds to wait between reconnects if the
Huxley server disconnects. (default=10)

• nmea_resend_attempts: Number of resend attempts for a given NMEA
message (default=3)

• nmea_resend_interval: How many seconds to wait between resend attempts
(default=5)

• allowed_nmea_demerits: Number of times Huxley can fail to acknowledge a
NMEA message before we close the connection. (default=3)

• allow_missing_nav_interval: How many seconds to allow without $BFNVG
before declaring frontseat not providing us data. (default=5)

• heartbeat_interval: How many seconds between heartbeats ($BPSTS).
(default=1)

• extra_bplog: Additional Bluefin messages to enable logging for (e.g. for to
send $BPLOG,CMA,ON, set this field to ’CMA’. This field can be repeated.

• send_tmr_messages: Send the BPTMR message with acoustic comms contents.
This is required on certain vehicles outfitted with the WHOI Micro-Modem.
Ask Bluefin for details about if they need the BPTMR message sent
(default=true).

• disable_ack: If true, do not use the BFACK message. Set to true for vehicles
without the BFACK support. Note that if this field is set to true,
IFS_COMMAND_RESPONSEmessages will not be posted.

• accepting_commands_hook: The mechanism by which the Bluefin frontseat
indicates that it is ready to accept commands from iFrontSeat (and also by
which it revokes control). The options are:

– BFMSC_TRIGGER: If any BFMSC message is received, the frontseat state is
set to FRONTSEAT_ACCEPTING_COMMANDS. If a BFMIS message is received
with the word “Running” in the fourth field, the frontseat state is set
to be FRONTSEAT_IN_CONTROL. Any other BFMIS sets the frontseat state to
FRONTSEAT_IDLE.

CHAPTER 4. GOBY MOOS MODULES 60

– BFMIS_RUNNING_TRIGGER: If a BFMIS message is received with the word
“Running” in the fourth field, the frontseat state is set to be
FRONTSEAT_ACCEPTING_COMMANDS. Any other BFMIS sets the frontseat state
to FRONTSEAT_IDLE.

– BFCTL_TRIGGER: If the third field is true, the frontseat state is set to
FRONTSEAT_ACCEPTING_COMMANDS. Otherwise, it is set to
FRONTSEAT_IN_CONTROL. Also, if a BFMIS message is received with the
word “Running” in the fourth field, the frontseat state is set to be
FRONTSEAT_IN_CONTROL. Any other BFMIS sets the frontseat state to
FRONTSEAT_IDLE.

Writing a new driver

A tutorial on how to write a new driver is available in the Goby developers’
documentation at [1].

4.8 iCommander

Deprecated. Use goby_liaison as a replacement. See section 4.5.

4.9 pREMUSCodec

Deprecated. DCCL has significant support for interoperating with the CCL protocol using
pAcommsHandler with the libgoby_ccl_compat library. Please contact one of us (section
1.6) if you need help getting started with this functionality.

5What’s next
That’s all for goby in Release 2.0. There’s still a lot to do so keep tuned. If you want
the bleeding edge, you can check out the Goby 3.0 branch with
bzr checkout lp:goby/3.0.

Here’s what’s on the horizon:

• Goby-Common: a general purpose interprocess and interplatform
communication based on messaging schemes drawn both from the existing
marine robotics and global open source communities. The focus is on a high
degree of runtime reliability and collaboration between development
communities. For advanced users, it provides a transport layer built on
ZeroMQ (which supports 20+ languages including C, C++, Java, .NET, Python,
and major platforms) for communicating over reliable multicast (PGM)
using one or more existing (e.g. MOOS, LCM, Protobuf, CCL, DCCL, ...)
messaging schemes. Goby does not mandate a programming language, a
messaging scheme, or a development system and thus intends to tie
together groups with different goals, styles, and rules. Furthermore,
Gateways can be written to interface the ZeroMQ based Goby transport with
the native transport systems used by other architectures (e.g. MOOSDB,
LCM multicast).

• Goby-PB: The Google Protocol Buffers / C++ implementation of
Goby-Common. For introductory users, it provides an ”template”
application in C++ that allows object-based messaging (based on Google
Protocol Buffers) between processes and platforms without any concern for
serialization, routing, sockets, and so on.

Stay tuned at https://launchpad.net/goby. Thanks.

61

https://launchpad.net/goby

Glossary
autonomy architecture loosely defined, a collection of software applications and

libraries that facilitate communications, decision making, timing, and other
utilties needed for making robots function. Another common term for this
is autonomy “middleware”. 2

protobuf From [?]: “Protocol buffers are Google’s language-neutral,
platform-neutral, extensible mechanism for serializing structured data –
think XML, but smaller, faster, and simpler. You define how you want your
data to be structured once, then you can use special generated source code
to easily write and read your structured data to and from a variety of data
streams and using a variety of languages – Java, C++, or Python.”. 3

62

Bibliography
[1] Goby Developers, “Goby underwater autonomy project documentation.”
[Online]. Available: http://gobysoft.org/doc/2.0

[2] P. Newman, “The MOOS: Cross platform software for robotics research.”
[Online]. Available:
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php

[3] M. R. Benjamin, “The MOOS-IvP uField Toolbox for Multi-Vehicle Operations
and Simulation,” Massachusetts Institute of Technology, Tech. Rep. 12.2, 02
2012.

[4] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested
autonomy for unmanned marine vehicles with MOOS-IvP,” Journal of Field
Robotics, vol. 27, no. 6, pp. 834–875, 2010. [Online]. Available:
http://dx.doi.org/10.1002/rob.20370

[5] Emweb, “Wt, a C++ web toolkit.” [Online]. Available:
http://www.webtoolkit.eu/wt

[6] “∅MQ, the intelligent transport layer.” [Online]. Available:
http://www.zeromq.org/

63

http://gobysoft.org/doc/2.0
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
http://dx.doi.org/10.1002/rob.20370
http://www.webtoolkit.eu/wt
http://www.zeromq.org/

	Contents
	Introduction
	What is Goby?
	Structure of this Manual
	Prerequisites
	Getting the Code
	Changes / incompatiblities with version 1
	How to get help

	Goby-Acomms
	Introduction
	Dynamic Compact Control Language: DCCL
	Time dependent priority queuing: Queue
	Time Division Multiple Access (TDMA) Medium Access Control (MAC): AMAC
	Abstract Acoustic (or other slow link) Modem Driver: ModemDriver

	Goby Common Modules
	Goby Common Applications
	Liaison
	Gateway Applications

	Goby MOOS Modules
	Goby MOOS Applications
	pTranslator
	Translator techniques
	pAcommsHandler
	MOOS Plugins for Goby Liaison
	Migrating from Version 1 to Version 2
	iFrontSeat
	iCommander
	pREMUSCodec

	What's next
	Glossary
	Bibliography

